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Abstract.  This chapter describes work on an integrated system that can assist 
analysts in exploring hypotheses using Bayesian analysis of evidence from a 
variety of sources.  The hypothesis exploration is aided by an ontology that 
represents domain knowledge, events, and causality for Bayesian reasoning, as 
well as models of information sources for evidential reasoning.  We are validating 
the approach via a tool, Magellan, that uses both Bayesian models and logical 
models for an analyst’s prior knowledge about how evidence can be used to 
evaluate hypotheses.  The ontology makes it possible and practical for complex 
situations of interest to be modeled and then analyzed formally. 
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1. Introduction 

Much of the extensive work on ontologies to date has focused on modeling and 
representing the world of objects.  The ontologies needed for our research supporting 
the management of hypotheses and evidence for analysts, however, must additionally 
model events and causality.  Less work has been done on this aspect of ontologies.  In 
this paper we show how concepts from a causal ontology can be used directly as 
variables in Bayesian networks and how the attributes of the causal concepts can be 
used in matching evidence to the variables.  Moreover, subclass relationships in the 
ontology enable the extension of Bayesian reasoning over types. 

2. Bayesian Reasoning for Evidence Management 

There are numerous real-world situations about which an analyst might wish to 
hypothesize and investigate, but it would be impractical to encode all of them explicitly 
in a support system for analysts.  Instead, our approach is to represent fragments of 
situations and provide a mechanism for combining them into a wide variety of more 
complete ones [1,2].  The combination occurs dynamically as evidence about a 
situation becomes available or as an analyst revises or enters new hypotheses.  A 
situation fragment is represented as a Bayesian network with nodes for hypotheses, 
events, and evidence, and links for relating them.  Our ability to combine the fragments 
into more complete situation models is dependent on having a consistent terminology 
in which the fragments are described.  The focus of our work has been on (1) defining 
and representing the terminology, including terms of a domain and terms for evidence 
in that domain, (2) capturing new fragments from a variety of sources, and (3) 



incorporating the terminology and BN fragments into an integrated end-to-end tool, 
Magellan. 

2.1. Recognizing and Representing Situations 

Our objective is to be able to model and reason probabilistically about a wide variety of 
situations that might be of interest to analysts.  Unfortunately, there are too many 
situations for system developers to encode a priori, which even if possible would make 
the resultant system too complex for analysts to use, and it is unrealistic to expect most 
analysts to be able to use the requisite formal mechanism to encode situations a 
posteriori. Instead, our approach is to represent small, common aspects of situations 
generically, and then provide a means to combine them dynamically into 
representations for real-world situations.  We term the small generic situation aspect a 
fragment, and choose a first-order representation for it. 

An example situation aspect that we might represent as a fragment would be a 
“suspicious transfer of money,” with variables corresponding to banks, organizations, 
deposits, withdrawals, and the transferring agent.  The fragment would be instantiated 
when evidence matched the variables, e.g., “a church attended by Syrians in Detroit 
deposited funds into a Michigan bank and the funds were transferred to a bank in 
Cairo.”  More precisely, each variable (node) in a fragment has a set of identifying 
attributes and their collective instantiated values specify a particular instance of a 
random variable.  Because the evidence might be uncertain, there would be 
probabilities associated with the instantiated fragment, and we would treat the 
instantiated fragment as a Bayesian network.  This is shown in Figure 1.  Note that the 
probability distribution described in the Bayesian network is a joint distribution on the 
nodes only, not on the nodes and the attributes. 

