
A Prototype Belief Network-based Expert System Shell

Shijie Wang Marco Valtorta
(803) 777-2400 (803) 777-464 1

wang@cs.scarolina.edu (...!usceast!wang) mgv@cs.scarolina.edu (...!usceast!mgv)

Department of Computer Science
University of South Carolina

Columbia, South Carolina 29208, U.S.A.

Abstract

A belief network-based expert system works in a
way entirely different from a rule-based expert system.
In such systems, a high degree of non-determinism is
present in the process of belief propagation. Existing
belief network-based systems thus provide no control
mechanism and let their users make decisions at every
stage in the process of evidence gathering and belief
propagation. However, for any real world expert
system with large complex belief network, it is
important to have efficient control of the inference
procedure.

In this paper we describe a novel expert system
shell that incorporates a general inference control
mechanism for efficient belief propagation in belief
networks. The control knowledge supplied by domain
experts is encoded in some action rules. With these
action rules, the system can effectively direct the
inference procedure, help the user to gather the most
relevant evidence based on the results of previous
stages, while the user of the system is still allowed to
take the initiative.

1. Introduction

Belief networks have been proposed as a
formalism for implementing knowledge bases and also
as a computational architecture for reasoning under
uncertainty. With respect to the conventional MYCIN-
style rule bases, belief networks overcome the
problems arising from a truth-functional approach to
evidence propagation, by applying a model-based (or
intensional) approach, as explained, e.g., in [Pearl,
1988, chapter 11,

A major problem of belief networks is the large
amount of computer time that is required to perform

Permission to copy without fee all or part of this material is granted pro-
vided that the &pies are not made 0; distributed for direct commekial
advantane. the ACM cowrinht notice and the title of the publication and - __ -
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

computation of beliefs in the worst case [Cooper,
19871. This led to proposals for approximations,
such as the one presented in [Gordon and Shortliffe,
19851. More recently, various researchers have
proposed schemes for efficient computation of beliefs
in networks of special structure, such as trees.
Examples of these schemes are described in [Pearl,
19861, [Kong, 19861, [Shafer and Logan, 19871,
[Lauritzen and Spiegelhalter, 19881, and [Mellouli,
19881.

There are two major classes of belief networks,
Dempster-Shafer networks and Bayesian networks.
The body of this paper describes results pertaining to
Dempster-Shafer networks, but much of the
presentation applies to Bayesian networks as well.

At the present time, only few applications of
belief networks and very few tools for their
construction have been developed. For Dempster-
Shafer belief networks, there is an experimental
system called DELIEF that implemented an efficient
belief propagation scheme based on qualitative
Markov trees (see [Shafer et al., 1987], [Mellouli,
19881 and [Zarley, 19881). For Bayesian belief
networks, the authors know of only one
commercially announced tool for the construction of
belief networks, the expert system shell HUGIN
[Andersen et al., 19891, and only one commercially
available application, a medical assistant developed
at Stanford. A large, but not commercially available,
application of belief networks is the MUNINl system
[Andreassen et al., 19871. MUNIN assists a
physician in the diagnosis of muscle diseases using
electromyography. HUGIN is approximately in the
same relation to MUNIN as EMYCIN is to MYCIN.
Currently, MUNIN has approximately 1000 nodes,
most corresponding to findings, pathophysiological
states, and diagnosis. MUNIN covers only a small
portion of the domain of electromyography.

1 The second author has maintained a loose association
with the MUNIN project since the fall of 1985.

@ 1990 ACM 089791-372-8/90/0007/0509 $1 SO
509

The authors have started a program of research in
the fall of 1988 with the overall objective of
investigating the practical applicability of Dempster-
Shafer belief networks as an alternative to rule bases.
Theoretical results achieved so far concern the
construction and maintenance of belief networks
[Valtorta and Loveland, 19891 and the computation of
beliefs in graphs that are not trees [Wang, 1989,
Chapter 3; Wang and Valtona, 1990a]. Practical results
include the conversion of parts of a large rule base into
a belief network [Wang, 1989, Chapter 5; Wang and
Valtorta, 1990b], and the construction of an expert
system shell for belief network-based expert systems.
This shell, called BELFW, will be described in this
paper.

