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Abstract 

A belief network-based expert system works in a 
way entirely different from a rule-based expert system. 
In such systems, a high degree of non-determinism is 
present in the process of belief propagation. Existing 
belief network-based systems thus provide no control 
mechanism and let their users make decisions at every 
stage in the process of evidence gathering and belief 
propagation. However, for any real world expert 
system with large complex belief network, it is 
important to have efficient control of the inference 
procedure. 

In this paper we describe a novel expert system 
shell that incorporates a general inference control 
mechanism for efficient belief propagation in belief 
networks. The control knowledge supplied by domain 
experts is encoded in some action rules. With these 
action rules, the system can effectively direct the 
inference procedure, help the user to gather the most 
relevant evidence based on the results of previous 
stages, while the user of the system is still allowed to 
take the initiative. 

1. Introduction 

Belief networks have been proposed as a 
formalism for implementing knowledge bases and also 
as a computational architecture for reasoning under 
uncertainty. With respect to the conventional MYCIN- 
style rule bases, belief networks overcome the 
problems arising from a truth-functional approach to 
evidence propagation, by applying a model-based (or 
intensional) approach, as explained, e.g., in [Pearl, 
1988, chapter 11, 

A major problem of belief networks is the large 
amount of computer time that is required to perform 
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computation of beliefs in the worst case [Cooper, 
19871. This led to proposals for approximations, 
such as the one presented in [Gordon and Shortliffe, 
19851. More recently, various researchers have 
proposed schemes for efficient computation of beliefs 
in networks of special structure, such as trees. 
Examples of these schemes are described in [Pearl, 
19861, [Kong, 19861, [Shafer and Logan, 19871, 
[Lauritzen and Spiegelhalter, 19881, and [Mellouli, 
19881. 

There are two major classes of belief networks, 
Dempster-Shafer networks and Bayesian networks. 
The body of this paper describes results pertaining to 
Dempster-Shafer networks, but much of the 
presentation applies to Bayesian networks as well. 

At the present time, only few applications of 
belief networks and very few tools for their 
construction have been developed. For Dempster- 
Shafer belief networks, there is an experimental 
system called DELIEF that implemented an efficient 
belief propagation scheme based on qualitative 
Markov trees (see [Shafer et al., 1987], [Mellouli, 
19881 and [Zarley, 19881). For Bayesian belief 
networks, the authors know of only one 
commercially announced tool for the construction of 
belief networks, the expert system shell HUGIN 
[Andersen et al., 19891, and only one commercially 
available application, a medical assistant developed 
at Stanford. A large, but not commercially available, 
application of belief networks is the MUNINl system 
[Andreassen et al., 19871. MUNIN assists a 
physician in the diagnosis of muscle diseases using 
electromyography. HUGIN is approximately in the 
same relation to MUNIN as EMYCIN is to MYCIN. 
Currently, MUNIN has approximately 1000 nodes, 
most corresponding to findings, pathophysiological 
states, and diagnosis. MUNIN covers only a small 
portion of the domain of electromyography. 

1 The second author has maintained a loose association 
with the MUNIN project since the fall of 1985. 
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The authors have started a program of research in 
the fall of 1988 with the overall objective of 
investigating the practical applicability of Dempster- 
Shafer belief networks as an alternative to rule bases. 
Theoretical results achieved so far concern the 
construction and maintenance of belief networks 
[Valtorta and Loveland, 19891 and the computation of 
beliefs in graphs that are not trees [Wang, 1989, 
Chapter 3; Wang and Valtona, 1990a]. Practical results 
include the conversion of parts of a large rule base into 
a belief network [Wang, 1989, Chapter 5; Wang and 
Valtorta, 1990b], and the construction of an expert 
system shell for belief network-based expert systems. 
This shell, called BELFW, will be described in this 
paper. 

BELFUN has been used to re-implement part of 
the knowledge base used in the PLAYMAKER expert 
system, a component of XX, an intelligent support 
system for the exploration geologist under develop- 
men at the University of South Carolina and Vanderbilt 
University with the support and involvement of several 
oil companies [Biswas and Anand, 19881. We decided 
to use an existing rule base to simplify the knowledge 
acquisition phase, but this choice forced us to confront 
certain specific problems of the conversion of rules 
into belief networks. These problems will be reported 
elsewhere. 

