
Performance Evaluation of Algorithms for Soft

Evidential Update in Bayesian Networks: First
Results

Scott Langevin and Marco Valtorta�

Department of Computer Science and Engineering
University of South Carolina
Columbia, SC 29208, USA

{langevin,mgv}@cse.sc.edu

Abstract. In this paper we analyze the performance of three algorithms
for soft evidential update, in which a probability distribution represented
by a Bayesian network is modified to a new distribution constrained by
given marginals, and closest to the original distribution according to
cross entropy. The first algorithm is a new and improved version of the
big clique algorithm [1] that utilizes lazy propagation [2]. The second
and third algorithm [3] are wrapper methods that convert soft evidence
to virtual evidence, in which the evidence for a variable consists of a like-
lihood ratio. Virtual evidential update is supported in existing Bayesian
inference engines, such as Hugin. To evaluate the three algorithms, we
implemented BRUSE (Bayesian Reasoning Using Soft Evidence), a new
Bayesian inference engine, and instrumented it. The resulting statistics
are presented and discussed.

Keywords: Bayesian networks, Iterative Proportional Fitting Proce-
dure, Soft Evidence, Virtual Evidence, Cross Entropy.

1 Introduction and Motivation

The issue of how to deal with uncertain evidence in Bayesian networks appears in
Pearl’s foundational text [4, sections 2.2.2, 2.3.3] and has recently been the sub-
ject of methological inquiry and algorithm development (e.g., [1,5,6,7,8,9,3,10]).
A result of these studies has been to clarify the distinction between soft and
virtual evidence. Briefly, representing uncertain probabilistic evidence as virtual
evidence is appropriate when we model the reliability of an information source,
while the soft evidence representation is appropriate when we want to incorpo-
rate the distribution of a variable of interest into a probabilistic model. Update
based on virtual evidence (sometimes called likelihood evidence) is supported
� This work was funded in part by the Intelligence Advanced Research Projects Ac-

tivity (IARPA) Collaboration and Analyst System Effectiveness (CASE) Program,
contract FA8750-06-C-0194 issued by the Air Force Research Laboratory (AFRL).
The views and conclusions are those of the authors, not of the US Government or
its agencies. We thank three anonymous reviewers for their comments.

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 284–297, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Performance Evaluation of Algorithms 285

in several existing Bayesian inference engines, such as Hugin1. This paper is
concerned with soft evidence only.

For the purpose of this paper, we define evidence in a Bayesian network as a col-
lection of findings on variables of the Bayesian network. A hard finding specifies
which value (state) the variable is in. A soft finding specifies the probability distri-
bution of a variable. Hard evidence is a collection of hard findings. Soft evidence is
a collection of soft findings. See [1] for more general definitions of evidence. Some
authors describe the problem of update in the presence of soft evidence as a model
revision or parameter tuning problem. In the case of soft evidential update, all ev-
idence (hard and soft) is presented simultaneously; in the case of model revision,
the soft evidence is better considered as a constraint on the probability distribu-
tion encoded by the model, which is modified before evidence is applied. Despite
the clear difference in the problems that are solved, similar algorithms can be used
to solve both problems, as can be seen by contrasting [9], which takes the model
revision approach, with [3], which takes the evidential update approach.

Belief update in the presence of hard evidence is carried out by conditioning.
As observed by many authors, conditioning cannot be used to update beliefs in
the presence of soft evidence. The general soft evidential update method of [1]
will be used in this paper; this general method admits several detailed algo-
rithmic variants, which have different efficiency characteristics with respect to
network topologies and evidence presentations. The input to the method con-
sists of a Bayesian network and a set of soft and hard findings. The method
computes implicitly a joint probability that has two properties: (1) the evidence
is respected, i.e. the findings are marginals for the joint probability distribu-
tion; (2) the joint probability is as close as possible to the initial distribution
represented in the input Bayesian network, where distance is measured by cross-
entropy (I-divergence). The joint probability is computed implicitly in that only
its single-variable marginals are output. The focus of this paper is the experi-
mental comparison of three such variants: the big clique algorithm of [1,6], and
the two wrapper-based methods of [3]. The authors of [3] prove that the three
variants compute the same distribution. The three variants are described in the
following section. We aim (in future work) to provide further insight into the ap-
propriateness of the three variants for different network topologies and evidence
presentations.

