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Abstract

This paper addresses the problem of identifying causal effects from nonex-
perimental data in a causal Bayesian network, i.e., a directed acyclic graph that
represents causal relationships. The identifiability question asks whether it
is possible to compute the probability of some set of (effect) variables given
intervention on another set of (intervention) variables, in the presence of non-
observable (i.e., hidden or latent) variables. It is well known that the answer
to the question depends on the structure of the causal Bayesian network, the
set of observable variables, the set of effect variables, and the set of interven-
tion variables. Sound algorithms for identifiability have been proposed, but no
complete algorithm is known. We show that the identify algorithm that Tian
and Pearl defined for semi-Markovian models [1, 2, 3], an important special
case of causal Bayesian networks, is both sound and complete. We believe
that this result will prove useful to solve the identifiability question for general
causal Bayesian networks.



1 Introduction

This paper focuses on the feasibility of inferring the strength of cause-and-
effect relationships from a causal graph [4], which is an acyclic directed graph
expressing nonexperimental data and causal relationships. Because of the ex-
istence of unmeasured variables, the following identifiability questions arise:
“Can we assess the strength of causal effects from nonexperimental data and
causal relationships? And if we can, what is the total causal effect in terms of
estimable quantities?”

The questions just given can partially be answered using a graphical ap-
proach due to Pearl and his collaborators. More precisely, graphical conditions
have been devised to show whether a causal effect, that is, the joint response
of any set S of variables to interventions on a set T of action variables, denoted
Pr(S)!is identifiable or not. Those results are summarized in [4]. For example,
“back-door” and “front-door” criteria and do-calculus [5]; graphical criteria to
identify Pr(S) when T is a singleton [6]; graphical conditions under which it
is possible to identify Pr(S) where T and S are, possibly non-singleton, sets,
subject to a special condition called Q-identifiability [7]. Some further study
can be also found in [8] and [9].

Recently, J. Tian by himself and in collaboration with J. Pearl published a se-
ries of papers [1, 2, 3, 10] related to this topic. Their new methods combine the
graphical characters of causal graph and the algebraic definition of causal ef-
fect. They used both algebraic and graphical methods to identify causal effects.
The basic idea is first to transfer causal graphs to semi-Markovian graphs [2],
then to use Algorithm 2 in [3] to calculate the causal effects we want to know.

Tian and Pearl’s method is a great contribution to this study area, but there
are still two open questions left. First, even though we believe, as Tian and
Pearl do, that the semi Markovian models obtained from the transforming Pro-
jection algorithm in [2] are equal to the original causal graphs, and therefore the
causal effects should be the same in both models, still, to the best of our knowl-
edge, there is no formal proof for this equivalence. Second, the completeness
question of the indentification algorithm in [3] (which we will simply call the
identify algorithm from now on) is still open, so that it is unknown whether a
causal effect is identifiable if the identify algorithm fails.

In this paper, we focus on the second question. Our conclusion shows that
Tian and Pearl’s identify algorithm on semi-Markovian models is sound and
complete, which means that a causal effect on a semi-Markovian model is iden-
tifiable if and only if the given algorithm can run successfully and finally return
an expression which is the target causal effect in terms of estimable quantities.

Using the result of this paper, it becomes possible to rewrite the identify
algorithm on general Markovian models and prove that the new algorithm
is still sound and complete. This work is not included in this paper, but we
believe that we provide the foundations for the more general result.

In the next section we present the definitions and notation that we use in

IPearl and Tian used notation P(s|do(t)) and P(s|¢ ) in [4] and P:(s) in [2], [3].



this paper. In section three, we present some important lemmas that will be
used to support the analysis of the identify algorithm. In section four, we
describe the algorithm that answers the identifiability question for a special
causal effect case (Q[S]), and show that the algorithm is sound and complete.
We present the identify algorithm for general causal effect Pr(S) in section
five and show that it is also sound and complete. Conclusions are included in
section six.