BELFUN has been used to re-implement part of
the knowledge base used in the PLAYMAKER expert
system, a component of XX, an intelligent support
system for the exploration geologist under develop-
men at the University of South Carolina and Vanderbilt
University with the support and involvement of several
oil companies [Biswas and Anand, 19881. We decided
to use an existing rule base to simplify the knowledge
acquisition phase, but this choice forced us to confront
certain specific problems of the conversion of rules
into belief networks. These problems will be reported
elsewhere.

2. BELFUN System Architecture and
Knowledge Base Construction

BELFUN incoperates the Dempster-Shafer theory
of belief functions, belief propagation schemes,
Markov tree construction procedures, and some
useful techniques adapted from MIDST [Biswas and
Anand, 19881, MYCIN [Shortliffe, 19761, DELIEF
[Zarley, 19881, and CONVINCE [Kim and Pearl,
19871 into a complete evidential reasoning system.
The system is implemented in AKCL (Austin-Kyoto
Common LISP) on a Sun3/60 workstation running
SUNOS UNIX3 4.0. Figure 1 gives an overview of
the system architecture, where program modules are
represented by rectangular boxes, data structures are
shown in rectangles with rounded comers, while
arrows indicate information flow in the system.

The system runs in system designer mode or
user mode. The system designer mode is provided for
knowledge engineers to construct, test, and modify
the belief network, query database [Biswas and
Anand, 19881, and control action rules. The user

2 BELFUN stands for BELief FUNctions.
3 Trade marks of Sun Microsystems and AT&T,

respectively.

Markov Tree Constructor

Rulebase-Belief Network

Inference Engine
(Belief propagation and
control mechanisms)

User Interface
System Designer

User

Fig. 1 BELFUN System Architecture

510

mode is designed for users who need experts’
consultations on some particular problems in the
domain of application.

Currently, very limited facilities are available to
knowledge engineers. We have implemented a simple
menu driven system that allows the knowledge
engineer to run some sessions for the purpose of
testing or demonstration. In the user mode, we adopt a
goal-directed and mixed-initiative evidence aggrega-
tion mechanism. Interaction between the system and
the user is guided by a monitor working with some
action rules and some queries supplied by domain
experts. However, the inference procedure can be
altered by the user if he wants to take the initiative.
Currently, the user interface is a simple dialogue
system. Later, it will be extended to provide a user-
friendly multi-window graphical working environ-
ment.

A belief network constructed from expert’s
knowledge about a domain of application may not
possess the Markov property of qualitative indepen-
dence (original definitions of found in [Shafer, Shenoy
and Mellouli, 198’71, [Mellouli, 19881). A major task
of our system is to transform an arbitrary belief
network into a qualitative Markov tme which will setve
as the knowledge base of the expert system under
construction. This complex task is accomplished by the
module Markov tree constructor. A series of
transformations is performed, including (1)
representing the belief network as a hypergraph and
reducing it to a non-reducible block (usually non-
empty) and constructing a Markov tree (usually
incomplete) at the same time; (2) constructing a
maximal intersection network for the block (if it is not
empty) and finding a Markov tree representative that is
then merged with the partial Markov tree obtained in
(1) to form a complete Markov tree; (3) finding a
partially fixed tree and constructing an alternating tree
based on that; and (4) attaching to the alternating tree
those individual nodes still absent, and fmally copying
belief functions from the original belief network and
creating vacuous belief functions for newly-generated
nodes. For details of the construction procedure, see
[Wang, 19891, [Mellouli, 19881, [Zhang, 19881 and
[Zarley, 19881.

3. BELFUN Inferencing and Control Structure

A fully-specified belief network contains all
information necessary to answer all questions about all
individual and joint variables in the belief function
model, either directly by user-supplied evidence or
indirectly through propagation (cf., e.g., [Pearl,
19881). The belief network can be viewed as a
network of autonomous processors that work in
parallel and communicate only with immediately

neighbors, thus no global control mechanism is
needed in principle. In any real-world expert system,
however, careful design of global control mechanism
is crucial, and in fact control knowledge and the
partitioning of a knowledge base are important
components of human expert’s knowledge (cf.
[Shafer et al., 19871, [Valtorta et al., 19841).
Therefore, BELFUN includes efficient control
mechanisms suitable for belief network-based
systems working with any monolythic belief network
or partitioned belief networks.

