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IDENTIFIABILITY IN CAUSAL BAYESIAN

NETWORKS: A GENTLE INTRODUCTION

MARCO VALTORTA and YIMIN HUANG

Department of Computer Science and Engineering,
5University of South Carolina

In this article we describe an important structure used to model cau-

sal theories and a related problem of great interest to semi-empirical

scientists. A causal Bayesian network is a pair consisting of a direc-

ted acyclic graph (called a causal graph) that represents causal rela-

10tionships and a set of probability tables, that together with the graph

specify the joint probability of the variables represented as nodes

in the graph. We briefly describe the probabilistic semantics of

causality proposed by Pearl for this graphical probabilistic model,

and how unobservable variables greatly complicate models and their

15application. A common question about causal Bayesian networks is

the problem of identifying casual effects from nonexperimental data,

which is called the identifability problem. In the basic version of

this problem, a semi-empirical scientist postulates a set of causal

mechanisms and uses them, together with a probability distribution

20on the observable set of variables in a domain of interest, to predict

the effect of a manipulation on some variable of interest. We explain

this problem, provide several examples, and direct the readers to

recent work that provides a solution to the problem and some of

its extensions. We assume that the Bayesian network structure is

25given to us and do not address the problem of learning it from data

and the related statistical inference and testing issues.
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MOTIVATION

Flash back to the late 1950s. Evidence was mounting that smoking

was bad for one’s health. In particular, some researchers postulated a

30causal link between smoking and lung cancer. Such a model could be

represented by the graph of Fig. 1.

The intuitive meaning of the model in Fig. 1 is that there is a mech-

anism that relates cigarette smoking (node X) and lung cancer (node Y ),

in the sense that the probability of a person getting lung cancer is affec-

35ted by that person smoking cigarettes. All that could be observed was a

strong correlation between smoking and lung cancer, but the public

health community of the 1950s suspected that the correlation was a

manifestation of a causal link, and that therefore a manipulation of the

smoking variable, namely by making smoking less pervasive, would lead

40to a reduction of the incidence of lung cancer in the population.

The model of Fig. 1, however, was not universally accepted, and in

a way that has a profound impact on the expected value of public

health policy efforts directed at reducing smoking in the general popu-

lation. The distinguished British statistician R. A. Fisher suggested that

45this model was a manifestation of ‘‘an error . . . of an old kind, in argu-

ing from correlation to causation,’’ and proposed that the correlation

between smoking and lung cancer could be explained by a genetic

predisposition to smoking and lung cancer, as described in Fig. 2.Q1 Since

the genotype (represented by node U in the figure) was not observable

50at the time of Fisher’s work, it appeared impossible to conclude that

reducing smoking would have a positive effect on the prevalence of

lung cancer. (The links from U to X and Y are drawn dashed to empha-

size that U is unobservable.) By accepting Fisher’s model, we would

have to conclude that the effect of smoking on lung cancer is unidentifi-

55able; i.e., it cannot be determined from statistics derived solely from

variables that are in the model and that can be observed (such as X

and Y ). Incidentally, studies involving identical twins (who presumably

would have the same genetic predisposition to both smoking and lung

cancer) were carried out in attempt to identify the causal effect of

60smoking on lung cancer, but at least Fisher was unconvinced that they

settled the matter (Fisher 1958).

Figure 1. A simple causal model relating cigarette smoking and lung cancer.
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Even in these very simple models, we can observe two important

features of the causal graphs that we will formalize as causal Bayesian

networks in the remainder of this article. First, the models relate vari-

65ables (genotype, smoking, lung cancer) represented as nodes in a direc-

ted acyclic graph through directed edges or links (such as the edge from

smoking to lung cancer) indicating a causal influence. The links from U

to X and Y are drawn dashed to emphasize that U is unobservable.

Second, in the first model, the joint probability of the variables can be

70represented by the product of the prior probability of smoking times

the conditional probability of lung cancer given smoking. In the second

model, the joint probability of genotype, smoking, and lung cancer can

be represented by the product of the prior probability of the genotype,

times the conditional probability of smoking given the genotype, times

75the conditional probability of the genotype and smoking. This decompo-

sition is allowed by the fundamental rule of probability in the case of a

joint distribution of two and three variables.

In the next section we define formally the key notion of causal

Bayesian network. Following that, we discuss the concept of intervention

80and define an identifiability problem. We then present a proof of

unidentifiability for a particular causal Bayesian network and use

different versions of smoking-lung cancer causal models to show why

the identifiability problem is interesting and how it can be solved

mathematically. Our conclusions consist mainly of a survey of the recent

85literature on the topic.