2 Definitions and Notations

Markovian models are popular graphical models for encoding distributional
and causal relationships. A Markovian model consists of a DAG G over a set
of variables V' = {V1,...,V,}, called a causal graph and a probability distribu-
tion over V, which has some constraints on it that will be specified precisely
below. We use V(G) to indicate that V is the variable set of graph G. If it is
clear in the context, we also use V' directly. The interpretation of such kind of
model consists of two parts. The probability distribution must satisfy two con-
straints. The first one is that each variable in the graph is independent of all its
non-descendants given its direct parents. The second one is that the directed
edges in G represent causal influences between the corresponding variables. A
Markovian model for which only the first constraint holds is called a Bayesian
network. This explains why Markovian models are also called causal Bayesian
networks. As far as the second condition is concerned, some authors prefer to
consider equation 3 (below) as definitional; others take equation 3 as following
from more general considerations about causal links, and in particular the ac-
count of causality that requires that, when a variable is set, the parents of that
variable be disconnected from it. See [11] and [4].

In this paper, capital letters, like V, are used for variable sets; lower-case
letters, like v, stand for the instances of variable set V. Capital letters like X,
Y and V] are also used for single variables, and their values can be z, y and
v;. Normally, we use F(V) to denote a function on variable set V. An instance
of this function is denoted as F(V)(V = v), or F(V)(v), or just F(v). Because
each variable is in one-to-one correspondence to one node in the causal graph,
we sometimes use node or node set instead of variable and variable set.

We use Pa(V;) to denote parent node set of variable V; in graph G and
pa(V;) as an instance of Pa(V;). Ch(V;) is V;’s children node set; ch(V;) is an
instance of Ch(V;).

Based on the probabilistic interpretation, we get that the joint probability

function P(v) = P(vy,...,v,) can be factorized as
P() = ][ P(ilpa(vi) (1)
VieVv

The causal interpretation of Markovian model enables us to predict the in-
tervention effects. Here, intervention means some kind of modification of fac-
tors in product (1). The simplest kind of intervention is fixing a subset ' C V'



of variables to some constants ¢, denoted by do(T' = t) or just do(t), and then
the post-intervention distribution

Pr(V)(T =t,V =v) = P,(v) 2)
is given by:
B _ [ Ilv,ev\r P(vilpa(V;)) v consistent with ¢
Py(v) = P(vldo(t)) = { 0 vinconsistent with t )

We note explicitly that the post-intervention distribution Pr(V)(T = ¢,V =
v) = P;(v) is a probability distribution.

When all the variables in V are observable, since all P(v;|pa(V;)) can be esti-
mated from nonexperimental data, all causal effects are computable. But when
some variables in V' are unobservable, the situation is much more complex.

Let N(G) and U(G) (or simply N and U when the graph is clear from the
context) stand for the sets of observable and unobservable variables in graph G
respectively, thatis V' = N U U. The observed probability distribution P(n) =
P(N = n), is a mixture of products:

Pm)= Y [] Pilpa(vi))= > I Pluilea(vVi)) TT Plvjlpa(vy))

UreU VeV UpeU V;,eN V;eUu
(4)

The post-intervention distribution P;(n) = Pr—;(N = n) ? is defined as:

ZUkeU H\/;eN\T P(vi|pa(V;)) H\/jeU P(vjlpa(V;))
Py(n) = n consistent with ¢ (5)
0 n inconsistent with ¢

Sometimes what we want to know is not the post-intervention distribution
for the whole N, but the post-intervention distribution P;(s) of an observable
variable subset S C N. For those two observable variable sets S and T, P;(s) =
Pr—(S = s) is given by:

Zvl e(N\S\T ZUkeU HV,-eN\T P(vi|pa(V;)) ij cU P(vjlpa(V;))
Pi(s) = s consistent with ¢
0 s inconsistent with ¢
(6)
The identifiability question is defined as whether the causal effect Pr(.5),
that is all P,(s) given by (6), can be determined uniquely from the distribution
P(N = n) given by (4), and thus independently of the unknown quantities
P(v;|pa(V;))s, where V; € U or V; € U for some V; € Pa(V;).
We give a formal definition of identifiability below, which follows [3].

2In this paper, we only consider the situation in which 7' C N.



A Markovian model consists of four elements
M =< Na Ua GNUU7 P('UAPCL(%)) >

where, (i) N is a set of observable variables; (ii) U is a set of unobservable
variables; (iii) G is a directed acyclic graph with nodes corresponding to the
elements of V.= N UU; and (iv) P(v;|pa(V;)), is the conditional probability of
variable V; € V given its parents Pa(V;)in G.

Definition 1 The causal effect of a set of variables T" on a disjoint set of vari-
ables S is said to be identifiable from a graph G if all the quantities P;(s) can
be computed uniquely from any positive probability of the observed variables
— that is , if PM'(s) = PM?(s) for every pair of models M; and M, with
PMi(p) = PM2(n) > 0 and G(M;) = G(Mo).

