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Abstract. An experiment in Bayesian model building from a large medical dataset for Mental Retardation is
discussed in this paper. We give a step by step description of the practical aspects of building a Bayesian Network
from a dataset. We enumerate and briefly describe the tools required, address the problem of missing values in big
datasets resulting from incomplete clinical findings and elaborate on our solution to the problem. We advance some
reasons why imputation is a more desirable approach for model building than some other ad hoc methods suggested
in literature. In our experiment, the initial Bayesian Network is learned from a dataset using a machine learning
program called CB. The network structure and the conditional probabilities are then modified under the guidance of
a domain expert. We present validation results for the unmodified and modified networks and give some suggestions
for improvement of the model.
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1. Introduction

A large quantity of non-experimental data is generated
in Medicine from studies of the natural history of dis-
ease, case reports and epidemiological surveys1. If ex-
periments are well-designed, it is comparatively easy
to analyze and interpret the data obtained. But, making
sense of non-experimental data is a difficult task and
involves a huge investment of time, effort and exper-
tise. However, data collected for one purpose can often
be used to answer other questions. Federally funded re-
search projects make datasets available after the origi-
nal study is completed. These datasets often are under-
utilized. This type of data is also referred to as archival
data and is basically available to the investigators in
“as is” condition [1]. Techniques based on Bayesian

networks hold great promise in the task of detecting
associations which can be interpreted (with great cau-
tion!) as causal relationships using non-experimental
data [2, 3].

We developed a model to answer the question—
“What is the risk of Mental Retardation (MR) for
a particular pregnancy or infant based on informa-
tion from the prenatal, perinatal or postnatal period?”
We do not have a diagnostic model in mind. We ex-
pect our model to quantify the risk of MR outcome,
which in the early prenatal period can be used as
a guideline for seeking invasive procedures such as
amniocentesis for arriving at a definitive diagnosis
and recommendation about the desirability of sustain-
ing the pregnancy. During infancy the model may
be used to screen children who are at greater risk
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for MR to plan special educational or environmental
interventions.

The prevalence of MR is estimated to be about 2.5 per
cent of the population [4, 5]. When the category of bor-
derline mental retardation is included in population es-
timates, over 16 percent of children have an IQ score
less than 85, one standard deviation below the mean.
MR is a developmental disability with a complex eti-
ology, and the causative factors and mechanisms are
not well understood. “Mental Retardation is charac-
terized by significantly subaverage intellectual func-
tioning” [6, p. 5]. The American Association on Men-
tal Retardation (AAMR) quantifies the identification
of people as those scoring below two Standard Devia-
tions (SD) in a standardized IQ test [6, p. 5]. These tests
are usually normalized to a mean of 100 with a SD of
15. Those with scores below 50 are classified as hav-
ing severe mental retardation. Scores in the category of
50–69 fall in the classification of Mild Mental Retarda-
tion (MMR). AAMR suggests inclusion of limitation
of adaptive skills for individual diagnosis [6, p. 6], but
many studies have used cognitive tests (IQ scores) for
classification [5, 7].

We shall use IQ scores and include the additional cat-
egory of Borderline Mental Retardation (BMR, scores
falling between one and two standard deviations). For
severe MR a cause can be found in the majority of cases.
In MMR, which forms 85% of MR, a cause cannot be
identified in half the cases [4].

So here we have a complex web of unknown causal
mechanisms, disagreement among experts, controver-
sies (the large literature of nature versus nurture) and
serious gaps in the experts’ understanding of the eti-
ological factors. A Bayesian modeling approach may
shed some light on the causal mechanisms, give us a
tool for prediction of MR and open up avenues for early
intervention—medical and social.

A companion publication in the developmental dis-
abilities literature [8] discusses our model further from
a medical perspective. In this paper, we discuss the
techniques used in model building and validation from
an applied artificial intelligence perspective.

2. Model Building Methodology

We refer the reader to [9, Section 5.3] for a precise
and thorough definition of Bayesian network and to
[10–15] for extended presentations of related concepts.
We only give a sketch of the definition with a brief
example.

A Bayesian network consists of a directed acyclic
graph (DAG), prior marginal probability tables for the
nodes in the DAG that have no parents, and conditional
probability tables for the nodes in the DAG given their
parents. The network and the probability tables define
a joint probability distribution on all variables corre-
sponding to the nodes, with the defining property that
the conditional probability of any variable v given any
set of variables that includes only the parents of v and
any subset of nodes that are not descendant of v is
equal to the conditional probability of v given only its
parents. From this property, it follows that the joint
probability of the variables in a Bayesian network de-
composes in a multiplicative fashion; more precisely,
if V is the set of the nodes in the DAG, the following
equality (the chain rule for Bayesian networks) holds:
P(V ) = �v∈V P(v | parents(v)). In turn, this decompo-
sition allows for very efficient computation of marginal
posterior probabilities upon observation of evidence.