2 Algorithms

In this section we first describe lazy propagation, an efficient probabilistic update
algorithm that is used as the core update mechanism for the three algorithms ana-
lyzed in this paper.We thendescribe thebig clique algorithmand the twovariations
of wrapper algorithms that can utilize any inference engine without modification.
In this paper we only consider wrappers for lazy propagation. Finally, we list vari-
ous other methods that have been proposed for soft evidential update.

1 Virtual evidence is, confusingly, called soft evidence in [11].

286 S. Langevin and M. Valtorta

2.1 Lazy Propagation

Lazypropagation [2] is anefficient junctiontreealgorithmthatutilizesd-separation
properties of the originalBayesiannetwork bymaintaining amultiplicative decom-
position of clique and separator potentials. Itmerges the ideas of belief update algo-
rithms that compute allmarginals anddirect query-based algorithms that compute
a marginal for a query and better exploit evidence-induced d-separation.

Lazy propagation can be used with any computational tree structure that
maintains the d-separation properties of the original Bayesian network. Our im-
plementation uses the junction tree structure as does Hugin propagation, rather
than the original Lauritzen-Spiegelhalter or the Shafer-Shenoy structures. In
particular, two mailboxes per separator are used, one for messages sent during
the collect evidence phase and the other for the distribute evidence phase [12].
Cliques and separators in the junction tree maintain sets of potentials and com-
bination of potentials is delayed as long as possible to take advantage of d-
separation and unity potential properties of the Bayesian network.

Lazy propagation consists of two phases: collecting evidence to the designated
root clique, and distributing evidence from the designated root clique to the rest
of the junction tree. Evidence is collected and distributed by message passing,
where each message is a collection of potentials.

Following is a description of the lazy propagation algorithm:

1. Build a junction tree for the Bayesian network (see [13] and [2] for details).
2. Apply hard evidence (see procedure on page 287 for details).
3. Invoke Collect Evidence on designated root of junction tree.
4. Invoke Distribute Evidence on designated root of junction tree.
5. Invoke Calculate Posterior Marginals.

Collect Evidence. Let Ci and Cj be adjacent cliques in the junction tree and
let S be the separator between Ci and Cj . Let ΦCi and ΦCj be the set of potentials
associated with Ci and Cj . Let Φ↑ and Φ↓ be the set of potentials stored in the
collect and distribute mailboxes of S respectively. If Collect Evidence is invoked
on Cj from Ci, then:
1. Cj invokes Collect Evidence on all adjacent cliques except Ci.
2. The message Φ↑ from Cj to Ci is calculated (using the algorithm on page

287) and stored in the collect mailbox of S.
3. Update ΦCi = ΦCi ∪ Φ↑.

Distribute Evidence. Let Ci and Cj be adjacent cliques in the junction tree
and let S be the separator between Ci and Cj . Let ΦCi and ΦCj be the set of
potentials associated with Ci and Cj. Let Φ↑ and Φ↓ be the set of potentials
stored in the collect and distribute mailboxes of S respectively. If Distribute
Evidence is invoked on Cj from Ci, then:
1. The message Φ↓ from Ci to Cj is calculated (using the algorithm on page

287) and stored in the distribute mailbox of S.
2. Update ΦCj = ΦCj ∪ Φ↓\Φ↑.
3. Cj invokes Distribute Evidence on all adjacent cliques except Ci.

Performance Evaluation of Algorithms 287

Calculate Message. Let Ci and Cj be adjacent cliques in the junction tree
and let S be the separator between Ci and Cj . Let ΦCi be the set of potentials
associated with Ci. Let dom(A) be the set of variables associated with A (where
A is either a potential or a separator). The message passed from Ci to Cj is
calculated as follows:

1. Set RS = Invoke Find Relevant Potentials on ΦCi for dom(S).
2. For each variable X in {X ∈ dom(φ)|φ ∈ RS ,X /∈ dom(S)}

(a) Marginalize X out of RS :
i. Set ΦX = {φ ∈ RS |X ∈ dom(φ)}.
ii. Let φ∗

X =
∑

X
∏

φ∈ΦX φ.
iii. Update RS = {φ∗

X} ∪ RS\ΦX
3. Return RS .