Disclaimers are in order. We do not claim that any of our specific

examples are reflective of good domain knowledge. We are not interested

in validating or repudiating causal assumptions specific to a domain. We

assume that the domain knowledge is obtained somehow before our

90analysis. The framework described in this article is limited to answering

the question of whether a given set of assumptions is sufficient for quan-

tifying causal effects from non-experimental data.

Figure 2. R. A. Fisher’s genotype model explaining the correlation between smoking and

lung cancer.
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CAUSAL BAYESIAN NETWORKS

A Bayesian network (BN) is a graphical representation of the joint

95probability distribution of a set of discrete variables. The representation

consists of a directed acyclic graph (DAG), prior probability tables for

the nodes in the DAG that have no parents and conditional probabilities

tables (CPTs) for the nodes in the DAG given their parents. As an

example, consider the network in Fig. 3.

100More formally, a Bayesian network is a pair composed of: (1) a

multivariate probability distribution over n random variables in the set

V ¼ V1, . . . ,Vn, and (2) a directed acyclic graph (DAG) whose nodes

are in one-to-one correspondence with V1, . . . ,Vn. (Therefore, for the

sake of convenience, we do not distinguish the nodes of a graph from

105variables of the distribution.)

Bayesian networks allow specification of the joint probability of a set of

variables of interest in a way that emphasizes the qualitative aspects of the

domain. The defining property of a Bayesian network is that the conditional

probability of any node, given any subset of non-descendants, is equal to

110the conditional probability of that same node given the parents alone.

The Chain rule for Bayesian networks (Neapolitan 1990) follows from the

preceding definition: Let PðVijpðViÞÞ be the conditional probability of Vi

given its parents. (If there are no parents for Vi, let this be P(Vi)). If all

the probabilities involved are nonzero, then PðV Þ ¼
Q

v2V PðvjpðvÞÞ.
115Three features of Bayesian networks are worth mentioning. First,

the directed graph constrains the possible joint probability distributions

Figure 3. (a) Example Bayesian network, (b) variable states, and (c) conditional probability

table for B given A.
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represented by a Bayesian network. For example, in any distribution

consistent with the graph of Fig. 3, D is conditionally independent of

A given B and C. Also, E is conditionally independent of any subset of

120the other variables given C.

Second, the explicit representation of constraints about conditional

independence allows a substantial reduction in the number of parameters

to be estimated. In the example, assume that the possible values of the

five variables are as shown in Fig. 3(b). Then, the joint probability table

125P(A, B, C, D, E) has 2� 3� 2� 4� 4 ¼ 192 entries. It would be very dif-

ficult to assess 191 independent parameters. However, the independence

constraints encoded in the graph permit the factorization P(A, B, C, D,

E ) ¼ P(A)�P(BjA)�P(CjA)�P(DjB, C)�P(EjC), which reduces the

number of parameters to be estimated to 1þ 4þ 2þ 18þ 6 ¼ 31. The

130second term in the sum is the table for the conditional probability of B

given A. This probability is shown in Fig. 3(c); note that there are only

four independent parameters to be estimated since the sum of values

by column is one.

Thirdly, the Bayesian network representation allows a substantial

135(usually, dramatic) reduction in the time needed to compute marginals

for each variable in the domain. The explicit representation of con-

straints on independence relations is exploited to avoid the computation

of the full joint probability table in the computation of marginals both

prior and conditioned on observations. Limitation of space prevents

140the description of the relevant algorithms; see Jensen (2001) for a

discussion of the justly famous junction tree algorithm.

The most common operation on a Bayesian network is the compu-

tation of marginal probabilities, both unconditional and conditioned

upon evidence. Marginal probabilities are also referred as beliefs in the

145literature (Pearl 1988). This operation is called probability updating,

belief updating, or belief assignment.