 
Figure 1.  A commonly occurring part of a situation for a suspicious bank transfer of money, represented as 
an uninstantiated Bayesian network.  Notice that the nodes (variables) have attributes, making them 
equivalent to concepts or classes in an ontology.  If one or more items of evidence matched the nodes, then 
details of the evidence would be used to instantiate the attributes of the variables 

 
An advantage of using fragments of situations instead of more complete situations 

is that many more situations can be represented efficiently.  More precisely, N 



fragments can potentially be combined in N! ways to represent N! situations.  The 
combining is guided by available evidence.  For example, three other situations that we 
might represent as fragments are “purchases of weapons,” “influencing an election,” 
and “bribing a politician.”  If evidence matched one of these, and the resulting 
instantiated fragment had one or more variables in common with the money fragment, 
then we would merge the fragments at the point of the common variables to produce a 
representation of a more complete situation, such as “transferring money to influence 
an election.”  Note that fragments can be merged only if the attributes of their common 
variables unify.  Also note that it is not necessary for the fragments to have any 
variables in common in order to merge them and represent larger situations.  As a result, 
the fragments could represent situations such as “bribing a politician to influence an 
election” and “purchasing weapons to influence an election.” Further, because each 
fragment could be instantiated multiple times, we could represent several different 
money transfers being used to purchase weapons.  Our system, Magellan, considers all 
of the possible situations that are consistent with available evidence.  Magellan then 
performs Bayesian reasoning on whichever complex situation representation resulted 
from instantiating fragments with the available evidence and integrating those 
fragments.  The overall process for merging instantiated fragments and reasoning over 
them is shown in Figure 2. 
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Figure 2.  Fragments (left side)—in this case about people being on a train, having made reservations on a 
train, and being at the same location as the train—are merged based on the evidence (center) that instantiates 
them 

 

2.2. Capturing the Terminology and Prior Knowledge for a New Domain 

A key activity of an intelligence analyst is to distinguish among competing hypotheses, 
determine the likelihood of their occurrence, and reduce the uncertainty in the 
outcomes of the hypotheses, upon which decision makers will then base their decisions.  



Hypothesis outcomes1 are related to observable evidence via direct or indirect causal 
relations, and therefore ontological support for analysts should involve cause-and-effect.  
This is best supported by an ontology emphasizing events and their causal relationships, 
along with a hypothetical world of possible events, actions, and causes.  However, 
causal relationships must be interpreted in the context of the state of the real world—
primarily consisting of objects and their physical properties—which can be represented 
in a conventional ontology, such as those that are part of SUMO.  The evidence for 
reasoning about hypotheses can come from a variety of sources, and the acquisition of 
evidence and events from these sources must also be represented, constituting a third 
kind of ontological representation describing the information sources.  Figure 3 depicts 
the three ontological models we use for (1) modeling situations and relating them to (2) 
background knowledge about the state of the world, and (3) acquiring evidence, all of 
which enables an assessment of the likelihood of the situations using Bayesian 
reasoning. 

Figure 3.  An ontology for intelligence analysts has three related parts, corresponding to (1) the world of 
causality and hypothetical events needed for Bayesian reasoning, (2) the real world of things needed to model 
situations, and (3) the world of information and information sources needed for evidence management 

 
A situation might represent an analyst’s query or, more generally, provide context 

and support for a hypothesis.  A situation would be comprised of one or more items of 
interest and each such item of interest has information provided by several information 
sources.  An item of interest may be specialized to Person, Organization, Event, or 
Place, and of particular interest would be items relating events involving people at 
significant places. Information sources can be maps, images, reports video, audio, 
email, websites, and database records.  Typically, an item of interest would have many 
information sources describing aspects of that item, for example a meeting held by 
members of a suspected terrorist organization might be described by audio, video, and 
email surveillance or reports by insiders. Our tool, Magellan, uses Protégé [3] (see 
Figure 7) for capturing the ontologies, RDF (Resource Description Framework [4]) for 
representing the terminology, XMLBIF (eXtensible Markup Language Bayesian 
Interchange Format [5]) for representing the causal relationships, and RDF and 
SPARQL (a query language for RDF [6]) for requesting evidence from information 
sources.  It also makes use of logical, non-probabilistic models, as shown in Figure 4 
and described next. 