3.1 Design Considerations for Inference
Control Structure

In rule-based systems like MYCIN and MIDST,
a rule is fired when relevant evidence has been
gathered so that all conditions in that rule are satisfied
and the rule is selected by some conflict resolution
strategy, therefore, domain knowledge as well as
control knowledge can be represented using the same
formalism of production rules. Firing a rule may then
cause some conclusions to be made and/or some
actions to be taken, say, request for evidence about
some particular variable, which may in turn cause
some other rule(s) to be fired, thus forming chains of
firing rules (either forward chaining or backward
chaining). The inference procedure in such systems is
thus primarily controlled by the system.

A belief network-based system works in a way
entirely different from a rule-based system. During
the process of belief propagation the order in which a
node in the belief network is reached could be
arbitrary, i.e. independent from the particular values
of input evidence, as long as the belief network is a
Markov tree. The user of the system can thus have the
full freedom to direct the inference procedure in his
own way. DELIEF and HUGIN, the two existing
belief network-based systems, take this approach.

In DELIEF, a typical session proceeds in three
stages [Zarley, 19881. The user or knowledge
engineer can construct a belief function network
through a graphical interface. Upon completion, the
belief network is transformed into a Markov tree. The
resulting Markov tree is a rooted directed tree where
the directions are simply a byproduct of the
construction procedure. After the user has provided
some evidence pertinent to a specific situation, he can
simply select the main menu item “propagate,” and
the inference engine is activated to propagate the
impact of new evidence throughout the network by
first propagating from the leaves towards the root and
then from the root towards the leaves. This
procedure is called complete propagation . The
system has some facilities for the user to examine
the updated belief distributions. If later some new

511

evidence is obtained, the propagation procedure is
repeated. Obviously, much repetitive computation is
involved in this iterative process.Also, the order for
gathering evidence is solely up to the user and the
system is merely a passive tool for computing beliefs.

Similarly, HUGIN’s inference procedure is also
totally controlled by the user although it can provide
more sophisticated facilities for the user to do that
[Andersen et al., 19891. At any stage, the user can
choose a particular node and provides some
evidence to that node, and then the procedure
DistributeEvidence is invoked to propagate its impact
to the whole network. Alternatively, the user can
specify a particular node of interest as the destination
and calls the procedure CollectEvidence to propagate
beliefs in the whole network towards this node. When
multiple pieces of evidence are input to the system, a
call to CollectEvidence followed by a call to
DistributeEvidence performs a complete propagation as
in DELIEF. Here the problem is that the user is
supposed to be a non-expert who also needs help in
collecting evidence, not just in deriving conclusions,
especially when working with some large belief
network like MUNIN, derived from complex problem
domains. An efficient automated reasoning system
should be able to take appropriate actions at proper
times, guide the user to gather most relevant evidence
in every stage, based on the outcome of previous
stages. DELIEF and HUGIN apparently lack such a
desirable property.

Based on these observations and arguments, we
have designed an efficient control mechanism for
BELF’UN that incorporates domain experts’ control
knowledge. In a belief network-based system,
evidence and rules are all cast into the conceptual
framework of belief functions. Hypotheses,
conditions and conclusions are all in the form of
(variable value) with associated belief value and
represented by a basic probability assignment.
Clearly, actions do not fit in this formalism.
Therefore, it is inappropriate to encode action rules as
belief functions stored in some nodes of belief
network. Our solution is to adopt such a strategy that
control knowledge is represented by various action
rules, separated from domain knowledge proper.

3.2 Goal-Directed Evidence Aggregation in
Partitioned Belief Networks

Any monolithic belief network can be viewed as
a special case of partitioned belief networks. We will
discuss the control structure for the general case of
partitioned belief networks.