A link between two nodes in a Bayesian network is often interpreted

as a causal link. However, this is not necessarily the case. When each link

in a Bayesian network is causal, then the Bayesian network is called a

150causal Bayesian network or Markovian model. Markovian models are popu-

lar graphical models for encoding distributional and causal relation-

ships. To summarize, a Markovian model consists of a DAG G over a

set of variables V ¼ fV1; . . . ;Vng, called a causal graph and a probability

distribution over V, which has some constraints on it that will be specified

155precisely below. We use V(G) to indicate that V is the variable set of
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graph G. If it is clear in the context, we also use V directly. The

interpretation of such kind of model consists of two parts. The probability

distribution must satisfy two constraints. The first one is that each vari-

able in the graph is independent of all its non-descendants given its direct

160parents. The second one is that the directed edges in G represent causal

influences between the corresponding variables. A Markovian model for

which only the first constraint holds is called a Bayesian network, and its

DAG is called a Bayesian network structure. This explains why Markovian

models are also called causal Bayesian networks. As far as the second

165condition is concerned, some authors prefer to consider Eq. (3) (below)

as definitional; others take Eq. (3) as following from more general con-

siderations about causal links, and in particular the account of causality

that requires that, when a variable is set, the parents of that variable be

disconnected from it. A full discussion of this is beyond the scope of this

170article, but see Lauritzen (2001) and Pearl (2000).

In this article, capital letters, like V, are used for variable sets; lower-

case letters, like v, stand for the instances of variable set V. Capital letters

like X, Y, and Vi are also used for single variables, and their values can be

x, y, and vi. Normally, we use F(V) to denote a function on variable set V.

175An instance of this function is denoted as F(V)(V ¼ v), or F(V)(v), or just

F(v). Each variable is in one-to-one correspondence to one node in the

causal graph.

We use Pa(Vi) to denote parent node set of variable Vi in graph G

and pa(Vi) as an instance of Pa(Vi). Ch(Vi) is Vi’s children node set; ch(Vi)

180is an instance of Ch(Vi).

Based on the probabilistic interpretation, we get that the joint

probability function PðvÞ ¼ Pðv1; . . . ; vnÞ can be factorized as

PðvÞ ¼
Y

Vi2V

PðvijpaðViÞÞ ð1Þ

From the joint probability, all marginal prior and posterior probabil-

185ities can be obtained, by marginalizing and conditioning. The notion of

conditional probability is a well-defined and accepted one. The con-

ditional probability of an event S given an event D is defined as

PðSjDÞ ¼ PðS;DÞ
PðDÞ

This definition is actually an axiom of probability, which can be

190shown to hold in all useful interpretation of probability, including the
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subjective Bayesian one (Neapolitan 1990). It is a tenet of applied Baye-

sian reasoning that beliefs are updated by conditioning when new knowl-

edge is gained. There are, however, two kinds of updating in causal

Bayesian networks, viz. updating by conditioning (also known as updat-

195ing by observation) and updating by intervention.

Updating by conditioning is well-defined and understood, both in

principle and algorithmically (Cooper 1990; Lauritzen 1996). There

are free and commercial software packages, like Hugin,1 that perform

update by conditioning on Bayesian networks in a very efficient

200manner in most practical cases. In the next section, we explain updating

by intervention.

INTERVENTIONS AND THE IDENTIFIABILITY PROBLEM

The causal interpretation of a Markovian model enables us to predict

intervention effects. Here, intervention means some kind of modifi-

205cation of factors in product (Fisher 1958). The simplest kind of

intervention is fixing a subset, T � V, of variables to some constants,

t, denoted by do(T ¼ t) or just do(t). Then, the post-intervention

distribution

PT ðV ÞðT ¼ t;V ¼ vÞ ¼ PtðvÞ ð2Þ

210is given by:

PtðvÞ ¼ PðvjdoðtÞÞ ¼
Q

Vi2VnT PðvijpaðViÞÞ v consistant with t

0 v inconsistant with t

�
ð3Þ

To stress the distinction between observation and intervention, we

present a simple example based on the sneezing model of Fig. 4,

originally presented in Pearl and Verma (1991), in which wiping one’s

215nose (W) is caused by sneezing (S), which in turn is caused by either a

cold (C) or hay fever (F), or both. To complete this causal Bayesian

network, we give the probabilities in Table 1 and PðColdÞ ¼ ð:2; :8Þ,
PðHayFeverÞ ¼ ð:1; :9Þ, and PðWipingOne0sNosejSneezing ¼ yÞ ¼ :9.

We use this causal graph to compare the notions of observation and

220intervention. The initial probabilities for the four variables are shown in

Fig. 5. Suppose that it is observed that sneezing occurs. The probabilities

of each variable in the network are updated as shown in Fig. 6.

1http://www.hugin.com/
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Suppose now that we intervene and force sneezing. The connections

between node Sneezing and its parents are cut, as indicated in the

225model of Fig. 7. Unlike the situation in which sneezing is observed,

the posterior probabilities of Cold and Hay Fever are unchanged.