As an example, the graph in Fig. 1 models a small
portion of the mental retardation domain. We do not
claim that this model is accurate or sensible: it is pro-
vided only for the sake of illustration. At the depth
of understanding required for the example, the names
of the variables should be considered self-explanatory.
Recall that a Bayesian network is composed of two
parts: an acyclic directed graph and the numerical spec-
ification of conditional and prior probability tables.
Three features of Bayesian networks are worth men-
tioning.

First, the directed graph constrains the possible joint
probability distributions represented by a Bayesian net-
work. For example, in any distribution consistent with
the graph of Fig. 1, Chld Ravn (the IQ score of the
child) is conditionally independent of Fam Inc (Family

Figure 1. A microscopic model of MR.
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Table 1. Values of the five micro-mentor variables.

Fam Inc ≥10000, <10000

Mom Age Birth 14–19+, 20–34, ≥35

Mom Smoke yes, no

Child Ravn mild, border, normal, super

P Mom mild, border, normal, super

Income) given Mom Age Birth (the age of the mother at
birth) and Mom Smoke (whether the mother smokes);
also, P Mom (the IQ score of the mother) is condition-
ally independent of any subset of the other variables
given Mom Smoke.

Secondly, the explicit representation of constraints
about conditional independence allows a substantial re-
duction in the number of parameters to be estimated. In
the example, assume that the possible values of the five
variables are given in Table 1. Then, the joint probabil-
ity table P(Fam Inc, Mom Age Birth, Mom Smoke,
Chld Ravn, P Mom) has 2 × 3 × 2 × 4 × 4 = 192
entries. It would be very difficult to assess 191 inde-
pendent parameters.2 However, the independence con-
straints encoded in the graph permit the factorization

P(Fam Inc, Mom Age Birth, Mom Smoke, Chld Ravn,

P Mom) = P(Fam Inc) × P(Mom Age Birth |
Fam Inc) × P(Mom Smoke | Fam Inc)

×P(Chld Ravn | Mom Age Birth, Mom Smoke)

×P(P Mom | Mom Smoke),

which reduces the number of parameters to be esti-
mated to 1 + 4 + 2 + 18 + 6 = 31. The second term
in the product corresponds to the conditional proba-
bility table for Mom Age Birth given Fam Inc, which
is given in Table 2; note that there are only four in-
dependent parameters to be estimated, since the sum
of values by column is one. Again, we emphasize that
these numbers are fictitious.

Table 2. Conditional probability tables
for Mom Age Birth Given Fam Inc.

Fam Inc

≥10000 <10000

14–19 0.1 0.3

20–34 0.7 0.6

≥35 0.2 0.1

Thirdly, the Bayesian network representation allows
a substantial (usually, dramatic) reduction in the time
needed to compute marginals for each variable in the
domain. The explicit representation of constraints on
independence relations is exploited to avoid the compu-
tation of the full joint probability table in the computa-
tion of marginals, both prior and conditioned on obser-
vations. Space prevents the description of the relevant
algorithms. See, e.g., [15, Ch.5] for a discussion of the
junction tree algorithm, the most widely used one.

There are two methods of building a Bayesian net-
work for a particular application domain. The first
method consists of asking the domain expert to con-
struct the network (DAG) and assign the prior marginal
probabilities for nodes without parents and the con-
ditional probabilities for the other nodes. The second
method consists in building the network from data.
There are several algorithms available to accomplish
this learning task—for example, BIFROST [16], K2
[17] and CB [18, 19]. The marginal and conditional
probabilities can also be computed from data. The mod-
els are validated by comparing with the performance
of an expert [12]. We use a combination of the two
strategies—capture the skeleton network from data us-
ing the CB algorithm and refine the DAG with the help
of the expert and published literature. Prior and con-
ditional probabilities are obtained from data and fine-
tuned by the expert.

3. Datasets Used in Model Construction

We obtained the Child Health and Development Study
(CHDS) data set, which was developed in a study con-
cerning pregnant mothers and their children [20]. The
children were followed through their teen years and in-
cluded numerous questionnaires, physical and psycho-
logical exams, and special tests. The study was con-
ducted by the University of California at Berkeley and
the Kaiser Foundation. It started in 1959 and continued
into the 1980’s. There are approximately 6000 children
and 3000 mothers with IQ scores in the data set. The
children were either 5 years old or 9 years old when
their IQs were tested. The IQ test used for the children
was the Raven Progressive Matrices Test. The mothers’
IQs were also tested, and the test used was the Peabody
Picture Vocabulary Test.

We identified about 50 variables scattered among
several CHDS files that are thought to play a role in the
causal mechanism of MR. Under the guidance of the
domain expert this set of fifty variables was reduced to
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Table 3. The variables used in MENTOR.

Variable What the variable represents

MOM RACE Mother’s race classified as White (European or White and American Indian or others considered to be of white stock) or
non-White (Mexican, Black, Oriental, interracial mixture, South-East Asian).

MOMAGE BR Mother’s age at time of child’s birth categorized as 14–19 years, 20–34 years, or ≥35 years.