2. BELFUN System Architecture and 
Knowledge Base Construction 

BELFUN incoperates the Dempster-Shafer theory 
of belief functions, belief propagation schemes, 
Markov tree construction procedures, and some 
useful techniques adapted from MIDST [Biswas and 
Anand, 19881, MYCIN [Shortliffe, 19761, DELIEF 
[Zarley, 19881, and CONVINCE [Kim and Pearl, 
19871 into a complete evidential reasoning system. 
The system is implemented in AKCL (Austin-Kyoto 
Common LISP) on a Sun3/60 workstation running 
SUNOS UNIX3 4.0. Figure 1 gives an overview of 
the system architecture, where program modules are 
represented by rectangular boxes, data structures are 
shown in rectangles with rounded comers, while 
arrows indicate information flow in the system. 

The system runs in system designer mode or 
user mode. The system designer mode is provided for 
knowledge engineers to construct, test, and modify 
the belief network, query database [Biswas and 
Anand, 19881, and control action rules. The user 

2 BELFUN stands for BELief FUNctions. 
3 Trade marks of Sun Microsystems and AT&T, 

respectively. 
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Fig. 1 BELFUN System Architecture 
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mode is designed for users who need experts’ 
consultations on some particular problems in the 
domain of application. 

Currently, very limited facilities are available to 
knowledge engineers. We have implemented a simple 
menu driven system that allows the knowledge 
engineer to run some sessions for the purpose of 
testing or demonstration. In the user mode, we adopt a 
goal-directed and mixed-initiative evidence aggrega- 
tion mechanism. Interaction between the system and 
the user is guided by a monitor working with some 
action rules and some queries supplied by domain 
experts. However, the inference procedure can be 
altered by the user if he wants to take the initiative. 
Currently, the user interface is a simple dialogue 
system. Later, it will be extended to provide a user- 
friendly multi-window graphical working environ- 
ment. 

A belief network constructed from expert’s 
knowledge about a domain of application may not 
possess the Markov property of qualitative indepen- 
dence (original definitions of found in [Shafer, Shenoy 
and Mellouli, 198’71, [Mellouli, 19881). A major task 
of our system is to transform an arbitrary belief 
network into a qualitative Markov tme which will setve 
as the knowledge base of the expert system under 
construction. This complex task is accomplished by the 
module Markov tree constructor. A series of 
transformations is performed, including (1) 
representing the belief network as a hypergraph and 
reducing it to a non-reducible block (usually non- 
empty) and constructing a Markov tree (usually 
incomplete) at the same time; (2) constructing a 
maximal intersection network for the block (if it is not 
empty) and finding a Markov tree representative that is 
then merged with the partial Markov tree obtained in 
(1) to form a complete Markov tree; (3) finding a 
partially fixed tree and constructing an alternating tree 
based on that; and (4) attaching to the alternating tree 
those individual nodes still absent, and fmally copying 
belief functions from the original belief network and 
creating vacuous belief functions for newly-generated 
nodes. For details of the construction procedure, see 
[Wang, 19891, [Mellouli, 19881, [Zhang, 19881 and 
[Zarley, 19881. 

3. BELFUN Inferencing and Control Structure 

A fully-specified belief network contains all 
information necessary to answer all questions about all 
individual and joint variables in the belief function 
model, either directly by user-supplied evidence or 
indirectly through propagation (cf., e.g., [Pearl, 
19881). The belief network can be viewed as a 
network of autonomous processors that work in 
parallel and communicate only with immediately 

neighbors, thus no global control mechanism is 
needed in principle. In any real-world expert system, 
however, careful design of global control mechanism 
is crucial, and in fact control knowledge and the 
partitioning of a knowledge base are important 
components of human expert’s knowledge (cf. 
[Shafer et al., 19871, [Valtorta et al., 19841). 
Therefore, BELFUN includes efficient control 
mechanisms suitable for belief network-based 
systems working with any monolythic belief network 
or partitioned belief networks. 