We call interventions of the simple kind described so far in this

section, which consist in fixing a subset of variables to some constants,

crisp interventions. Referring to the sneezing causal graph, a simple

230example is setting the variable Sneezing to the value true (i.e., forcing

sneezing to occur), by the administration of a perfectly effective sneezing

powder. More complicated interventions can be described using the

intervention graph or augmented model (Korb and Nicholson 2003), in

the way originally described in Pearl (1993) and Pearl (2000). The inter-

235vention graph is formed by adding a parent to each node representing a

variable where intervention is contemplated. The brief discussion here

follows the excellent presentation of Spirtes et al. (1993) very closely.

The interested reader should consult that reference for more detail.

The effect of a crisp intervention doðXi ¼ xiÞ can be encoded by

240adding to G a link Fi ! Xi, where Fi is a new variable taking values in

fdoðxiÞ; idleg; xi ranges over the domain of Xi , and idle represents no

Table 1. Table for P(Sneezing ¼ y j Cold, Hay Fever)

H

C y n

Y .9 .8

n .7 .1

Figure 4. A causal graph for sneezing.
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Figure 6. Marginal probabilities for the sneezing causal Bayesian network, after updating by

conditioning on the evidence of sneezing.

Figure 7. The sneezing causal graph, after a crisp intervention that Forces sneezing to occur.

Figure 5. Initial marginal probabilities for the sneezing model.
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intervention. The new parent set of Xi in the augmented network

is Pa0ðXiÞ ¼ PaðXiÞ [ fFig, and it is related to Xi by the conditional

probability.

Pðxijpa0ðXiÞÞ ¼
Pðxi jpaðXiÞ if Fi ¼ idle

0 if Fi ¼ doðx0iÞ and xi 6¼ x0i
1 if Fi ¼ doðx0iÞ and xi ¼ x0i

8<
: ð4Þ

The effect of the intervention doðx0iÞ is to transform the original

probability function PðX1; . . . ;XnÞ into a new probability function

PXi¼X 0
i
ðXi; . . . ;XnÞ, given by

PXi¼X 0
i
ðXi; . . . ;XnÞ ¼ P0ðX1; . . . ;XnjFi ¼ doðx0iÞÞ ð5Þ

250where P0 is the distribution specified by the augmented network

G0 ¼ G [ fFi ! Xig and (4), with an arbitrary prior distribution on Fi .

In general, by adding a hypothetical intervention link Fi ! Xi to multiple

nodes in G, we can construct an augmented probability function

P0ðX1; . . . ; xn; Fi ; . . . ;FnÞ, which allows for interventions beyond the

255setting of a subset of variable to constants. For a simple example related

to the causal graph of Fig. 4, imagine administering an imperfectly effec-

tive sneezing power, which causes sneezing with probability p. This

would be modeled by setting the prior probability of the value true for

the forcing variable FSneezing in the model of Fig. 9 to p.

260In many cases, an empirical scientist faces the following question:

Can we estimate the post-intervention distribution under crisp inter-

vention from non-experimental data? When all the variables in the

model are observable, the answer for the question above is positive.

But when some variables in V are unobservable, things are much more

265complex, and the answer may be either positive or negative, depending

on the structure of the causal Bayesian network and the relative

Q10 Figure 8. Intervention graph.
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location of observable and unobservable variables. We give a detailed

proof of unindentifiability for the key example of Fig. 10 in the next

section.

270AN UNIDENTIFIABLE MODEL

A simple example of unidentifiable model is R. A. Fisher’s genotype

model of the relation between smoking and lung cancer (Spirtes et al.

1993), which we briefly discussed in the first section of this article.

R. A. Fisher suggested that the observed correlation between smoking(X)

275and lung cancer(Y ) can be explained by some sort of carcinogenic

genotype(U ) that involves inborn craving for nicotine.

The carcinogenic genotype is presented by Fisher as a concept that has

not been observed in nature, and it is therefore modeled as an unobservable

variable. Intuitively, the effect of smoking on lung cancer is unidentifiable

280because we are not sure whether the observed response (lung cancer) is

due to our action (smoking) or to the confounder event (genotype) that

triggers the action and simultaneously causes the response.

Figure 10. R. A. Fisher’s genotype model explaining the correlation between smoking and

lung cancer (Fig. 2, repeated here for the reader’s convenience).