MOM EDU Mother’s education categorized as ≤12 and did not graduate, high school, graduated high school, and > high school
(attended college or trade school).

DAD EDU Father’s education categorized same as mother’s.

MOM DIS Yes if mother had one or more of lung trouble, heart trouble, high blood pressure, kidney trouble, convulsions, diabetes,
thyroid trouble, anemia, tumors, bacterial disease, measles, chicken pox, herpes simplex, eclampsia, placenta previa, any
type of epilepsy, or malnutrition; no otherwise.

FAM INC Family income categorized as <$10,000 or ≥$10,000.

MOM SMOK Yes if mother smoked during pregnancy; no otherwise.

MOM ALC Mother’s alcoholic drinking level classified as mild (0-6 drinks per week), moderate (7–20), or severe >20).

PREV STILL Yes if mother previously had a stillbirth; no otherwise.

PN CARE Yes if mother had prenatal care; no otherwise.

MOM XRAY Yes if mother had been X-rayed in the year prior to or during the pregnancy; no otherwise.

GESTATN Period of gestation categorized as premature (≤258 days), or normal (259–294 days), or postmature (≥295 days)..

FET DIST Fetal distress classified as yes if there was prolapse of cord, mother had a history of uterine surgery, there was uterine
rupture or fever at or just before delivery, or there was an abnormal fetal heart rate; no otherwise.

INDUCE LAB Yes if mother had induced labor; no otherwise.

C SECTION Yes if delivery was a caesarean section; no if it was vaginal.

CHLD GEND Gender of child (male or female).

BIRTH WT Birth weight categorized as low <2500 g) or normal (≥2500 g).

RESUSCITN Yes if child had resuscitation; no otherwise.

HEAD CIRC Normal if head circumference is 20 or 21; abnormal otherwise.

CHLD ANOM Child anomaly classified as yes if child has cerebral palsy, hypothyroidism, spina bifida, Down’s syndrome, chromosomal
abnormality, anencephaly, hydrocephalus, Turner’s syndrome, cerbellar ataxia, speech defect, Klinefelter’s syndrome, or
convulsions; no otherwise.

CHLD HPRB Child’s health problem categorized as having a physical problem, having a behavior problem, having both a physical and a
behavioral problem, or having no problem.

CHLD RAVN Child’s cognitive level, measured by the Raven test, categorized as mild MR, borderline MR, normal, or superior.

P MOM Mother’s cognitive level, measured by the Peabody test, categorized as mild MR, borderline MR, normal, or superior.

a set of twenty-three, resulting in the datasets described
in 3.1. The subject expert thought that this set of vari-
ables was sufficient to capture the domain knowledge.
Only one child of the mother is included in each of
the datasets. Table 3 contains a list of the twenty-three
variables used in the final Bayesian network. (The files
used in network construction include a twenty-fourth
variable, MAR STAT, indicating marital status of the
mother, which was removed at a late stage.)

3.1. Datasets Used for Network Construction

RAVN6X24. This dataset contains 5985 cases and 24
variables. In this dataset many of the IQ scores of

mothers are missing. The percentage of missing val-
ues is 12. This dataset is the total relevant dataset

RAVN2X24. This dataset contains 2212 cases and 24
variables. The IQ scores of mothers and children
are present. There are no missing values for the IQ
scores. This is a subset of the RAVN6X24 dataset.
with all the rows which did not have IQ scores for
the mother and child removed. The percentage of
missing values is 4.

RAVN6X23. This dataset contains 5985 cases and 23
variables. As only about 3000 mothers were given
IQ tests, this dataset was created without the vari-
able P MOM (IQ score of the mother). This is also
a subset of the RAVN6X24 dataset with the variable
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mother’s IQ deleted. The percentage of missing val-
ues is 10.

All three datasets were used for network construction,
as explained in Section 6.1.

4. Tools for Model Building

The CB algorithm takes as input a dataset with no miss-
ing values and outputs a Bayesian network structure.
The network structure, when augmented with suitable
conditional probability tables constitutes a Bayesian
network, as defined in Section 2 that models the data,
in the sense that the data can be taken to be a sample
of the distribution encoded by the network. Moreover
the network structure output by CB has usually only a
few edges, because it exploits independence relations
among variables well. The network is therefore appro-
priate for use by inference algorithms and for visual
inspection.