In any partition of a belief network, we can
always identify a variable as a goal variable. In
general, there can be more than one such variable.
For simplicity, we consider the case of single goal
variable as is the case of the XX belief network. A
goal variable can be, for example, the one used in
action rule(s) for partition transfer (see Fig. 2), that
is, we have to get a satisfactory amount of belief in a

(setq *action rules*
‘((ruleOi ((*currentgartition* dep-set))

((a&first nil))
)
(rule02 ((max_hypothesis (source-seismic yes))

(rnax-hypothesis (basin-margin crossed))
)
((askq play lies))

)
(rule03 ((ma--hypothesis (source-seismic yes))

(mar_hypothesis (basin-margin not-crossed))
(mm-hypothesis (basin-margin-shelf penetrated))

)
)

i;;Ie07 ((mm hypothesis (depo-set shelf3)
(*e&heck* yes))

(setq *goal* ‘depo-set))

Fig. 2 The action rules and the goal variable for the partition “general depositional settings.”

512

hypothesis about this variable before the system
descends to next partition, and its different values will
lead the system to different partitions accordingly.
Evidence aggregation and belief propagation are
directed to achieve this goal.

For any partition of a belief network, there will be
a (usually small) set of action rules. In our system, we
have three types of action rules that are closely related
to the three types of actions in the XX system (for
more details, see [Biswas and Anand, 19881). Fig. 2
shows some of the action rules associated with the
partition “general depositional settings” of the XX
rulebase, where max_hypothesis is a predicate to test
whether or not the hypothesis given as its argument is
the leading hypothesis about this variable, that is,
whether or not it has the largest belief value. Other
predicates can be used if appropriate. For example,
when constructing a belief function network from
MYCIN-type rulebase, some predicates used in these
rules, say KNOWN, NOT-KNOWN, DEFINITE-
NOT , might be encoded in action rules (see
[Buchanan and Shortliffe, 19841).

Askfirst rule There is only one such rule for a
partition. It is always invoked at the very beginning
upon entering a partition. The special variable
*currentgartition * holds the name of the currently
active partition. The action routine askj5rst takes as
argument a variable name and presents to the user a
specific query about this variable along with possible
answers which are provided by domain experts and
stored in a query database (see Fig. 1). If a null
argument is given, u&Cst will encourage the user to
enter whatever evidence the user considers relevant to
the current goal. The propagation process will start
from those nodes for variables involved in this action
and action(s) caused immediately by this action, that is,
those nodes with user-supplied evidence.

Askg rule There can be several action rules of
this type. Each may invoke the action routine askq
several times. Each time, askq asks the user a
question about the variable given as its argument. The
user is allowed to input evidence about other variables
that he considers more relevant to the current goal; and
nodes for these variables will be put on the top of the
list of nodes for propagation next step. In this way, the
user takes the initiative to adjust the direction of the
propagation procedure. Thus, the approach of mixed
initiative reasoning in MIDST is adapted to our belief
network-based system except that no backward
chaining process is involved.

Nextqartition rule This type of rule is
designed to control transfer from the current partition
to some other partition according to some particular
conditions. Such a rule will always be the last one to

fire. For a monolithic belief network or the last
partition in a partitioned belief network, a null
argument will be given to the action routine
nextqartition , thus bringing the inference procedure
to an end. When such a rule is fired, the action
routine nextqartition first saves the current status
of the belief network, that is, the resulting belief
distribution obtained through evidence aggregation
and belief propagation in all previous partitions (if
any) as well as the current partition, which are the
contents of a global working memory called belief
base . It then calls a procedure to set-up for working
with the next partition. This includes loading the
belief network (a Markov tree) and associated action
rules, and merging the contents of the belief base into
the belief network. For each node in the belief
network, it creates slots for accommodating inputs
from user, projections from neighbors and storing
updated belief functions, and finally, making the next
partition the value of the special variable *current
partition* so that the askfirst rule for the new
partition will be fired immediately.