                                                            
1  In our ontology, an outcome is thus an important and necessary property (“slot” in Protégé) for 

hypotheses and, indeed, for any concept that may be in a causal relationship.  The relationship is a link in a 
Bayesian network. 



2.3. Situation Fragments Represented by Logical Models 

Our objective is to produce models of systems and situations that will be 
sufficiently accurate that they can be used—where appropriate—to predict future 
states, to understand operations, to illuminate the factors relevant to decisions, and to 
control behaviors. We have realized that some knowledge is more easily and naturally 
represented in the form of statements in a logic language and some is more naturally 
represented in a Bayesian-network formalism. For example, logic is best for expressing 

• Class-subclass statements, such as “C4 is an explosive” 
• Part-whole statements, such as “triggers are part of IEDs” 
• Definitional statements, such as “triangles have three sides” 
• Temporal statements, such as “3:00 p.m. occurs before 4:00 p.m.” 
• Spatial statements, such as “Irbil is located in Kurdistan” 

Other knowledge is probabilistic, such as 
• “Terrorist cell X planned the bombing” 
• “Suspect Y met with cell leader Z in Syria last March” 

Our resultant reasoner takes advantage of the strengths of each formalism, while 
integrating them into a single coherent system. 

 
Figure 4.  The BALER framework for integrating logical models with probabilistic models, with an ontology 
developed in Protégé providing a consistent vocabulary for all domain concepts 

An example of the situations that can be represented by such an integrated system 
is shown in Figure 5.  This system would help analysts confront problems of 
credibility, relevance, contradictory evidence, and pervasive uncertainty, using 

• A unique combination of the power of logical and probabilistic reasoning 
• Numerical analysis of competing hypotheses 
• Automated linking of relevant evidence 



• Automated propagation of uncertainty values: good arguments from uncertain 
data still add strength to a conclusion 

• Robust reasoning over contradictory information allows analysts to exploit 
maximal amounts of information 

• A provision for analysts to enter their own knowledge directly, allowing the 
system to learn from its users 

• The use of probabilities to quantify belief in hypotheses to support optimal 
decision making according to the principle of maximum expected utility. 

 

 
Figure 5.  An example illustrating the need for both Bayesian and logical reasoning 

 
Formal logical tools are able to provide some amount of reasoning support for 

information analysis, but are unable to represent uncertainty. Bayesian network tools 
represent probabilistic and causal information, but in the worst case they scale as 
poorly as some formal logical systems and require specialized expertise to use 
effectively [7]. The framework (BALER) we have developed for intelligence reasoning 
incorporates the advantages of both Bayesian and logical systems [8]. The framework 
includes a formal mechanism for the conversion of automatically generated natural 
deduction proof trees into Bayesian networks. This is indicated by the information flow 
shown in Figure 6.  We have proven that the merging of such networks with domain-
specific causal models forms a consistent Bayesian network with correct values for the 



formulas derived in the proof. In particular, we show that hard evidential updates (see 
Section 2.5) in which the premises of a proof are found to be true force the conclusions 
of the proof to be true with probability one, regardless of any dependencies and prior 
probability values assumed for the causal model. 

 

 
Figure 6.  The BALER software process flow, which is supported by the tripartite ontology of real world 
concepts, events, and information sources 
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Figure 7.  Protégé is used to enter the ontology concepts that form the basis for representing situations and 
evidence 

2.4. Causality 

Causality is a special relationship among events for which certain properties hold 
probabilistically.  For example, causality is logically irreflexive and asymmetric, but 
probabilistically transitive.  Causality, like the relation subevents, generates a strict 
partial order among events.  Causal models are very useful, because they allow 
prediction of the effect of interventions [9,10]. Our interest is in a causal Bayesian 
network. 