The CB algorithm works in two phases. In the first
phase, CB uses Conditional Independence tests (χ2

tests) for ordering the nodes. In the second phase,
which is based on the K2 algorithm [17], CB com-
putes greedily an approximation to the most likely
network structure given the dataset [19]. Given a
dataset and network, CondProb computes the prior
marginal and conditional probabilities using the for-
mulas in [17]. It has been observed that constraint-
based algorithm for learning Bayesian network struc-
tures cannot orient many edges. Some authors are
highly skeptical of any attempt to distinghuish be-
tween Bayesian network structures that encode the
same conditional independence information. It is im-
portant to note that CB is a hybrid structure learning
algorithm that uses both a constraint-based approach
and a scoring approach, and that CB does not assign
the same score to equivalent networks. An implemen-
tation of CB with a user-friendly graphical user in-
terface is available by contacting the corresponding
author.3

HUGIN provides a graphical interface for represent-
ing the nodes (domain variables) and the directed edges
(usually interpretable as causal relationships between
the variables). A user-friendly mechanism for naming
the variables, entering the states of the variables and as-
signing the conditional probabilities is also provided.
HUGIN implements the Lauritzen and Spiegelhalter
method of probability propagation in DAGs [22], with
some improvements. The HUGIN shell was developed

by Andersen, Olesen, F.V. Jensen and F. Jensen in Den-
mark [23].

The IMP program analyzes the given dataset and
predicts missing values. We use statistical, case match-
ing and randomization methods. A random guess is
attempted when case matching fails. The method is ex-
pected to succeed in domains where there is good inter-
dependency between variables. Fortunately most real
world data and medical data in particular have many
interdependent variables. We have not analyzed the the-
oretical properties of IMP, but we consider it to be a
practical and useful method particularly for purposes
of model building.

CAP-CPN is an application written in C to call
Bayesian Networks using HUGIN.4 It provides mod-
ules to use the HUGIN-API C library in an organized
way. CAP-CPN converts an ASCII dataset to the for-
mat required by HUGIN for batch validation. It also
provides functions to perform simple statistical tests
on the data gathered by sampling the outcome node
when a batch file containing cases is processed.

5. Handling Missing Values

Real world data contains missing values. This is partic-
ularly true of medical datasets. The general practice in
the analysis of missing data is deleting cases (records)
with missing data. But when there are numerous vari-
ables such a policy can mean that most records will have
to be disregarded from analysis or many variables will
have to be sacrificed. It will help if we can come up with
a scheme to predict and assign missing values. To start
with, this strategy will be very useful for model build-
ing and validation from datasets. We do not discuss the
merits and demerits of imputing for data analysis here.

We decided against the easy way of making a sep-
arate category for the missing values, as done in the
original MUNIN system [24]. We believe that it is not
a satisfactory procedure as in most cases it is hard to
trace a causal pathway between the missing category
of one variable and the missing category of another
variable. Treating missing value as a separate category
is also likely to create serious problems in computing
the conditional probabilities from data. For example,
assigning the conditional probability of a variable with
4 states which has 5 parents having 2 states each results
in a table of 128 entries. Now if a missing category is
included, the table space grows to 1215 entries. And
for this example (which is by no means an extreme
case) we have more than 1000 junk entries. Not only is
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the size of the conditional probability table a problem,
but we also encounter semantic difficulties computing
conditional probabilities for the occurrences including
missing states. Hence it is desirable to come up with a
scheme to avoid missing categories. Then in the quan-
titative modeling stage only the valid categories of the
variables in the network and the conditional probabili-
ties will have to be entered. Another method which has
been used [16, p. 94] is to assign one of the valid cate-
gories to all the missing values of a particular variable.
It may be suitable for variables where the domain ex-
pert can predict with a high probability which category
the missing values should have.

We developed and implemented an algorithm (IMP)
for predicting and imputing missing values. Before de-
scribing it, we introduce a piece of notation. Let V j be
the set of cases that have the same known5 values as
the known values of case c j .

The basic step of the IMP algorithm is to assign to
the missing value xi in case c j the mode of xi in the set
of cases V j . If there are no cases with known values in
set V j , then IMP drops some of the variables from the
cases. Since it would be too computationally expensive
to consider all subsets of variables, IMP only considers
subsets in which a constant (k) number of variables
are dropped and averages the value of the mode of
xi by a weight proportional to the number of cases
corresponding to each subset of the variables. Finally,
if there is no case in D in which xi has a known value,
even after dropping k variables, xi is assigned a value
at random in case c j .

The accuracy of IMP can be validated using datasets
across domains. Datasets without any missing values
were used for validation. By random number genera-
tion a fixed percentage (say ten percent) of data val-
ues are assigned missing, thus obtaining a dataset on
which IMP is run to impute missing values. The out-
put dataset is compared with the original dataset. Our
validation tests using LED, ALARM and SOYBEAN
which are small to large artificial datasets used for Ma-
chine Learning research and available from the Uni-
versity of California at the Irvine Machine Learning
repository [25] gave a mean accuracy of 80% over ten
runs. The range was from 67% to 95%.

Another possibility is to impute a dataset using the
algorithm. This imputed dataset has no missing val-
ues. Now we assign missing values (we can assign the
same percentage of missing values originally present)
generating random numbers, imputing and comparing
with the dataset we created originally by imputing.

This technique, called customized validation, gives the
predictive accuracy for the particular dataset in ques-
tion with its given percentage of missing values. Even
though this takes into account the size and other pecu-
liarities of the dataset for validation purposes, it may
introduce a small error for the estimate as we are using
IMP twice for validation.