Note that *exitcheck* is another special
variable in the system. When all available evidence
relevant to the current partition has been collected,
and its impact has been propagated throughout the
network, a procedure named exitcheck is called. It
first shows the user the current status of the goal
variable, all nextyartition rules and status of each
condition in these rules along with expert suggested
thresholds. If the user is satisfied with these results,
exitcheck is set and then an action for partition
transfer will take place next. However, if the user is
not satisfied yet, he can supply additional information
to the system and the propagation procedure will be
repeated starting from those nodes with new
evidence. When no more evidence is available, if the
user is still not satisfied, or for any other reasons, he
may suspend the current session and later come back
with some newly acquired evidence to resume the
session at this point. Note that the procedure
exitcheck can provide some thresholds suggested by
domain experts, which can be used as default
thresholds, while the user has the final say to decide
whether the exit condition is satisfied or not. We can
say that the thresholds are adaptively set by the user.
This strategy is certainly justifiable since in many
practical situations, the user may not have a sufficient
source of information or enough time to acquire
adequate evidence, but still wants to obtain some
approximate results based on evidence he can supply
from a limited source or within limited time.

The control structure is illustrated in Fig. 3. The
start-up procedure is executed to begin a new session
or resume a suspended session. This procedure first
asks the user the entry point partition and then calls

513

ii

start-up

do-actions

I
I
I

I Perform actions in Call “select~action”
I
I selected action rules
I

I
I

I

Get starting nodes

Propagate from starting
nodes to the virtual root

Propagate from the
virtual root to leaves

Exitcheck

I

(a) Overall Inference procedure

Fig. 3 The inference/control structure in BELFUN

the set-up procedure to do all necessary initialization
work mentioned above in the description of
nextgartition rule . The procedure do-actions calls
the procedure select actions and then performs
actions in selected action rules. Selection of appropriate
action rules is based on the current status of the belief
base and the values of the two special variables
currentgartition , and *exitcheck* As conse-
quences of some actions, the belief base and the two
special variables may be changed. Therefore, some
other actions may need to be taken next. In action
rules, conditions on these two variables involve no
uncertainty while a condition of other types is satisfied
if the hypothesis in the condition is the leading hypo-

hesis for the variable concerned. Intuitively, belief
propagation should start from those nodes that have
non-vacuous belief functions, either inherited from
previous partition (if any) or obtained directly from
user supplied evidence. We give the nodes in the
latter case higher priorities for propagation.
Normally, the inference procedure is completed when
a partition transfer rule is fired for a monolithic belief
network or for the last partition of a partitioned belief
network. Note that any node can be the root of the
belief network (Markov tree) depending on the order
that evidence is supplied. The resulting belief
distribution will be the same no matter which node is
selected as the root. The parent-child relation between

514

Put starting nodes on the proplist’ I *

tt

The list of nodes waiting
for propagation.

It has received projection
from all neighbors except
one {the virtual parent).

NO

No

he virtual root is reached?

t
No

Gall do-actions, put varrables
in actions on top of the proplist

+
No

Put tnts node and otner nerghbors
at the end of the proplist

Yes

No

I Call do-actions, put variablles
in actions on top of the proplist I

Remove this node from the proplist

Fig, 3 (b) Propagate to the virtual root.

adjacent nodes is dynamically established and no
longer exists after propagation towards leaves passed
the nodes. When propagating towards the root, if a
node has received projections from all its neighbors
except one, then that one is said to be its parent node
while the others are its children. We borrow these
terms for rooted directed trees only for convenience in
our descriptions.

We say a variable is askable if its value can be
obtained directly from user input. Such a variable
appears in some uskq rule(s) . A variable is said
derivable if its value can only be derived through
belief propagation (it is called verzjkble in MIDST).

During the main process for evidence gathering
(propagation towards root), when propagation
reaches such a node, it still has vacuous belief
function. If a node has some neighbors that are
derivable leaf nodes, propagation will pass over this
node by simply putting them in its Gldren list as if
they had actually sent messages to it. No actual
projection is needed in this case since projection of a
vacuous belief function always results in a vacuous
belief function. If some of its neighbors are askable
(usually also leaf nodes), do actions is called to see
if conditions in action rules gbout the variable of this
node are satisfied or not based on the current status
of the belief base. If the conditions are satisfied, take

515

Put the root on the proplist I

Update belief funtion for the first node on the proplist
I

Propagate to all its children, put children on the proplist
I

Call do-actions, put variables in actions on top of the proplist

I Remove this node from the proplist I

I

Fig. 3 (c) Propagate to leaves.