A detailed presentation on alternative ways to perform the second step can be
found in [14].

Find Relevant Potentials. Let Φ be a set of potentials and let S be a set of
variables. The relevant potentials of Φ for calculating the joint probablity of S
are calculated as follows:

1. Let RS = {∃X ∈ dom(φ)|X is d-connected to Y ∈ S}.
2. Use the unity-potential axiom to remove from RS all potentials containing

only barren head variables (defined in, e.g., [13]) to obtain R′
S .

3. Return R′
S .

Apply Hard Evidence. In the lazy propagation algorithm, hard evidence is
incorporated by applying hard evidence on a variable X with all cliques Ci

where X ∈ dom(Ci). This is done to fully exploit d-separation properties of
the Bayesian network induced by the evidence. Hard evidence on a variable
X = x is incorporated by the reduction of the domain of all potentials φi where
X ∈ dom(φi) to only include configurations of the potential where X = x.
All configurations where X �= x are simply removed. This process is called an
instantiation of φi.

Calculate Posterior Marginals. In the lazy propagation algorithm, marginals
of all variables in the Bayesian network can be calculated by first applying any
hard evidence entered, then performing the collect evidence and distribute evi-
dence phases, known collectively as a full propagation of evidence. Let P(X|ε) be
the posterior marginal of X . Calculation of marginals is then performed on each
variable X by the following:

1. For each variable X
(a) Let ΦX = {argminΦCi

dom(Ci)|X ∈ dom(Ci)}.
(b) Set RX = Invoke Find Relevant Potentials on ΦX for dom({X}).
(c) For each variable Y in {Y ∈ dom(φ)|φ ∈ RX ,Y �= X}

288 S. Langevin and M. Valtorta

i. Marginalize Y out of RX :
A. Set ΦY = {φ ∈ RX |X ∈ dom(φ)}.
B. Let φ∗

Y =
∑

Y
∏

φ∈ΦY φ.
C. Update RX = {φ∗

Y} ∪ RX \ΦY
(d) Calculate

P(X|ε) =

∏
φ∈RX φ

∑
X

∏
φ∈RX φ

The above algorithm can be modified to also calculate posterior marginals
using the separators as well as the cliques.

2.2 Lazy Big Clique Algorithm

The big clique algorithm [1] incorporates soft evidence by combining two meth-
ods: junction tree propagation and Iterative Proportional Fitting Procedure
(IPFP; [15,16,1]). The original big clique algorithm modified the Hugin prop-
agation algorithm and therefore did not exploit d-separation properties of the
underlying Bayesian network. A new version of the big clique algorithm was
developed (the lazy big clique algorithm), that is more efficient by taking ad-
vantage of d-separation using the lazy propagation algorithm described in the
previous section.

The lazy big clique algorithm modifies the lazy propagation algorithm as
follows:

1. Construct a junction tree that includes all variables that have soft evidence
in one clique - the big clique C1.

2. Apply hard evidence and invoke the lazy propagation routine Collect Evi-
dence on C1.

3. Combine all potentials associated with C1 to produce the joint probability
distribution P(C1).

4. Absorb all soft evidence in C1 (with the algorithm described on page 289).
5. Invoke the Big Clique Distribute Evidence routine. A special method is

needed to distribute evidence from the big clique since during absorption
of soft evidence the decomposition of potentials in C1 is lost, and therefore
a division by the evidence received from a neighboring clique is necessary
when calculating messages to avoid passing back redundant information.

Big Clique Distribute Evidence

1. For each clique Ci adjacent to C1, combine potentials of message in collect
mailbox of separator S between Ci and C1, call this result Φ∗

i - the evidence
C1 received from Ci.

2. Calculate message passed from C1 to Ci as follows:

Φ↓
i =

ΦC1

Φ∗
i

Performance Evaluation of Algorithms 289

3. For each variable X in {X ∈ dom(Φ↓
i)|X /∈ S}

(a) Marginalize out X .
4. Let Φ↓∗

i be the potential obtained.
5. Store Φ↓∗

i in the distribute mailbox of S.
6. Update ΦCi = ΦCi ∪ Φ↓∗

i .
7. Ci invokes the lazy propagation routine Distribute Evidence on all adjacent

cliques except C1.