3.1 Design Considerations for Inference 
Control Structure 

In rule-based systems like MYCIN and MIDST, 
a rule is fired when relevant evidence has been 
gathered so that all conditions in that rule are satisfied 
and the rule is selected by some conflict resolution 
strategy, therefore, domain knowledge as well as 
control knowledge can be represented using the same 
formalism of production rules. Firing a rule may then 
cause some conclusions to be made and/or some 
actions to be taken, say, request for evidence about 
some particular variable, which may in turn cause 
some other rule(s) to be fired, thus forming chains of 
firing rules (either forward chaining or backward 
chaining). The inference procedure in such systems is 
thus primarily controlled by the system. 

A belief network-based system works in a way 
entirely different from a rule-based system. During 
the process of belief propagation the order in which a 
node in the belief network is reached could be 
arbitrary, i.e. independent from the particular values 
of input evidence, as long as the belief network is a 
Markov tree. The user of the system can thus have the 
full freedom to direct the inference procedure in his 
own way. DELIEF and HUGIN, the two existing 
belief network-based systems, take this approach. 

In DELIEF, a typical session proceeds in three 
stages [Zarley, 19881. The user or knowledge 
engineer can construct a belief function network 
through a graphical interface. Upon completion, the 
belief network is transformed into a Markov tree. The 
resulting Markov tree is a rooted directed tree where 
the directions are simply a byproduct of the 
construction procedure. After the user has provided 
some evidence pertinent to a specific situation, he can 
simply select the main menu item “propagate,” and 
the inference engine is activated to propagate the 
impact of new evidence throughout the network by 
first propagating from the leaves towards the root and 
then from the root towards the leaves. This 
procedure is called complete propagation . The 
system has some facilities for the user to examine 
the updated belief distributions. If later some new 
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evidence is obtained, the propagation procedure is 
repeated. Obviously, much repetitive computation is 
involved in this iterative process.Also, the order for 
gathering evidence is solely up to the user and the 
system is merely a passive tool for computing beliefs. 

Similarly, HUGIN’s inference procedure is also 
totally controlled by the user although it can provide 
more sophisticated facilities for the user to do that 
[Andersen et al., 19891. At any stage, the user can 
choose a particular node and provides some 
evidence to that node, and then the procedure 
DistributeEvidence is invoked to propagate its impact 
to the whole network. Alternatively, the user can 
specify a particular node of interest as the destination 
and calls the procedure CollectEvidence to propagate 
beliefs in the whole network towards this node. When 
multiple pieces of evidence are input to the system, a 
call to CollectEvidence followed by a call to 
DistributeEvidence performs a complete propagation as 
in DELIEF. Here the problem is that the user is 
supposed to be a non-expert who also needs help in 
collecting evidence, not just in deriving conclusions, 
especially when working with some large belief 
network like MUNIN, derived from complex problem 
domains. An efficient automated reasoning system 
should be able to take appropriate actions at proper 
times, guide the user to gather most relevant evidence 
in every stage, based on the outcome of previous 
stages. DELIEF and HUGIN apparently lack such a 
desirable property. 

Based on these observations and arguments, we 
have designed an efficient control mechanism for 
BELF’UN that incorporates domain experts’ control 
knowledge. In a belief network-based system, 
evidence and rules are all cast into the conceptual 
framework of belief functions. Hypotheses, 
conditions and conclusions are all in the form of 
(variable value) with associated belief value and 
represented by a basic probability assignment. 
Clearly, actions do not fit in this formalism. 
Therefore, it is inappropriate to encode action rules as 
belief functions stored in some nodes of belief 
network. Our solution is to adopt such a strategy that 
control knowledge is represented by various action 
rules, separated from domain knowledge proper. 

3.2 Goal-Directed Evidence Aggregation in 
Partitioned Belief Networks 

Any monolithic belief network can be viewed as 
a special case of partitioned belief networks. We will 
discuss the control structure for the general case of 
partitioned belief networks. 