the actions specified in the action rule (normally uskq
rule in this case). The attribute cause-action of a
variable is set to true if some actions are associated
with it. Such a variable appears in the condition part of
some action rule(s). After the action in the action part
have been taken, it is reset so that the same action rule
will not fire twice. Therefore, if the attribute
cause action of a variable is true, then this variable
can tcgger some action but the action has not yet been
taken. If an action depends upon some derivable
variable, the action might not be triggered until
propagation towards leaves reaches the node of this
variable, since only at that time can this node receive
projection from its parent node so that it can update its
belief function. The projection received from the parent
node reflects the accumulated impact of all evidence
input to the other part of the network, that is, the
subnetwork containing its parent node obtained by
breaking the link between this node and its parent
node.

In the current implementation of BELFUN, each
condition in an action rule fails immediately if the
variable in the condition does not have a computed
belief value. Conditions in action rules cannot initiate
a belief computation. They can only test belief values.
For example, with reference to rule03 in Figure 2, if
no belief value has been computed for the variable
basin-margin, the condition (max-hypothesis
(basin-margin not-crossed)) fails, and the rule will
not fire. (Of course, the condition will also fail if
not-crossed is not the value of basin-margin with the
highest belief.) In some applications, we may need a
more sophisticated procedure that tries to satisfy all
conditions in some action rule about a derivable
variable. The procedure will probably be engaged in
recursive calls in a way similar to backward chaining
in rule-based systems since whether or not a
condition is satisfied may in turn depends upon
conditions in some other action rules.

516

It should not be hard to see that most evidence
relevant to the current partition is collected during the
process of propagation towards the virtual root. In the
stage of propagation from the root towards leaves,
updated beliefs are distributed throughout the belief
network. In most cases, we can reasonably assume
that at this point, the exit condition could have been
satisfied, although the same procedure can be repeated
if it is not so. The time needed for completion of one
cycle in terms of projection operations is clearly
proportional to the length of the longest path in the
network. This control structure is efficient in view of
the fact that propagation at every node in the network
is done always at the right time and repetitive
propagation is minimized only subject to the
availability of evidence.

4. Conclusions

We conclude the paper by outlining a direction for
further work that would enhance the effectiveness of
BELFUN as a tool for the construction of expert
systems.

There is an essential difference between inference
procedures in a rule-based system and in a belief
network-based system. In a rule-based system, for any
specific situation, there is only a particular subset of
rules in the knowledge base that successively fire in
some order to obtain the desired results. In a belief
network-based system, no matter what kind of
propagation procedure is employed, we always have to
propagate all evidence throughout the belief network
(knowledge base). The problem domain under
consideration may be too large and too complex to
propagate all beliefs. Also, it may not even be
necessary for practical reasons to propagate beliefs
throughout an entire belief network because of the
knowledge structure of the problem domain.
Therefore, partitioning a large belief network is
desirable when dealing with a complex problem
domain, so that each time we only need to propagate
beliefs within a bounded area of a belief network.
Even with a partitioned belief network, the user may be
interested only in propagating beliefs from some
particular source nodes to some specified target nodes.
In the stage of knowledge acquisition and knowledge
base construction, the knowledge engineer or domain
expert often likes to see the varying aspects of some
evidence upon some particular variable(s) closely
related to the observation. He should be allowed to
switch from editing mode to a mode where he can run
a test efficiently on a small subnetwork only and then
switch back to make necessary modifications based on
the results of the test (cf. [Biswas and Anand, 19881).
Also, in this way, the system can help the system
designer to partition a large beliefnetwork in amore

appropriate way. More generally, in any problem
domain involving simulation, prediction, and
planning,‘the capability of a knowledge-based system
to perform “what-if analysis” is a most desirable
property (cf. [Kim and Pearl, 19871). We are
therefore investigating a mechanism for bounded
belief propagation. We are also looking for other
suitable domains of application for BELFUN.

References

Andersen, S.K., K.G. Olesen, F.V. Jensen, and F.
Jensen, “HUGIN--A Shell for Building Bayesian
Belief Universes for Expert Systems.”
Proceedings of the Twerfth International Joint
Conference on Artificial Intelligence, Los
Angeles, CA, 1989, 1080-1085.