Absorption of Soft Evidence. We define absorption in the special big clique
C1 as the process by which the joint probability P(C1) is updated to satisfy
the constraints imposed by soft evidence on variables S ⊆ C1, where S =
{S1,S2, ..,Sk}. Let Q(C1) be the joint probability after absorption.

Then ∀i
∑

C1\Si
Q(C1) = P(Si), where P(Si) is the soft evidence on Si, i =

1, ..., k. Absorption of soft evidence in clique C1 is done using IPFP and consists
of cycles of k steps, one per finding. Each step corresponds to one soft finding.
The procedure is as follows:

Q0(C1) = P(C1)

Qi(C1) =
Qi−1(C1) · P(Sj)

Qi−1(Sj)

where j = (i − 1) mod k + 1.

2.3 Wrapper Method 1: Iterate over Network

Both wrapper methods [3] utilize any existing Bayesian inferencing engine that
supports virtual evidence by converting soft evidence findings into virtual evi-
dence that are applied to the Bayesian network using standard inference. Con-
vergence is achieved using an iterative method. For wrapper method 1, at each
iteration one soft evidence finding is converted to virtual evidence and applied.
The process is performed repeated until convergence as follows:

Let P(X) be the joint probability of the Bayesian network N obtained using
standard BN inference. Let S be the variables with soft evidence, where S =
{S1,S2, ..,Sk}, and P(Si) is the soft evidence on Si, i = 1, .., k. This algorithm
applies soft evidence by iterating over the whole network as follows:

1. Q0 = P(X); k = 1;
2. Repeat the following until convergence:

(a) i = 1 + (k − 1) mod m; j = 1 + �(k − 1)/m	;
(b) (Convert the soft evidence to virtual evidence) Construct virtual evi-

dence Vi,j with likelihood ratio:

L(Si) =
P(Si)

Qk−1(Si)

(c) Obtain Qk(X) by updating Qk−1(X) with Vi,j using standard BN
inference.

(d) k = k + 1

290 S. Langevin and M. Valtorta

2.4 Wrapper Method 2: Iterate over Soft Evidence

Wrapper method 2 is similar to the big clique algorithm in that both methods
calculate the joint probability of the soft evidence variables and use IPFP to
absorb soft evidence. The big clique performs IPFP on all variables in the big
clique, while the wrapper 2 method only performs IPFP on the soft evidence
variables. The wrapper 2 method converts the soft evidence to virtual evidence
that is applied to the Bayesian network using standard inference. As a result,
the wrapper 2 method requires two full propagations: one to calculate the joint
probability of the soft evidence variables, and another to calculate the posterior
marginals. The process is as follows:

Let P(X) be the joint probability of the Bayesian network N obtained using
standard BN inference. Let S be the variables with soft evidence, where S =
{S1,S2, ..,Sk} and P(Si) is the soft evidence on Si, i = 1, .., k. Let P(S) be the
joint probability of S. This algorithm applies soft evidence as follows:

1. Use any BN inference method on N to obtain P(S).
2. Absorb all soft evidence in P(S) (with the algorithm described below) to

obtain Q(S).
3. (Convert the soft evidence to virtual evidence) Construct virtual evidence V

with likelihood ratio:

L(S) =
Q(S)
P(S)

4. Update the beliefs in N with V using standard BN inference.

Bayesian network engines of the “all-marginal” variety (junction tree based)
do not compute joint probabilities, but rather calculate single-variable marginals
for all variables. Junction tree algorithms can be modified to calculate joint
probabilities for a set of variables by adding pairwise edges between all variables
of interest to the moral graph before performing triangulation. This ensures the
resulting junction tree will contain a clique that contains all variables of interest.
After propagation, the joint probability of the variables can be constructed by
combining all potentials associated with this clique. Our implementation of the
wrapper 2 method uses this technique to calculate the joint probability of the
soft evidence variables. See [17] and [13, Section 5.2] for a discussion of other
methods to calculate joint probabilities in “all-marginal” algorithms.