A causal Bayesian network consists of a causal graph, a directed acyclic graph 
(DAG) expressing causal relationships, and a probability distribution respecting the 
independence relation encoded by the graph [8].  A link between two nodes in a 
Bayesian network is often interpreted as a causal link. However, this is not necessarily 
the case. When each link in a Bayesian network is causal, then the Bayesian network is 
called a causal Bayesian network or Markovian model. A Markovian model is a 
popular graphical model for encoding distributional and causal relationships. To 
summarize, a Markovian model consists of a DAG G over a set of variables V = 
{V1; . . . ; Vn}, called a causal graph and a probability distribution over V that has some 
constraints on it. The interpretation of such a model consists of two parts: the 
association of the variables to events and the assignment of probability distributions to 
the links. For causality, variable assignment must satisfy the obvious constraint that 



(Event A causes Event B)  (timeA < timeB) 

The probability distributions must satisfy two constraints. The first constraint is 
that each variable in the graph is independent of all its non-descendants given its direct 
parents. The second constraint is that the directed edges in G represent causal 
influences between the corresponding variables. A Markovian model for which only 
the first constraint holds is called a Bayesian network, and its DAG is called a Bayesian 
network structure. This explains why Markovian models are also called causal 
Bayesian networks. As far as the second condition is concerned, causality requires that, 
when a variable is set, the parents of that variable be disconnected from it: this is called 
the excision model of causality. 

In our prototype tool, Magellan, new variables are added to the causal and event 
portion of an analyst’s ontology using Protégé, so that all of the nodes in a Bayesian 
network fragment are represented in a standard and consistent terminology. We extend 
SUMO with this terminology, so that we can take advantage of SUMO’s existing 
description of general knowledge of the world.  Each variable has a set of identifying 
attributes, which are used to combine fragments (fragments can be combined only if 
their attributes unify) [1,2]. 

Probabilities are assigned to events in the fragment by performing experiments, 
estimating beliefs, or counting outcomes.  Once assigned, they are updated by 
conditioning on evidence using Bayes rule and the laws of probability.  The fragments 
are stored in a repository, where they can be matched with evidence and combined with 
other fragments to produce models of situations that are as complete, accurate, and 
specific as possible. 

2.5. Evidence 

Fragments are instantiated by evidence, which we define informally as information 
(perhaps wrong, perhaps incomplete) about what happened (events).  For example, a 
bank clerk might be uncertain whether a money transfer was to a Cairo bank or a 
Boston bank.  We represent in the information source ontology the level of credibility 
of items of evidence, and provide a Bayesian interpretation of credibility.  Formally, 
we define evidence to be a collection of findings, each of which describes the state of a 
Bayesian network variable, and distinguish three kinds [7]: 
1. A hard finding specifies that the variable has a particular value.  For example, 

whether or not a money transfer occurred or whether or not a suspect is a terrorist 

(Male_TerroristSuspect = true) 

2. A soft finding is a distribution on the states of a variable, usually corresponding to 
an “objective” statistical distribution that is not expected to change within a 
scenario [11].  For example, there might be an observation that 95% of terrorists 
are male (and 5% are not), i.e., 

Q(Male_TerroristSuspect)=(0.95, 0.05) 

3. A virtual finding is a likelihood ratio corresponding to the credibility associated to 
an evidence source, such as a witness.  For example, witness Bill might have 



observed a suspect entering a men's-only area of a mosque, which would be 
interpreted as 4-to-1 that the suspect is a male  

L(Male_TerroristSuspect)=(0.8, 0.2) 

Unlike soft findings, virtual findings allow for an update of the posterior 
probability of the evidence variable. 

The relationships among the evidence types are shown in Figure 8. 