An alternative to IMP for inferring missing values is
expectation maximization learning (the EM algorithm).
In its basic form, EM finds a maximum likelihood es-
timate for the parameters, rather than the most proba-
ble (a posteriori) values. Some approaches to Bayesian
network structure learning in the presence of missing
data bypass the imputation of missing values for in-
complete data and are presented in [26]. A particularly
interesting technique is Friedman’s Structural EM Al-
gorithm [26, 27]. In this paper, we concentrate on our
techniques. A detailed comparison of the quality and
complexity of these techniques would be a good topic
for future work.

Our datasets were imputed using IMP. For our
datasets RAVN2X24, RAVN6X23, and RAVN6X24,
we obtained an accuracy of 79%, 82% and 83% re-
spectively. The accuracy of the imputed values were
judged by the technique of customized validation.

6. Network Generation and Refinement

6.1. Network Generation

The CB algorithm was run on the three imputed datasets
described in Section 3.1 for generating the networks.
The datasets were randomly partitioned into two—a
major part and a minor part. The bigger partition was
used for constructing the network and the smaller part
was set apart for validation. For RAVN2X24, we used
the first 2000 cases for generating the network and for
the other two, the first 5000. The network generated
from the RAVN6X24 dataset is shown in Fig. 2. The
networks obtained are given in Tables 4–6.

6.2. Network Refinement

We defined three rules to characterize the inadequacies
of the generated networks.

6.2.1. Rule of Chronology. Events occurring later in
time cannot be the parents of earlier incidents. For in-
stance a child health problem cannot be the parent of
maternal disease.
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Figure 2. Network generated by CB from RAVN6X24 dataset.

6.2.2. Rule of Common Sense. The directed edges
of the network should not go against common sense.
For instance, Father’s education cannot be a cause of
Mother’s race.

6.2.3. Domain Rule. This rule has been referred as
the Rule of Biological Plausibility in the medical and bi-
ological science literature. This rule states that a causal
explanation is tenable in terms of existing knowledge

level about the variables involved. This level is what we
obtain from an intelligent review of the relevant litera-
ture. The directed edges should not violate established
domain rules. For example, pre-natal care cannot be
put down as a cause of maternal smoking. Mausner and
Kramer strike a note of caution here: “The development
of biological knowledge often introduces new factors
that previous studies have not taken into account. In
the existing studies, the major causal factors may have
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Table 4. RAVN2X24 network.

Variable Parents

MOM RACE

MOM AGE AT BIRTH MAR STAT, MOM EDU,
FAM INC, PREV STILLBRTH

MAR STAT

MOM EDU MOM RACE

DAD EDU MOM EDU2, P MOM1

MOM DIS MOM AGE AT BIRTH

FAM INC MOM EDU

MOM SMOKE MOM RACE, MOM EDU,
MOM ALC, PN CARE3

MOM ALC FAM INC

PREV STILLBRTH

PN CARE

MOM XRAY MOM DIS, C SECTION

GESTATN MOM RACE, FET DIST

FET DIST INDUCE LAB1, C SECTION1,
RESUSCITN1

INDUCE LAB

C SECTION

CHLD GEND CHLD HPROB1

BIRTH WT PN CARE, GESTATN

RESUSCITN MOM RACE2

HEAD CIRC MAR STAT, INDUCE LAB3,
CHLD ANOM

CHLD ANOM

CHLD HPROB CHLD ANOM

CHLD RAVN MOM EDU, CHLD ANOM

P MOM MOM RACE, MOM EDU

1Violates law of chronology.
2Goes against commonsense.
3Violates domain rules.

been missed because their importance was not appreci-
ated” [28, p. 187]. This point is well taken and if there
is a strong case, such a directed edge should be inves-
tigated further. But for our network construction pur-
poses, if an edge clearly violated established domain
constraints, it was removed. The directed edges of the
network in Fig. 2 are given in Table 6 with annotations
describing examples of rules that are broken. So also
new edges were incorporated to capture the knowledge
of the known domain causal mechanisms. The vari-
able MAR STAT was removed as the expert felt that it
was not playing a useful role in representing domain
relations. See Tables 4–6 for examples of rules that
are broken. The expert refined network is a synthesis

Table 5. RAVN6X23 network.