Absorption of Soft Evidence. We define absorption of soft evidence as the
process by which the joint probability P(S) is updated to satisfy the constraints
imposed by soft evidence on variables S, where S = {S1,S2, ..,Sk}. Let Q(S)
be the joint probability after absorption. Then ∀i

∑
S\Si

Q(S) = P(Si), where
P(Si) is the soft evidence on Si, i = 1, ..., k. Absorption of soft evidence is
done using the Iterative Proportional Fitting Procedure (IPFP) and consists of
cycles of k steps, one per finding. Each step corresponds to one soft finding. The
procedure is as follows:

Q0(S) = P(S)

Performance Evaluation of Algorithms 291

Qi(S) =
Qi−1(S) · P(Sj)

Qi−1(Sj)

where j = (i − 1) mod k + 1.

2.5 Other Methods

Here, we only list several other methods for soft evidence update: the space-
saving implementation of IPFP [18,19,20]; the soft updating algorithm of [10];
and the approximate update algorithms by Peng and Ding [9].

3 Experimental Setup

To evaluate the lazy big clique (referred to as big clique from here on) and wrap-
per algorithms, a new Bayesian reasoning engine was constructed that utilizes
lazy propagation, the Bayesian Reasoning Using Soft Evidence (BRUSE) en-
gine. BRUSE was developed using the Java framework and implements the three
discussed algorithms for soft evidential update. In order to evaluate algorithm
performance, an instrumentation framework was implemented into BRUSE to
gather statistics during inferencing. Statistics collected are: number of table mul-
tiplication operations performed, number of table addition operations performed,
number of table division operations performed, IPFP iterations required for con-
vergence, domain size of the IPFP table, and time to perform inference. Our test-
ing was done on a Dell Optiplex Intel Core 2 Duo, 2.4 GHz machine with 2GB
of RAM. Each test configuration was performed ten times and average statis-
tics were calculated. The tests were performed using four Bayesian networks
of varying sizes and complexity. Two of the networks were downloaded from a
web-based repository [21]: stud farm (12 nodes) [13] and alarm (37 nodes) [22].
The other two networks, test71 (80 nodes) and test61 (200 nodes), were ran-
domly generated to simulate complex networks. Table 1 shows statistics for the
four networks. These statistics show the relative complexity of the networks and
corresponding junction trees when one soft evidence finding is chosen.

Each network was tested with ten different test configurations consisting of
one to ten soft evidence findings. Hard evidence was not used in our tests. Each
test, randomly selects soft evidence variables accordingly to satisfy the test con-
figuration chosen. The same set of soft evidence findings are applied to each of
the three algorithms to compare their relative performance.

Table 1. Statistics for test networks

Network Number of Nodes Number of Cliques Max Clique Size Triangulation Weight

studfarm 12 9 16 116

alarm 37 27 144 1065

test71 80 65 2916 13793

test61 200 175 262144 347180

292 S. Langevin and M. Valtorta

4 Results

We present here some of the experimental results obtained so far, without in-
terpretation. Since we use the min-size heuristic, which is widely recognized as
excellent [23], the cost to generate the junction tree is negligible. Accordingly, for
all networks, we collect statistics only after the construction of the junction tree.
Also, we found that, in our implementation, inference time corresponds closely
to the number of elementary table operations performed, where we define num-
ber of elementary table operations as the sum of table multiplications, additions
and divisions. As an example, compare Figure 1 with Figure 2. Therefore, the
number of table operations provides a good measure of relative performance.

Fig. 1. Average number of elementary table operations for the alarm network

Fig. 2. Average propagation time for the alarm network

For all networks, it appears that wrapper 1 is slower than the other two
methods when the number of soft evidence findings is small (less than 7 for the
networks we consider). (We apologize to the reader for the fact that several of
the graphs do not provide sufficient resolution to show this.) We conjecture that

Performance Evaluation of Algorithms 293

Fig. 3. Number of elementary table operations for test case 3 of the alarm network

Fig. 4. Average number of elementary table operations for the test61 network

the reason is that the cost of propagation through the whole network dominates
the cost of IPFP over a rather small joint probability. As a consequence, we also
conjecture that this would not be the case for networks with large state spaces,
for which the joint probability tables are large, even when they contain only a
few nodes.

For all networks, wrapper 2 and big clique have similar run times. This is
to be expected, because both methods need to compute the joint probability
of the soft evidence variables, which requires, in a junction tree algorithm, the
computation of the joint probability of variables in a clique that contains all
the soft evidence variables. The big clique algorithm also performs IPFP on all
variables in that clique, while the wrapper 2 method only performs IPFP on the
soft evidence variables. On the other hand, the wrapper 2 method uses virtual
evidence, which requires two full propagations, to compute posterior marginals,
while the big clique method only needs one full propagation. When the cost of
propagation is higher than the cost of IPFP on the big clique, the big clique
algorithm will perform better, and vice versa.