In any partition of a belief network, we can 
always identify a variable as a goal variable. In 
general, there can be more than one such variable. 
For simplicity, we consider the case of single goal 
variable as is the case of the XX belief network. A 
goal variable can be, for example, the one used in 
action rule(s) for partition transfer (see Fig. 2), that 
is, we have to get a satisfactory amount of belief in a 

(setq *action rules* 
‘( (ruleOi ( (*currentgartition* dep-set) ) 

( (a&first nil) ) 
) 
(rule02 ( (max_hypothesis (source-seismic yes) ) 

(rnax-hypothesis (basin-margin crossed) ) 
) 
( (askq play lies) ) 

) 
(rule03 ( (ma--hypothesis (source-seismic yes) ) 

(mar_hypothesis (basin-margin not-crossed) ) 
(mm-hypothesis (basin-margin-shelf penetrated) ) 

) 
) 

i;;Ie07 ( (mm hypothesis (depo-set shelf3 ) 
(*e&heck* yes) ) 

(setq *goal* ‘depo-set) ) 

Fig. 2 The action rules and the goal variable for the partition “general depositional settings.” 
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hypothesis about this variable before the system 
descends to next partition, and its different values will 
lead the system to different partitions accordingly. 
Evidence aggregation and belief propagation are 
directed to achieve this goal. 

For any partition of a belief network, there will be 
a (usually small) set of action rules. In our system, we 
have three types of action rules that are closely related 
to the three types of actions in the XX system (for 
more details, see [Biswas and Anand, 19881). Fig. 2 
shows some of the action rules associated with the 
partition “general depositional settings” of the XX 
rulebase, where max_hypothesis is a predicate to test 
whether or not the hypothesis given as its argument is 
the leading hypothesis about this variable, that is, 
whether or not it has the largest belief value. Other 
predicates can be used if appropriate. For example, 
when constructing a belief function network from 
MYCIN-type rulebase, some predicates used in these 
rules, say KNOWN, NOT-KNOWN, DEFINITE- 
NOT , might be encoded in action rules (see 
[Buchanan and Shortliffe, 19841). 

Askfirst rule There is only one such rule for a 
partition. It is always invoked at the very beginning 
upon entering a partition. The special variable 
*currentgartition * holds the name of the currently 
active partition. The action routine askj5rst takes as 
argument a variable name and presents to the user a 
specific query about this variable along with possible 
answers which are provided by domain experts and 
stored in a query database (see Fig. 1). If a null 
argument is given, u&Cst will encourage the user to 
enter whatever evidence the user considers relevant to 
the current goal. The propagation process will start 
from those nodes for variables involved in this action 
and action(s) caused immediately by this action, that is, 
those nodes with user-supplied evidence. 

Askg rule There can be several action rules of 
this type. Each may invoke the action routine askq 
several times. Each time, askq asks the user a 
question about the variable given as its argument. The 
user is allowed to input evidence about other variables 
that he considers more relevant to the current goal; and 
nodes for these variables will be put on the top of the 
list of nodes for propagation next step. In this way, the 
user takes the initiative to adjust the direction of the 
propagation procedure. Thus, the approach of mixed 
initiative reasoning in MIDST is adapted to our belief 
network-based system except that no backward 
chaining process is involved. 

Nextqartition rule This type of rule is 
designed to control transfer from the current partition 
to some other partition according to some particular 
conditions. Such a rule will always be the last one to 

fire. For a monolithic belief network or the last 
partition in a partitioned belief network, a null 
argument will be given to the action routine 
nextqartition , thus bringing the inference procedure 
to an end. When such a rule is fired, the action 
routine nextqartition first saves the current status 
of the belief network, that is, the resulting belief 
distribution obtained through evidence aggregation 
and belief propagation in all previous partitions (if 
any) as well as the current partition, which are the 
contents of a global working memory called belief 
base . It then calls a procedure to set-up for working 
with the next partition. This includes loading the 
belief network (a Markov tree) and associated action 
rules, and merging the contents of the belief base into 
the belief network. For each node in the belief 
network, it creates slots for accommodating inputs 
from user, projections from neighbors and storing 
updated belief functions, and finally, making the next 
partition the value of the special variable *current 
partition* so that the askfirst rule for the new 
partition will be fired immediately. 