 
Figure 8.  Evidence consists of a set of findings, which can be of three different types, hard, soft, and virtual 

 

Figure 9.  Magellan’s extended ACH interface is integrated with the ontology of events through pull-down 
menus, i.e., each hypothesis (such as “TerroristGroupAttack”) and each type of relevant evidence (such as 
“DetectedChemical”) is a concept from the domain ontology 



Our modified version of the tool ACH2 [12] is used by an analyst to enter the 
appropriate hypotheses and any initial evidence that might be available.  The 
terminology available to the analyst is provided via drop-down menus as shown in 
Figure 9, where the menu entries are the ontology terms from our ontology developed 
in Protégé [3].  The use of terms from an ontology is essential for (1) enabling logical 
proofs to be constructed out of both new knowledge and prior knowledge, (2) taking 
advantage of known generalizations and specializations for reasoning and fragment 
matching, (3) guiding analysts in the kinds of concepts that can be used to represent 
hypotheses and evidence, and (4) enabling new fragments to be composed with existing 
fragments to represent situations more comprehensively. 

The resultant Analysis of Competing Hypotheses (ACH) [13] matrix is converted 
automatically into a bipartite Bayesian network, with initial probabilities assigned 
based on the relevance factors assigned to cells of the matrix.  An example of the 
network is shown in Figure 10.  The network is saved into a repository of fragments, 
from where it can be retrieved for matching to evidence and then composed with other 
fragments. 

 

 
Figure 10.  A Bayesian network fragment constructed automatically from an ACH matrix.  The conditional 
probabilities needed for Bayesian reasoning are derived from the user-entered values in the matrix indicating 
whether or not a finding is consistent with an analyst’s hypothesis 

3. Use of Tripartite Ontology for Intelligence Analysis 

Figure 11 shows an end-to-end architecture for Bayesian reasoning, which would be 
used as follows.  The process might be triggered by the arrival of evidence in the form 
of a message, such as the following: 



FBI Report Date: 10 April 2003. FBI: Abdul Ramazi is the owner of the 
Select Gourmet Foods shop in Springfield Mall. Springfield, VA. (Phone 
number 703-659-2317). First Union National Bank lists Select Gourmet Foods 
as holding account number 1070173749003. Six checks totaling $35,000 have 
been deposited in this account in the past four months and are recorded as 
having been drawn on accounts at the Pyramid Bank of Cairo, Egypt and the 
Central Bank of Dubai, United Arab Emirates. Both of these banks have just 
been listed as possible conduits in money laundering schemes. 
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Figure 11.  Magellan architecture for Bayesian Reasoning used to explore an analyst’s hypotheses, indicating 
how the ontology makes it possible for evidence to be combined with generic situation fragments to produce 
models that can be reasoned over probabilistically to explain the evidence 

Based on such a message, or based on a hypothesized situation that an analyst 
would like to investigate, an appropriate scenario represented as a Bayesian model is 
chosen by the analyst and a corresponding form is displayed listing initial evidence and 
the domain variables for the scenario.  The evidence values for the variables can be 
supplied automatically from the triggering messages, by matching message terms with 
ontology concepts as shown in Figure 12, or can be entered by the analyst.  Because the 
probabilities of the variables represented in a situation are updated to be consistent with 
the evidence at hand, the situation tracks the variables of interest to an analyst.  When 
the probability of a particular value of a variable of interest becomes sufficiently high, 
an alert could be issued to the analyst. 



  
Figure 12.  A small portion of the tripartite ontology indicating how an item of evidence would be classified 
and used to instantiate one or more fragments.  Shown here is the outcome of representing the FBI evidence 
message above using the ontology that we defined in Protégé  

Then the Bayesian reasoning component, using a value-of-information calculation, 
identifies the variables that have the most potential impact on the probability profile of 
a variable of interest.  (Algorithm 1 contains the algorithm that we use to calculate the 
value of information for a chosen variable.) That is, it determines which pieces of 
evidence would be most useful in confirming or denying the analyst’s hypothesis.  
Such especially informative variables can then become the subject of focused queries. 
A request for this evidence is sent to the analyst, who returns the result to the Bayesian 
reasoner for incorporation into the situation, and the likelihood of the analyst’s 
hypothesis is reassessed.  The process is repeated until the analyst decides to stop or 
there is no more evidence available that changes the plausible outcomes. 
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4. Evaluation 