294 S. Langevin and M. Valtorta

Fig. 5. Number of elementary table operations for test 6 of the test61 network

Fig. 6. Average number of elementary table operations for the test71 network

For the stud farm network (Figure 7), the cost of propagation in the very
small junction tree is dominated by the cost of IPFP in the big clique and
wrapper 2 algorithms. Use of IPFP requires the computation of the joint prob-
ability of the soft evidence variable(s), by first computing the joint probability
of the variables in the cliques containing the soft evidence variable(s) and then
marginalizing down to the soft evidence variable(s). On the other hand, the
wrapper 1 method computes posterior marginal probabilities by updating with
respect to each individual soft evidence variable in turn. This computation is
very fast on the small junction tree of the stud farm network. Accordingly, the
wrapper 1 method is the fastest for this network.

For the alarm network (Figure 1), the results are similar to those for stud farm.
The relatively poor performance of big clique for eight soft evidence findings is
explained by a particularly difficult evidence scenario, whose performance is
reported in Figure 3. The resulting big clique for these soft evidence findings
is very large resulting in an expensive IPFP computation. A similar situation
occurs for ten soft evidence findings.

Performance Evaluation of Algorithms 295

Fig. 7. Average number of elementary table operations for the stud farm network

For the test61 network (Figure 4), the state spaces of one of the cliques in
the junction tree is very large, reflecting the fact that this is indeed a random
network and not a typical, human-constructed, low-treewidth network [24]. The
performance of the wrapper 1 algorithm is accordingly poor, because the cost
of additional propagations required by this method overcomes the savings re-
sulting from not performing IPFP on a joint distribution. Similarly, wrapper 2
is slower than the big clique algorithm, because it performs twice the number
of propagations. The spike in the number of table operations for the wrapper 1
method with nine soft evidence findings is due mainly to one difficult evidence
scenario, whose performance is reported in Figure 5, for which the number of
IPFP iterations before convergence is very high.

For the test71 network (Figure 6), the number of operations for the wrapper
2 method is approximately double the number for big clique. This indicates that
the contribution of IPFP is negligible, while the propagation cost for probabil-
ity update after IPFP dominates the number of operations. Since wrapper 2
needs to perform two such propagations, as opposed to one for the big clique
algorithm, the experimental result is explained. The junction tree constructed
for the wrapper one method, which does not need to include all soft evidence
variables in one clique, is much simpler than the one built for the other two
methods, and this explains the comparatively better performance of wrapper
one for seven evidence findings.

5 Conclusion

This paper only presents initial results. As discussed in the previous section,
our initial tests indicate that the three algorithms for soft evidential update
we have implemented have definite relative strengths and weaknesses. However,
future work, such as improving the instrumentation of the implementation to
collect better convergence data, designing experiments to test specific features
of networks and evidence configurations that may include hard findings, and
testing on a wider range of large networks, remains to be done in order to
conclude under which conditions each algorithm is preferable.

296 S. Langevin and M. Valtorta

Additional future work includes the analysis of several other proposed algo-
rithms: the space-saving implementation of IPFP [18] and [19]; the soft updating
algorithm of [10]; the approximate update algorithms by Peng and Ding [9]; and
possibly more.

It will also be necessary to evaluate memory usage, which leads to a consid-
eration of any-space algorithms such as recursive conditioning [13] instead of
junction tree algorithms, and to evaluate the effect of performance tuning, such
as the use of different query methods to calculate lazy messages and of different
methods (e.g., variable passing [13] and query-based methods [17]) to calculate
joint probabilities in BRUSE.