Variable Parents

MOM RACE MAR STAT1, MOM EDU1,
DAD EDU2, MOM SMOKE1,
MOM ALC1, C SECTION1

MOM AGE AT BIRTH MAR STAT, FAM INC,
PREV STILLBRTH

MAR STAT

MOM EDU MOM AGE AT BIRTH2, FAM INC

DAD EDU

MOM DIS MOM RACE, MOM AGE AT BIRTH,
MAR STAT2

FAM INC MAR STAT

MOM SMOKE MOM EDU, MOM ALC, BIRTH WT

MOM ALC FAM INC, MOM AGE AT BIRTH

PREV STILLBRTH

PN CARE

MOM XRAY MOM RACE2, MOM DIS, C SECTION

GESTATN MOM AGE AT BIRTH,
PREV STILLBRTH,
PN CARE

FET DIST PN CARE, GESTATN,
INDUCE LAB1, C SECTION1,

INDUCE LAB PREV STILLBRTH

C SECTION

CHLD GEND CHLD HPROB1

BIRTH WT PN CARE, GESTATN

RESUSCITN MOM RACE2, MAR STAT2, FET DIST

HEAD CIRC MAR STAT, CHLD ANOM

CHLD ANOM

CHLD HPROB MAR STAT, HEAD CIRC

CHLD RAVN FAM INC

1Violates law of chronology.
2Goes against commonsense.
3Violates domain rules.

and refinement of the three raw networks. The expert-
modified network is shown in Fig. 3. The changes made
to the networks are significant. This is because we have
encoded the causal relations, which made the networks
sparser. As a consequence, the expert-modified net-
works generalize better to new cases, as the results of
Section 7 show.

6.3. Refinement of Conditional Probabilities

The prior marginal and conditional probabilities were
computed using the program CondProb. For nodes
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Table 6. RAVN6X24 network.

Variable Parents

MOM RACE MAR STAT1, MOM EDU1,
DAD EDU2,

MOM SMOKE1, C SECTION1,
RESUSCITN1

MOM AGE AT BIRTH MAR STAT, FAM INC,
PREV STILLBRTH

MAR STAT

MOM EDU MOM AGE AT BIRTH2, FAM INC

DAD EDU

MOM DIS MOM AGE AT BIRTH, MAR STAT2,
MOM EDU, HEAD CIRC2

FAM INC MAR STAT

MOM SMOKE MOM EDU, MOM ALC, BIRTH WT

MOM ALC FAM INC, MOM AGE AT BIRTH

PREV STILLBRTH

PN CARE

MOM XRAY MOM DIS, C SECTION

GESTATN MOM AGE AT BIRTH,
PREV STILLBRTH,

PN CARE

FET DIST GESTATN, INDUCE LAB1,
C SECTION1, RESUSCITN1

INDUCE LAB PREV STILLBRTH

C SECTION

CHLD GEND RESUSCITN2

BIRTH WT PN CARE, GESTATN

RESUSCITN MAR STAT2, PN CARE, GESTATN

HEAD CIRC MAR STAT, CHLD ANOM

CHLD ANOM

CHLD HPROB MOM RACE, MAR STAT,
HEAD CIRC, P MOM

CHLD RAVN FAM INC

P MOM MOM RACE, MOM AGE AT BIRTH,
MOM EDU

1Violates law of chronology.
2Goes against commonsense.
3Violates domain rules.

without parents prior marginal probabilities of the vari-
ous states calculated from the RAVN6X24 dataset were
assigned.

For the nodes with one or more parents, the condi-
tional probabilities calculated using the same dataset
was assigned. The Conditional Probabilities of the
outcome variable CHLD RAVN (See paragraph 3)
were refined by the expert. There were many pos-

sible instantiations that were not represented in the
dataset RAVN6X24. A reasonable conditional prob-
ability was assigned by the expert for these. For the
raw networks probabilities were assigned from the
RAVN2X24 dataset using the program CondProb.

7. Validation of the Model

7.1. Validation by the Expert

As ours is a model for risk assessment and risk predic-
tion of mental retardation, it is different from a classi-
fication or diagnostic problem. In a typical diagnostic
approach we consider a set of differential diagnoses
and the attempt is to assign probabilities to them and
order them on that basis. In risk assessment we are
interested in the change in magnitude of a particular
category of interest even though it may still occupy a
low position in an ordering of the variable levels. We
have a prior probability of 5.6% for mild and 12.4%
for borderline MR. Hence if the risk of both mild and
borderline doubles, still we get a combined probabil-
ity of only 36%. That leaves a probability of 64% for
normal and superior. We would consider intervention
for a case like this, because the cost of intervention is
outweighed by the potential benefit accruing from it.
Most of the actual cases from the dataset with mild
or borderline MR give a >50% probability for normal
outcome. This is because there are more normal out-
come cases with similar instantiations of variables than
outcomes that result in mental retardation. Hence we
decided first on a strategy of validation by comparing
with the expert. We generated nine cases with instan-
tiation for a subset of variables. We ran these cases on
the model and computed the probabilities. The expert
was asked to score the results as agree or disagree. The
expert was in agreement with the model’s assessment
in eight out of nine cases used for validation. Three of
the cases are depicted in Table 7, while the conditional
probabilities of the values of CHLD RAVN for those
cases are shown in Table 8.

7.2. Validation using RAVN2X24

7.2.1. Risk Means of Cases and Controls. All the
cases in the dataset RAVN2X24(unimputed) were run
through the models—the expert network, and the
two raw networks that have twenty-four variables
(raw2x24net and raw6x24net) using CAP-CPN. The
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Figure 3. Network modified by the expert.

results showing the relative risk for controls (children
with normal outcome) and cases (children with mild or
borderline MR) are given in Table 9 for the three nets.