Figure 9. An intervention graph for the sneezing model of Fig. 4.
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Formally, we show that the effect of smoking on lung cancer is

unidentifiable in the following way. We show that, with a given observa-

285tional distribution P(x, y), it is possible to find two different causal Baye-

sian networks M1 and M2 that share the graph of Fig. 10, and such that

PM1ðx; yÞ ¼ PM2ðx; yÞ. As an extreme example, we can construct two

drastically different models following the explanation that smoking is

the cause of lung cancer (the part a in Fig. 11) or carcinogenic genotype

290is the only cause of this fatal disease (the part b in Fig. 11). Both of them

satisfy the graph in Fig. 10. That is, Fig. 10 generalizes both graphs in

Fig. 11, or, equivalently, the graphs in Fig. 11 are special cases of the

graph in Fig. 10.

Our question about the smoking and lung cancer model of Fig. 10

295is: If we intervene on variable X, which means we control the smoking

behavior, is unexperimental observational knowledge about smoking

and lung-cancer (i.e., P(x, y)) sufficient to determine the probability

of lung cancer? Mathematically, this problem can be explained as a

question on the Markovian model of Fig. 10: If we know P(x, y),

300which is the joint probability on observable variables X, Y, can we

calculate PxðyÞ for all (x, y)? Unfortunately, the answer to this question

is negative.

The fact is that it is possible to create a model compatible with

Fig. 11 part a and another model compatible with Fig. 11 part b, both

305of them satisfying P(x, y), but with different PxðyÞ. We cannot get

the same PxðyÞ from these two models because for the first model, the

intervention will change the probability of lung cancer but if the

second model is correct, the behavior of smoking has no effect on lung

cancer at all.

310We now carry out the calculations in detail to show that the effect

of smoking on lung cancer is unidentifiable for the causal Bayesian

network of Fig. 10. All variables are binary, and their states are denoted

as 0 and 1. For variable U, we assume PðU ¼ 0Þ ¼ PðU ¼ 1Þ ¼ 1=2.

Figure 11. Different models compatible with the model of Fig. 10.

12 M. VALTORTA AND Y. HUANG



The conditional probability tables of variable X and Y in model M1 are

315defined as below:

x u PM1ðxjuÞ
0 0 0:6
0 1 0:4

ð6Þ

y x u PM1ðyjx; uÞ
0 0 0 0:7
0 0 1 0:2
0 1 0 0:2
0 1 1 0:7

ð7Þ

The conditional probability tables of variable X and Y in model M2

defined as:

x u PM2ðxjuÞ
0 0 0:7
0 1 0:3

ð8Þ

y x u PM2ðyjx; uÞ
0 0 0 0:65

0 0 1 0:15

0 1 0 0:15

0 1 1 0:65

ð9Þ

Note that, since PðX ;Y Þ ¼ RU PðY jx;U ÞPðX jU ÞPðU Þ, for both

models M1 and M2, we obtain:

y x PMi ðy; xÞ
0 0 0:25

0 0 0:25

0 1 0:25

0 1 0:25

ð10Þ

325We also have PX ðY Þ ¼ RU PðY jX ;U ÞPðU Þ for both two models, and

for M1, PM1

X¼0ðY ¼ 0Þ ¼ 0:45, but for M2, we have PM2

X¼0ðY ¼ 0Þ ¼ 0:40.

We conclude that PX ðY Þ is unidentifiable in this causal graph.

We emphasize, again, that the models we use are not intended to be

correct representations of domain knowledge: We use them simply to

330illustrate how they can be used in representing causal modeling assump-

tions, which have different bearing on the identifiability of causal effects.

IDENTIFIABILITY IN CAUSAL BAYESIAN NETWORKS 13



In that spirit, we conclude the section by describing two more models

that may match some researchers’ understanding of the relation between

smoking and lung cancer.

335It is observed that smoking causes tar deposit on lung. So, with the

evidence that genotype may cause lung cancer and smoking behavior, a

researcher may establish a causal model about smoking (X ) and lung can-

cer (Y ) with tar (Z ). See Fig. 12. Incidentally, R. A. Fisher himself seems

to hint at such a model (Fisher 1958). This causal graph assumes that

340smoking cigarettes has no effect on the production of lung cancer except

as mediated through tar deposits and that genotype has no effect on the

amount of tar in the lungs except indirectly through cigarette smoking.