An early anecdotal evaluation of Magellan was conducted at NIST. The evaluators 
(three naval reservists with a background in intelligence analysis) tested the hypothesis 
generation aspect of the system for four hours. In this test, the analysts were presented 
with several items of evidence (similar to the FBI Report in of section 3) and asked to 
generate hypotheses, using an interface such as is shown in Figure 13. After they had 
finished, they were shown hypotheses generated by Magellan and were asked to rate 
these hypotheses in comparison to the ones they had generated. The NIST summary of 
the evaluation indicated that the analysts generated more hypotheses than Magellan and 
that Magellan’s hypotheses did not take into account all the possible variables. 
However, analysts’ ratings for Magellan-generated hypotheses are equal to the ratings 
for the analyst-generated hypotheses in 1/3 of the cases. In 7/9 cases the ratings for the 
Magellan-generated hypotheses were given mid-level ratings or higher. 

5. Discussion 

The key features of our approach to reasoning about evidence are the ability to model 
fragments of abstract situations, to base the models on concepts from a causal ontology, 
to use a combination of both logic and probability for reasoning about the models, to 
ground situation models by instantiating the ontological concepts in the fragments with 
evidence, to compose the instantiations of situation fragments into complete situation 
models based on evidence, and to analyze the resultant situation models for sensitivity 
and surprise.  The heart of our approach is Bayesian reasoning.  However, there are 
alternative approaches for reasoning over uncertain evidence about ontological 
concepts, notably Pronto [14,15], a probabilistic extension to OWL [16], and P-Classic 
[17]. 

Pronto provides reasoning services for knowledge bases containing uncertain 
knowledge.  It extends the Pellet reasoner by enabling probabilistic knowledge 
representation and reasoning in OWL ontologies.  Pronto represents uncertainty by 
probability intervals, instead of point probabilities and tables of conditional 
probabilities, as in Bayesian networks.  The advantages of the Bayesian approach are 

• Bayesian networks directly support causality, which to do the equivalent in 
Pronto would require an additional logical theory. 

• Both approaches can handle logical conflicts, but Pronto relies on a 
mechanism of model ordering via the use of preferences, whereas Bayesian 
networks make use of explicit models that describe the conflicts, so that they 
can be reasoned about in the same way as non-conflicting evidence. 

• As evidence about an uncertain variable accumulates, the variable’s 
probabilistic interval becomes wider and it becomes more difficult to base a 
decision on the variable. 

• Probabilistic interval updating as done in Pronto is more complex than the 
updating of point probabilities in Bayesian reasoning. 

In P-Classic, which supports conditional probabilities as in Bayesian networks, 
links represent subclasses, as opposed to representing causality.  P-Classic is most 
useful for problems of identification, i.e., given some uncertain features about an 
unknown concept x, it can conclude that x is most likely an instance of class Y.  The 



work on probabilistic extensions to OWL by Ding and Peng [16] improves on P-
Classic by focusing on formal rules for translating OWL ontologies into Bayesian 
networks.  Note that our ontology is not itself probabilistic and we do not translate it 
into a Bayesian network—we just use concepts from it in Bayesian networks and 
ensure that the Bayesian networks are consistent with the causality knowledge in the 
ontology. 

6. Conclusion 

Our work is predicated on the observation that ontologies make it easier for tools to 
interoperate.  We have found that our ontologies need to describe both the physical 
world and the on-line information world, because our reasoning system relies on the 
relationships and links between both kinds of domains.  The reasoner, BALER, enables 
first-order logic sentences to be combined with Bayesian networks by generating 
Bayesian networks for any first-order natural deduction proof (that uses the Reeves-
Clarke inference rules).  This exploits the complementary powers of both logical and 
Bayesian representations. 
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