Note that *exitcheck* is another special 
variable in the system. When all available evidence 
relevant to the current partition has been collected, 
and its impact has been propagated throughout the 
network, a procedure named exitcheck is called. It 
first shows the user the current status of the goal 
variable, all nextyartition rules and status of each 
condition in these rules along with expert suggested 
thresholds. If the user is satisfied with these results, 
*exitcheck* is set and then an action for partition 
transfer will take place next. However, if the user is 
not satisfied yet, he can supply additional information 
to the system and the propagation procedure will be 
repeated starting from those nodes with new 
evidence. When no more evidence is available, if the 
user is still not satisfied, or for any other reasons, he 
may suspend the current session and later come back 
with some newly acquired evidence to resume the 
session at this point. Note that the procedure 
exitcheck can provide some thresholds suggested by 
domain experts, which can be used as default 
thresholds, while the user has the final say to decide 
whether the exit condition is satisfied or not. We can 
say that the thresholds are adaptively set by the user. 
This strategy is certainly justifiable since in many 
practical situations, the user may not have a sufficient 
source of information or enough time to acquire 
adequate evidence, but still wants to obtain some 
approximate results based on evidence he can supply 
from a limited source or within limited time. 

The control structure is illustrated in Fig. 3. The 
start-up procedure is executed to begin a new session 
or resume a suspended session. This procedure first 
asks the user the entry point partition and then calls 
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ii 

start-up 

do-actions 

I 
I 
I 

I Perform actions in Call “select~action” 
I 
I selected action rules 
I 

I 
I 

I 

Get starting nodes 

Propagate from starting 
nodes to the virtual root 

Propagate from the 
virtual root to leaves 

Exitcheck 

I 

(a) Overall Inference procedure 

Fig. 3 The inference/control structure in BELFUN 

the set-up procedure to do all necessary initialization 
work mentioned above in the description of 
nextgartition rule . The procedure do-actions calls 
the procedure select actions and then performs 
actions in selected action rules. Selection of appropriate 
action rules is based on the current status of the belief 
base and the values of the two special variables 
*currentgartition* , and *exitcheck* As conse- 
quences of some actions, the belief base and the two 
special variables may be changed. Therefore, some 
other actions may need to be taken next. In action 
rules, conditions on these two variables involve no 
uncertainty while a condition of other types is satisfied 
if the hypothesis in the condition is the leading hypo- 

hesis for the variable concerned. Intuitively, belief 
propagation should start from those nodes that have 
non-vacuous belief functions, either inherited from 
previous partition (if any) or obtained directly from 
user supplied evidence. We give the nodes in the 
latter case higher priorities for propagation. 
Normally, the inference procedure is completed when 
a partition transfer rule is fired for a monolithic belief 
network or for the last partition of a partitioned belief 
network. Note that any node can be the root of the 
belief network (Markov tree) depending on the order 
that evidence is supplied. The resulting belief 
distribution will be the same no matter which node is 
selected as the root. The parent-child relation between 
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Put starting nodes on the proplist’ I * 

tt 

The list of nodes waiting 
for propagation. 

It has received projection 
from all neighbors except 
one {the virtual parent). 

NO 

No 

he virtual root is reached? 

t 
No 

Gall do-actions, put varrables 
in actions on top of the proplist 

+ 
No 

Put tnts node and otner nerghbors 
at the end of the proplist 

Yes 

No 

I Call do-actions, put variablles 
in actions on top of the proplist I 

Remove this node from the proplist 

Fig, 3 (b) Propagate to the virtual root. 

adjacent nodes is dynamically established and no 
longer exists after propagation towards leaves passed 
the nodes. When propagating towards the root, if a 
node has received projections from all its neighbors 
except one, then that one is said to be its parent node 
while the others are its children. We borrow these 
terms for rooted directed trees only for convenience in 
our descriptions. 

We say a variable is askable if its value can be 
obtained directly from user input. Such a variable 
appears in some uskq rule(s) . A variable is said 
derivable if its value can only be derived through 
belief propagation (it is called verzjkble in MIDST). 

During the main process for evidence gathering 
(propagation towards root), when propagation 
reaches such a node, it still has vacuous belief 
function. If a node has some neighbors that are 
derivable leaf nodes, propagation will pass over this 
node by simply putting them in its Gldren list as if 
they had actually sent messages to it. No actual 
projection is needed in this case since projection of a 
vacuous belief function always results in a vacuous 
belief function. If some of its neighbors are askable 
(usually also leaf nodes), do actions is called to see 
if conditions in action rules gbout the variable of this 
node are satisfied or not based on the current status 
of the belief base. If the conditions are satisfied, take 
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Put the root on the proplist I 

Update belief funtion for the first node on the proplist 
I 

Propagate to all its children, put children on the proplist 
I 

Call do-actions, put variables in actions on top of the proplist 

I Remove this node from the proplist I 

I 

Fig. 3 (c) Propagate to leaves. 