Finally, the causal graph of Fig. 13 adds to the causal graph of

Fig. 12 the assumption that the production of tar deposits in the lung

345(Z) is affected by pollution (U1), which also affects the propensity

towards smoking (X ).

The causal effect of smoking on lung cancer (PX ðY Þ) is identifiable

in the causal graph of Fig. 12, but unidentifiable in the causal graph of

Fig. 13. We do not attempt to prove this claim in this article, and refer

350the reader to the references given in the next section for the algorithms

needed to establish this claim and, in the case of Fig. 12, compute the

value of the causal effect.

Figure 13. Air pollution (U1) affects tar deposits (Z) and the propensity to smoke (X).

Figure 12. Smoking (X) affects lung cancer (Y) through tar deposits (X).

14 M. VALTORTA AND Y. HUANG



CONCLUSION

This article provides an introduction to the problem of inferring

355the strength of cause-and-effect relationships from a causal Bayesian

network, emphasizing conceptual foundations and examples. In this

concluding section, we provide a roadmap to the literature where proofs

and algorithms are provided.

A causal Bayesian network consists of a causal graph, an acyclic

360directed graph expressing causal relationships, and a probability distri-

bution respecting the independence relation encoded by the graph.

Because of the existence of unmeasured variables, the following identifia-

bility questions arise: ‘‘Can we assess the strength of causal effects from

nonexperimental data and casual relationships? And if we can, what is

365the total causal effect in terms of estimable quantities?’’

The questions just given could partially be answered using graphical

approaches due to Pearl and his collaborators. More precisely, graphical

conditions have been devised to show whether a causal effect, that is,

the joint response of any set S of variables to interventions on a set

370T of action variables, denoted PT ðSÞ2 is identifiable or not. Those

results are summarized in Pearl (2000). For example, ‘‘back-door’’ and

‘‘front-door’’ criteria and do-calculus Pearl (1995); graphical criteria to

identify PT ðSÞ when T is a singleton (Galles and Pearl 1995); graphical

conditions under which it is possible to identify PT ðSÞ where T and S

375are, possibly non-singleton, sets, subject to a special condition called

Q-identifiability (Pearl and Robins 1995). Further study can be also

found in Kuroki and Miyakawa (1999) and Robins (1997).

More recently, Tian and Pearl published a series of papers related to

this topic (Tian and Pearl 2002; Tian and Pearl 2002; Tian and Pearl

3802003). Their new methods combined the graphical character of causal

graph and the algebraic definition of causal effect. They used both

algebraic and graphical methods to identify causal effects. The basic

idea is, first, to transfer causal graphs to semi-Markovian graphs Tian

and Pearl (2002), then to use Algorithm 2 in Tian and Pearl (2003)

385(the Identify algorithm) to calculate the causal effects we want to know.

Tian and Pearl’s method was a great contribution to this study area.

But there were still some problems left. First, even though we believe, as

Tian and Pearl do, that the semi-Markovian models obtained from the

2Pearl and Tian used notation PðsjdoðtÞÞ and Pðsjt̂tÞ in [6] and PtðSÞ in [13], [14]
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transforming Projection algorithm in Tian and PearlQ9 (2002) are equal to the

390original causal graphs, and therefore the causal effects should be the same in

both models, still, to the best of our knowledge, there was no formal proof

for this equivalence. Second, the completeness question of the Identify

algorithm in Tian and Pearl (2003) was still open, so that it was unknown

whether a causal effect was identifiable if that Identify algorithm failed.

395In a series of papers, Huang and ValtortaQ7 (2006; 2006) and, indepen-

dently,Q8 Shpitser and Pearl (2006) solved the open questions and several

related ones. In particular, following Tian and Pearl’s work, Huang

and Valtorta (2006) solved the second question. They showed that the

Identify algorithm Tian and Pearl used on semi-Markovian models is

400sound and complete. In Huang and Valtorta (2006), they followed the

ideas Tian and Pearl presented in Tian and Pearl (2003), but instead

of working on semi-Markovian models, they focused on general causal

graphs directly, and their proofs showed, that Algorithm 2 in Tian and

Pearl (2003) can also be used in general causal models, and that

405the algorithm is sound and complete, which means a causal effect is

identifiable if and only if the given algorithm runs successfully and

returns an expression that is the target causal effect in terms of observ-

able quantities.

It is our hope that the reader will be motivated to study, implement,

410refine, and apply the algorithmic framework to causal modeling that

Pearl pioneered and that, the authors believe, is ready to be put to the

test of deployment in actual applications.
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