This definition means that, given the causal graph G, the quantity P;(s)
can be determined from the observed distribution P(n) alone; the probability
tables that include unobservable variables are irrelevant.

Next, we define Q[S] function and c-components in causal graphs. These
definitions follow [2].

Normally, when we talk about S and 7', we think they are both observable
variable subsets of N and mutually disjoint. So, any configuration of S is con-
sistent with any configuration of 7', and equation 6 can be replaced by

P(sy= > > Il Puleavi)) TT Plojlpa(vy)) )

Vie(N\S\T U, €U V;EN\T V,eu

From now on, we will use this definition instead of equation 6.

We are sometimes interested in the causal effect on a set of observable vari-
ables S due to all other observable variables. In this case, keeping the conven-
tion that N stands for the set of all observable variables and 7' stands for the
set of variables whose effect we want to compute, 7' = N\ S, and equation 7
simplifies to

Pos(s)= Y ] Pluilpavi)) TT Plojlpa(v))) (®)

UreU V;eS VjEU

In formula 8, the subscript n\s indicates a configuration of the variable or
variables in the set N\S. For convenience and for uniformity with [2], we
define

Q[S] = Pn\s(5) )

and interpret this equation as stating that the causal effect of N\'S on S is Q[5].
Note that Q[S] is identifiable if Q[S]M1(s) = Q[S]M2(s) for every pair of
models M; and M, with Q[N]*(n) = Q[N]™2(n) > 0 and G(M;) = G(M>).
We define the c-component relation on the unobserved variable set U of graph
G as follows. For any U; € U and Uy € U, they are related under the c-
component relation if and only if one of conditions below is satisfied:



(i) there is an edge between U; and Us,
(ii) U, and U are both parents of the same observable node,

(iii) both U; and U, are in the c-component relation with respect to another
node Us € U.

Observe that the c-component relation in U is reflexive, symmetric and tran-
sitive, so it defines a partition of U. Based on this relation, we can therefore
divide U into disjoint and mutually exclusive c-component related parts.

A c-component (short for “confounded component,” [3]) of variable set V'
on graph G consists of all the unobservable variables belonging to the same
c-component related part of U and all observable variables that have an un-
observable parent which is a member of that c-component. According to the
definition of c-component relation, it is clear that an observable node can only
appear in one c-component. If an observable node has no unobservable parent,
then itself is a c-component on V. Therefore, the c-components form a partition
on all of the variables.

For any pair of variables V; and V5 in causal graph G, if there is an unob-
servable node U; which is a parent for both of them, then path V; «— U; — V;
is called a bidirected link. If for nodes V1, ..., V,, there are bidirected links be-
tween all V;, Vi1, 1 < i@ < n, then we say there is a bidirected path from V; to
Vi

We now introduce a way of reducing the size of causal graphs that pre-
serves the answer to an identifiability question. It is more convenient to work
with the reduced graphs than with the original, larger ones. Studying defi-
nition (4) and (5), we can see if there is an unobservable variable in graph G
that has no child, then it can be summed out in both (4) and (5) and removed.
Formally, if we have a model M =< N, U, Gnuv, P(vi|pa(V;)) >, U" € U and
U’ has no child in Gnyy, then the identification problem in M is equal to the
identification problem in M’ =< N, U\{U'},G’, P'(v;|pa;) >, where G’ is the
subgraph of G yyy obtained by removing node U’ and all links attached with
it. P'(v;|pa(V;)) is obtained by removing all P(u/|pa(U’)) in the set of condi-
tional probability tables P(v;|pa(V;)). The overall distribution (of all remaining
variables) and the causal distribution (of only the observable variables) in these
two models are still the same.

By repeating the transformation given above, any causal model can be trans-
formed to a model in which each unobservable variable is an ancestor of one or
more observable variables without changing the identifiability property. (This
is analogous to barren node removal in Bayesian networks.) From now on in
this paper, we assume that all models we study satisfy this property.

If in a Markovian model each unobserved variable is a root node with ex-
actly two observed children, we call it a semi-Markovian model. Verma [12]
defines a projection by which every Markovian model on graph G can be trans-
ferred to a semi-Markovian model on graph PJ(G, V). Tian and Pearl [2] show

3We use this term because the three-node structure can be replaced by the two observable nodes
with a special bidirected edge between them.



that G and PJ(G, V') have the same topological relations over V' and the same
partition of V' into c-components. They conclude that if Pr(S) is identified in
PJ(G,V), then it is identified in G with the same expression. This is a very
important statement. From now on in this paper we will just deal with semi-
Markovian models.