A t-test procedure was performed to assess the sta-
tistical significance of the predicted risks. The Prob
>| T | was 0.0001, 0.0000 and 0.1878 for the expert
net, raw2x24net and raw6x24net respectively. (We do
not have a good explanation for the fact that the sec-

ond number is smaller than the first; since the first two
numbers are both very small, we dismiss this as an aber-
ration.) This shows that there is significant difference
in the mean risk scores between the cases and controls
for the expert net and raw2x24net (P < 0.05). Note
that there are fewer violations of the rules described
in Section 6.2 for raw2x24net (9) than for raw6x24net
(14). There are several possible explanations for the
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Table 7. Generated values for three cases.

Case 1 Case 2 Case 3
Variable Variable value Variable value Variable value

MOM RACE Non-White White White

MOMAGE BR 14–19 ≥ 35

MOM EDU ≤12 >High school ≤12

DAD EDU ≤12 >High school High school

MOM DIS No

FAM INC <10,000 <10,000

MOM SMOK Yes

MOM ALC Moderate

PREV STILL

PN CARE Yes

MOM XRAY Yes

GESTATN Normal Normal Premature

FET DIST No Yes

INDUCE LAB

C SECTION

CHLD GEND

BIRTH WT Low Normal Low

RESUSCITN

HEAD CIRC Abnormal

CHLD ANOM No

CHILD HPRB Both

CHLD RAVN

P MOM Normal Superior Borderline

Table 8. Posterior probabilities for three cases.

Value of Case 1 Case 2 Case 3
CHLD RAVN and Posterior Posterior Posterior
Prior probability probability probability probability

Mild MR (.056) .101 .010 .200

Borderline MR (.124) .300 .040 .400

Normal (.731) .559 .690 .380

Superior (.089) .040 .260 .200

Table 9. Mean risk of MR predicted for cases and controls by the three nets.

Expert net raw2x24net raw6x24net

Controls Cases Controls Cases Controls Cases
n = 1863 n = 349 n = 1863 n = 349 n = 1863 n = 349

Level Mean risk Mean risk Mean risk

Mild MR 0.05 0.07 0.02 0.02 0.02 0.02

Borderline MR 0.11 0.14 0.14 0.16 0.14 0.15

Mild + Border 0.16 0.21 0.16 0.18 0.16 0.17

poor performance of the raw2x24 dataset. It might be
that the data or, more precisely, the missing data, are
not distributed evenly across the domain. Another (re-
lated) possibility is poor performance of IMP. The per-
formance of the expert net was the best of the three
based on the mean risks.

7.2.2. Evaluation Using a Risk Threshold. In the ini-
tialized state, the expert network gives a resting MR risk
of 0.18 if the risks for mild and borderline retardation
are added together, as shown in Fig. 4. (Recall from the
Introduction that the prevalence of mental retardation,
mild mental retardation, and borderline mental retar-
dation is much larger than that of mental retardation
alone, which is 0.025.)

If we take twice the resting state risk as our thresh-
old for significant risk, our threshold can be set at the
value of 0.36. Using this threshold we find that twenty
nine per cent of cases are flagged correctly. This also
results in eighteen per cent of controls being flagged as
significant risk for MR. (Fig. 5 shows the increase in
risk of MR for an example case with some known risk
factors.) These results are contained in Table 10, which
also presents the same type of results for raw2x24net,
whose resting MR risk is 0.16. (The results for raw6x24
are very poor.)

We considered using n-fold cross-validation to es-
timate the error rates of our methods, but we did not
employ it, because it can be applied only to the raw net-
works. In n-fold cross-validation, the cases are divided
into n (typically, ten) groups of roughly equal size. All
except one of the groups are used in learning, while the
group that is left out is used to estimate an error rate.
This process is carried out n times, each time leaving
out a different group, and the overall error rate for the
learning algorithm is the average of the n error rates
[29]. Since the expert modified network was crafted
from the three raw networks by removing and adding
edges to reflect domain knowledge and the conditional
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Figure 4. Initial probabilities in the expert network.

probabilities were also modified by the expert, cross-
validation cannot be used to compare the performance
of the raw and refined networks.

7.2.3. Validation Using a Separate Data Set. The
National Collaborative Perinatal Project (NCPP), of

the National Institute of Neurological and Commu-
nicative Disorders and Strokes, developed a data set
containing information on pregnancies between 1959
and 1974 and 8 years of follow-up for live-born chil-
dren. For each case in the data set, the values of all 22
variables except CHLD RAVN (child’s cognitive level
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Figure 5. Probabilities in the expert network for a high risk case.

as measured by the Raven test) were entered, and
the conditional probabilities of each of the four val-
ues of CHLD RAVN were computed. Table 11 shows
the average values of P(CHLD RAVN = mildMR | d)

and P(CHLD RAVN = borderlineMR | d), where d
is the set of values of the other 22 variables, for
both the controls (children in the study with nor-
mal cognitive function at age 8) and the subjects
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Table 10. Cases flagged for different risk thresholds.