References

1. Valtorta, M., Kim, Y.G., Vomlel, J.: Soft evidential update for probabilistic mul-
tiagent systems. International Journal of Approximate Reasoning 29(1), 71–106
(2002)

2. Madsen, A.L., Jensen, F.V.: Lazy propagation: A junction tree inference algorithm
based on lazy evaluation. Artificial Intelligence 113, 203–245 (1999)

3. Pan, R., Peng, Y., Ding, Z.: Belief update in Bayesian networks using uncertain
evidence. In: ICTAI, pp. 441–444. IEEE Computer Society Press, Los Alamitos
(2006)

4. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufman, San Mateo (1988)

5. Chan, H., Darwiche, A.: On the revision of probabilistic beliefs using uncertain
evidence. In: Proceedings of the Eighteenth International Joint Conference on Ar-
tificial Intelligence, Acapulco, Mexico, pp. 99–105 (2003)

6. Kim, Y.-G., Valtorta, M., Vomlel, J.: A prototypical system for soft evidential
update. Applied Intelligence 21(1) (2004)

7. Vomlel, J.: Probabilistic reasoning with uncertain evidence. Neural Network World,
International Journal on Neural and Mass-Parallel Computing and Information
Systems 14(5), 453–456 (2004)

8. Chan, H., Darwiche, A.: On the revision of probabilistic beliefs using uncertain
evidence. Artificial Intelligence 163, 67–90 (2005)

9. Peng, Y., Ding, Z.: Modifying Bayesian networks by probability constraints. In:
Proceedings of the Twenty-first Annual Conference on Uncertainty in Artificial
Intelligence (UAI 2005), Edinburgh, Scotland, July 2005, pp. 459–466 (2005)

10. Di Tomaso, E., Baldwin, J.: An approach to hybrid probabilistic models. Interna-
tional Journal of Approximate Reasoning 47, 202–218 (2008)

11. Madsen, A.L., Jensen, F., Kjaerulff, U.B., Lang, M.: The Hugin tool for proba-
bilistic graphical models. Internationl Journal on Artificial Intelligence Tools 14,
507–543 (2005)

12. Lepar, V., Shenoy, P.P.: A comparison of Lauritzen-Spiegelhalter, Hugin, and
Shenoy-Shafer architectures for computing marginals of probability distributions.
In: Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI 1998), Madison, WI, July 1998, pp. 328–337 (1998)

13. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn.
Springer, New York (2007)

Performance Evaluation of Algorithms 297

14. Madsen, A.: Variations over the message computation algorithm of lazy propaga-
tion. IEEE Transactions on Systems, Man, and Cybernetics Part B 36, 636–648
(2006)

15. Csiszár, I.: I-divergence geometry of probability distributions and minimization
problems. Ann. Prob. 3(1), 146–158 (1975)

16. Vomlel, J.: Methods of Probabilistic Knowledge Integration. PhD thesis, Depart-
ment of Cybernetics, Faculty of Electrical Engineering, Czech Technical University
(December 1999)

17. Bloemeke, M., Valtorta, M.: A hybrid algorithm to compute marginal and joint
beliefs in Bayesian networks and its complexity. In: Proceedings of the Fourteenth
Annual Conference on Uncertainty in Artificial Intelligence (UAI 1998), Madison,
WI, July 1998, pp. 208–214 (1998)

18. Jiroušek, R.: Solution of the marginal problem and decomposable distributions.
Kybernetika 27(5), 403–412 (1991)

19. Hajek, P., Havranek, T., Jirousek, R.: Uncertain Information Processing in Expert
Systems. NRC Press, Boca Raton (1992)

20. Jiroušek, R., Přeučil, S.: On the effective implementation of the iterative propor-
tional fitting procedure. Computational Statistics and Data Analysis 19, 177–189
(1995)

21. Elidan, G.: Bayesian network repository (2001) (accessed May 22, 2008),
http://www.cs.huji.ac.il/labs/compbio/Repository/

22. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM mon-
itoring system: A case study with two probabilistic inference techniques for belief
networks. In: Proceedings of the Second European Conference on Artificial Intelli-
gence in Medicine, London, pp. 247–256 (1989)

23. Kjaerulff, U.: Triangulation of graphs—algorithms giving small total state space,
Technical Report R90-09. Technical report, Department of Computer Science, Uni-
versity of Aalborg (March 1990)

24. Boedlander, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005)

http://www.cs.huji.ac.il/labs/compbio/Repository/

	Introduction and Motivation
	Algorithms
	Lazy Propagation
	Lazy Big Clique Algorithm
	Wrapper Method 1: Iterate over Network
	Wrapper Method 2: Iterate over Soft Evidence
	Other Methods

	Experimental Setup
	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