In semi-Markovian models, equation 7 can be rewritten as:

Pi(s) = Z Z H P(v;|pa(V; H P(vy) (10)

ViE(N\S)\T U, €U V;EN\T V;eU

And equation 8 can be rewritten as:

Pi(s) = Q[s] = P\s(s Z H P(vi|pa(V; H P(v;) (11)

UreU V;eS V;eU

As in Tian and Pearl [3], for the sake of convenience, we represent a semi-
Markovian model with a causal graph G without showing the elements of U
explicitly, but represent the confounding effects of U variables using bidirected
edges. We explicitly represent U nodes only when it is necessary.

So, from know on, unless otherwise noted, all the nodes we mention are
observable nodes in graph G. We still use N to denote the set of observable
nodes.

We conclude this section by giving several simple graphical definitions that
will be needed later. For a given variable set C C N, let G¢ denote the sub-
graph of G composed only of variables in C' and all the bidirected links be-
tween variable pairs in C. We define An(C') be the union of C' and the set of
observable ancestors of the variables in C'in graph G and De(C) be the union
of C and the set of observable descendents of the variables in C in graph G.

An observable variable set S C N in graph G is called an ancestral set if it
contains all its own observed ancestors (i.e., S = An(S)).

3 Theorems and Lemmas

Because our definition of Q)[S] is equal to the definition of Q[S] in [2], Lemma
11in [2] is still correct, and therefore we have:

Theorem 1 Let W C C' C N. If W is an ancestral set in G, then

> QlCl=QW] (12)

V,eC\W

We recall that subgraph G¢ includes all variables in C' and the subset of
the unobservable variables in G for which their children are all in in C. The
lemma says that in such a subgraph, if W is a set of observable variables whose
ancestor set includes no other observable variables in the subgraph, then Q[IV]
can be calculated directly from Q[C] by marginalizing variables in C\IV. In



particular, note that if Q[C] is identifiable, then Q[IV] is also identifiable. We
will exploit this observation later on.

Another very important theorem is given in [2]. We only use the first two
parts of it, which are:

Theorem 2 Let H C N, and let Hy,. .., H] be c-components in the subgraph Gp.
Let H; = H! N N,1 < i < [. Then we have
(i) Q[H] can be decomposed as

l
QH] =[] QlH] (13)
=1

(ii) Each Q[H,] is computable from Q[H]. Let k be the number of variables in H,
and let a topological order of variables in H be V, < ... < Vi in Gy. Let H =
{V1,...,V;} be the set of variables in H ordered before V; (including V;), i =1,...,k,
and H©®) = ¢. Then each Q[H;],j = 1,...,1, is given by

QU]
Q)= I oo (14)
j {i|vieH;} QU]

where each Q[HW],i = 0,1,...,k, is given by

QHY = > Q[H| (15)

H\H

Theorem 2 means that if Q[H] is identifiable, then each Q[H;], 1 < i < [, is
also identifiable. In the special case for which H = N, Q(H) = Q(N) = P(N),
which is obviously identifiable, and therefore theorem 2 implies that Q[N/NN]
is always identifiable for each c-component N; of a given causal graph G.

Lemma1 Let S,T C N be two disjoint sets of observable variables. If Pr(S) is not
identifiable in G, then Pr(S) is not identifiable in the graph resulting from adding
a directed or bidirected edge to G. Equivalently, if Pr(S) is identifiable in G, then
Pr(S) is still identifiable in the graph resulting from removing a directed or bidirected
edge from G.

Intuitively, this lemma says that unidentifiability does not change by adding
links. This property is mentioned in [4]. A formal proof of this lemma for semi-
Markovian model can be found in [3].

Lemma 2 Let S,T C N be two disjoint sets of observable variables. If S, and Ty
are subsets of S, T, and Pr, (Sy) is not identifiable in a subgraph of G, which does not
include nodes S\S1 UT\T1, then Pr(S) is not identifiable in the graph G.