Expert net raw2x24net
Risk Threshold

for MR Controls Cases Controls Cases
(Mild + border) n = 1863 n = 349 n = 1863 n = 349

Resting value 434 (23%) 122 (35%) 901 (48%) 240 (69%)

1.5 × Resting value 370 (20%) 111 (32%) 242 (13%) 73 (21%)

2 × Resting value 342 (18%) 101 (29%) 9 (<1%) 5 (1%)

Table 11. Average probabilities, as determined by MENTOR, of
having mental retardation for controls (children identified as hav-
ing normal cognitive functioning at age 8) and subjects (children
identified as having mild or borderline MR at age 8).

Avg. probability Avg.
Cognitive for controls probability for
level (n = 13019) subjects (n = 3598)

Mild MR .06 .09

Borderline MR .12 .16

Mild or Borderline MR .18 .25

(children in the study with mild or borderline MR at
age 8).

8. Discussion and Future Work

8.1. Discussion

The validation results are significant but not dramatic.
We feel that this is due to the incomplete state of knowl-
edge of the etiological factors of MR. This results in
datasets where some of the relevant variables (not yet
recognized as contributory or causative) have not been
collected. Hence our model is constrained by the state
of domain knowledge existing at this point in time.

Throughout the development of MENTOR, we em-
phasized the causal interpretation of the links. While
this is not in any way necessary, it seemed to be a good
decision for two reasons. First, there is widespread be-
lief that ordering variables in a causal direction sim-
plifies modeling, or, as Russell and Norvig put it, “If
we stick to a causal model, we end up specifying fewer
numbers, and the numbers will often be easier to come
up with” [30, p. 443]. Second, it is easier to involve the
expert in validating the edges if the model is causal.

Still, there is a serious problem with a causal inter-
pretation in the case of MENTOR. It is quite likely that
there are many hidden (unmeasured or even unknown)

variables playing a role in the causal pathway of MR.
Despite this, we attempted to build a DAG model and
assign to it a causal interpretation. This is clearly sus-
pect. There are two possible approaches to dealing with
this problem. The first is to attempt to discover hid-
den variables using a data analysis technique, such as
TETRAD [31, Ch. 2] that purports to discover such
variables. A second approach is to explicitly model
correlations that have no causal interpretation by using
undirected links as in chain graphs (graphical mod-
els that include both directed and undirected links). It
is commonly (and somewhat simplistically) believed
that the undirected links can be used to model associ-
ational, non-causally interpretable information, while
the directed links are used to model the causally inter-
pretable information [32]. For our research we did not
address this issue further.

8.2. Future Work

The networks generated from the different datasets us-
ing the CB algorithm had many nodes that violated the
rule of chronology. A facility for inputting the chrono-
logical order can be incorporated. Likewise, if some
rules could be incorporated in the network generation
stage to take care of domain-specific constraints, di-
rected edges violating domain rules would be avoided.
In other words, the ordering of nodes built by the
first phase of the CB algorithm would be forced to
be consistent with chronology and domain rules. An-
other mechanism to incorporate these rules in the net-
work generation phase would be to set appropriate pri-
ors on the network structures, which would favor net-
works compatible with the rules. This is a more dras-
tic change to the current approach, in that the scor-
ing metric used by CB assumes prior equivalence of
all network structures. (Other metrics, while forgo-
ing prior equivalence, are also insensitive to domain
peculiarities.)

In some cases, the values of variables in the origi-
nal dataset have been discretized. In many cases (e.g.,
for head circumference), this has been done accord-
ing to accepted practice in epidemiology. Still, it may
be interesting to challenge accepted wisdom and at-
tempt different ways of discretizing variable ranges,
for example by using a decision tree building algo-
rithm [33]. (We observe, incidentally, that the variable
FAM INC, which represents family income, was al-
ready normalized in the original dataset.) In order to
enable other researchers to validate and extend our



Building Bayesian Network Models in Medicine 107

results, we provide the following pointer to the datasets
we used: http://www.cse.sc.edu/∼mgv/MentorData/
MentorData.zip.

(The original CHDS dataset is widely available from
other sources.)

Finally, since there are many variables in the Mental
Retardation domain, it may be advantageous to attempt
attribute selection [34], and use only a subset of vari-
ables.
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Notes

1. A similar situation exists in many other fields, both in the social
and in the natural sciences; consider the tremendous amount of
non-experimental data sent by spacecraft for an example outside
the social sciences.

2. Probabilities sum to 1, so one of the 192 parameters is dependent
on the other 191.

3. This implementation, which includes CondProb, is called Visual
CB and is described in [21].

4. Another name for Bayesian Networks is Causal Probabilistic Net-
works; hence the second part of the acronym.

5. We use “known” as the opposite of missing.
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