the actions specified in the action rule (normally uskq 
rule in this case). The attribute cause-action of a 
variable is set to true if some actions are associated 
with it. Such a variable appears in the condition part of 
some action rule(s). After the action in the action part 
have been taken, it is reset so that the same action rule 
will not fire twice. Therefore, if the attribute 
cause action of a variable is true, then this variable 
can tcgger some action but the action has not yet been 
taken. If an action depends upon some derivable 
variable, the action might not be triggered until 
propagation towards leaves reaches the node of this 
variable, since only at that time can this node receive 
projection from its parent node so that it can update its 
belief function. The projection received from the parent 
node reflects the accumulated impact of all evidence 
input to the other part of the network, that is, the 
subnetwork containing its parent node obtained by 
breaking the link between this node and its parent 
node. 

In the current implementation of BELFUN, each 
condition in an action rule fails immediately if the 
variable in the condition does not have a computed 
belief value. Conditions in action rules cannot initiate 
a belief computation. They can only test belief values. 
For example, with reference to rule03 in Figure 2, if 
no belief value has been computed for the variable 
basin-margin, the condition (max-hypothesis 
(basin-margin not-crossed)) fails, and the rule will 
not fire. (Of course, the condition will also fail if 
not-crossed is not the value of basin-margin with the 
highest belief.) In some applications, we may need a 
more sophisticated procedure that tries to satisfy all 
conditions in some action rule about a derivable 
variable. The procedure will probably be engaged in 
recursive calls in a way similar to backward chaining 
in rule-based systems since whether or not a 
condition is satisfied may in turn depends upon 
conditions in some other action rules. 
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It should not be hard to see that most evidence 
relevant to the current partition is collected during the 
process of propagation towards the virtual root. In the 
stage of propagation from the root towards leaves, 
updated beliefs are distributed throughout the belief 
network. In most cases, we can reasonably assume 
that at this point, the exit condition could have been 
satisfied, although the same procedure can be repeated 
if it is not so. The time needed for completion of one 
cycle in terms of projection operations is clearly 
proportional to the length of the longest path in the 
network. This control structure is efficient in view of 
the fact that propagation at every node in the network 
is done always at the right time and repetitive 
propagation is minimized only subject to the 
availability of evidence. 

4. Conclusions 

We conclude the paper by outlining a direction for 
further work that would enhance the effectiveness of 
BELFUN as a tool for the construction of expert 
systems. 

There is an essential difference between inference 
procedures in a rule-based system and in a belief 
network-based system. In a rule-based system, for any 
specific situation, there is only a particular subset of 
rules in the knowledge base that successively fire in 
some order to obtain the desired results. In a belief 
network-based system, no matter what kind of 
propagation procedure is employed, we always have to 
propagate all evidence throughout the belief network 
(knowledge base). The problem domain under 
consideration may be too large and too complex to 
propagate all beliefs. Also, it may not even be 
necessary for practical reasons to propagate beliefs 
throughout an entire belief network because of the 
knowledge structure of the problem domain. 
Therefore, partitioning a large belief network is 
desirable when dealing with a complex problem 
domain, so that each time we only need to propagate 
beliefs within a bounded area of a belief network. 
Even with a partitioned belief network, the user may be 
interested only in propagating beliefs from some 
particular source nodes to some specified target nodes. 
In the stage of knowledge acquisition and knowledge 
base construction, the knowledge engineer or domain 
expert often likes to see the varying aspects of some 
evidence upon some particular variable(s) closely 
related to the observation. He should be allowed to 
switch from editing mode to a mode where he can run 
a test efficiently on a small subnetwork only and then 
switch back to make necessary modifications based on 
the results of the test (cf. [Biswas and Anand, 19881). 
Also, in this way, the system can help the system 
designer to partition a large beliefnetwork in amore 

appropriate way. More generally, in any problem 
domain involving simulation, prediction, and 
planning,‘the capability of a knowledge-based system 
to perform “what-if analysis” is a most desirable 
property (cf. [Kim and Pearl, 19871). We are 
therefore investigating a mechanism for bounded 
belief propagation. We are also looking for other 
suitable domains of application for BELFUN. 
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