Andreassen, S., M. Woldbye, B. Falck, SK.
Andersen. “MUNIN--A Causal Probabilistic
Network for Interpretation of Electromyographic
Findings.” Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, Milan,
Italy, 1987, 366-372.

Biswas, G. and T.S. Anand. “An Expert System
Shell for Mixed Initiative Reasoning.” Technical
Report CS-88-02, Department of Computer
Science, Vanderbilt University, 1988.

Buchanan, B.G. and E.H. Shortliffe (eds.) Rule-
Based Expert Systems: The MYCIN Experiments
of the Stanford Heuristic Programming Project.
Reading, MA: Addison-Wesley, 1984.

Cooper, G.F.“Probabilistic Inference Using Belief
Networks is NP-Hard.“Stanford University
Knowledge Systems Laboratory Memo KSL-82-
27, May 1987 (revised July 1988).

Gordon, J. and E.H. Shortliffe. “A Method for
Managing Evidential Reasoning in a Hierarchical
Hypothesis Space.” Artificial Intelligence, 26
(1985), 323-357.

Kim, J.H. and J. Pearl. “CONVINCE: A
Conversational Inference Consolidation
Engine.“IEEE Transactions on Systems, Man,
and Cybernetics, 17,2, 120-132, 1987.

Kong, C.T.A. “Multivariate Belief Functions and
Graphical Models.” Ph.D. Dissertation,
Department of Statistics, Harvard University,
1986. (Available as Research Report S-107,
Department of Statistics, HarvardUniversity.)

517

Lauritzen, S.L. and D.J. Spiegelhalter. “Local
Computations with Probabilities on Graphical
Structures and their Applications to Expert
Systems.” Journal of the Royal Statistical Society,
Series B (Methodological), 50 (1988), 157-224.

Mellouli, K. “On the Propagation of Beliefs in
Networks Using the Dempster-Shafer Theory of
Evidence.” Ph.D. Dissertation and Working Paper
No. 196, School of Business, University of
Kansas, April 1988.

Pearl, J. “On evidential reasoning in a hierarchy of
hypothesis.” Artificial Intelligence, 28,9-15, 1986.

Pearl, J. Probabilistic Reasoning in Intelligent
Systems. San Mateo, CA: Morgan-Kaufmann,
1988.

Shafer, G. and R. Logan. “Implementing Dempster’s
Rule for Hierarchical Evidence.” Artificial
Intelligence, 33,271-298, 1987.

Shafer, G., P.P. Shenoy, and K. Mellouli.
“Propagating Belief Functions in Qualitative
Markov Trees.” International Journal of
Approximate Reasoning, 1,349-400, 1987.

Shortliffe, E.H. Computer-Based Medical
Consultations: MYCIN. New York: American
Elsevier, 1976..

Valtorta, M. and D.W. Loveland. “On the Complexity
of Belief Network Synthesis and Refinement.”
Technical Report TR89011, Department of
Computer Science, University of South Carolina,
Columbia, November 1989.

Valtorta, M., B.T. Smith, and D.W. Loveland. “The
Graduate Course Advisor: A Multi-Phase Rule-
Based Expert Systems.” Proceedings of the IEEE
Workshop on Principles of Knowledge-Based
Systems, Denver, CO, 1984, 53-57.

Wang, S. “BELFUN -- A Belief Function Based
Expert System Shell.” M.S. Thesis, University of
South Carolina, Columbia, November 1989.

Wang, S. and M. Valtorta. “An Extended Algorithm
for Markov Tree Construction and Nonserial
Dynamic Programming.” In preparation. To appear
in 1990.

Wang, S. and M. Valtorta. “On the Conversion of
Rule Bases into Belief Networks.” In preparation.
To appear in 1990.

Zhang, Lianwen. “Studies on finding hypertree
covers for hypergraphs.” Working Paper No.
198, School of Business, University of Kansas,
Lawrence, KS, 1988.

Zarley, D. “An Evidential Reasoning System.”
Thesis, School of Business, University of
Kansas, Lawrence, 1988.

518