Proof: Assume that Pr, (S1)is not identifiable in a subgraph of G, which we
will name G’, and which does not include nodes S\ S; U T\T;. We can add all
nodes in G but not in G’ into G’ as isolated nodes. Then we have (trivially) that
Pr(S) is not identifiable in this new graph. According to lemma 1, Pr(S) is not
identifiable in graph G either. O



Lemma3 Let A C B C N. Q[A] is computable from Q[B] if and only if Q[A]g,, is
computable from Q[Bc,,

Recall that Q[A] = Py 4(A). The only if part of this lemma follows from
lemma 2. A formal proof of the if part can be found in [3].

4 Identify Algorithm for Q)[S]

Let S be a subset of observable variables (i.e., S C N). Recall that Q[S] =
P\ 5(S). Based the theorems in the previous section, Tian and Pearl [3] gave
an algorithm to solve the identifibility problem of Q[S] and showed that this
algorithm is sound. We present their algorithm here and show that it is also
complete. We begin with a lemma.

Lemma 4 Assume that N is partitioned into c-components Ny, ..., Ny in G, and S is
partitioned into c-components Si, ..., Sy in graph Gg. Because each S, j =1,...,1,
is a c-component in G'g, which is a subgraph of G, it must be included in exactly one
N;, N;j € {N1,..., Ny }.Q[S] is identifiable if and only if each Q[S;] is identifiable in
graph G, .

Proof:
First note that, because of theorem 2 (part i), in any model on graph G, we
have

Qls) = ] ass) (16)

Only if part:

From lemma 3, it follows that, if each Q[S}] is identifiable in graph G,
then each Q[S;] is identifiable from Q[N;]| on graph G. When we have Q[N],
according to theorem 2 (part ii), we can compute all the Q[N;]s. So, each Q[S;]
is identifiable from Q[N]. Based on equation 16, Q[S] is identifiable.

If part:

If one Q[5;] is unidentifiable in Q[V,] in graph G y,, then from lemma 2, we
have Q[S] is unidentifiable. [

Let us now consider how to compute Q[S;] from Q[N;]. This discussion
will lead to an algorithm, expressed below as function identify.

Let F = An(S)ay, -

If F' = S, that is, if S; is an ancestral set in G, then by theorem 1, Q[S;] is
computable as: Q[S;] =3 v \ g, QIV;]-

If F = N;, we will prove (theorem 3, below) that Q[S;] is not identifiable in
Gn;-
If S C F C Nj, by theorem 1, we know Q[F] =\ » Q[NV;].

Assume that in the graph G, S; is contained in a c-component H. Note
that S; must belong to one c-component. By theorem 1, Q[H] is computable
from Q[F] and is given by Q[H] = >\ s, Q[F]. We obtain that the problem of



whether Q[S;] is computable from Q[N;] is reduced to whether Q[S;] is com-

putable from Q[H]|.
Based on lemma 3, we know that Q[S;] is computable from Q[N;] if and

only if Q[S;] is computable from Q[N;] in G ;.

Using lemma 3 again, we know that Q[S;] is computable from Q[N;] in G y;
if and only if Q[S;] is identifiable form Q[H] in graph Gy .

We now restate Tian and Pearl’s algorithm [3] to obtain Q[C] from Q[T].

Function Identify (C,T,Q)
INPUT: C C T C N, Q = Q[T], Gr and G¢ are both composed of one single

c-component.
OUTPUT: Expression for Q[C in terms of () or FAIL.
Let A = ATL(O)GT
)If A= C,output Q[C] = 3 7\ Q[T'.
ii) If A =T, output FAIL.
i) IfCCACT

1. Assume that in G 4, C is contained in a c-component 1.
2. Compute Q[T1] from Q[A] = "7\ 4 Q[T] with theorem 2
3. Output Identify(C,T1,Q[11]).

From the discussions above, we know that cases i) and iii) are correct. Case
ii) is handled by the theorem below.

Theorem 3 In a semi-Markovian graph G, if
1. G itselfis a c-component, and
2. 8 C Nin G, and Gg has only one c-component, and
3. All variables in N\S are ancestors of S,

then Q[S] is unidentifiable in G.

The proof of this theorem is in appendix A.
Based on the analysis above we have

Theorem 4 The identify algorithm for computing Q[S] in causal graph G is sound
and complete.

From theorem 4 above, the corollaries below follow.

Corollary 1 Let S C N in graph G, e be an outgoing link from one S node, and graph
G' be the same as graph G except that it does not have link e. Then Q[S] is identifiable
in graph G if and only if Q[S] is identifiable in graph G'.



Proof: Since e is a link exiting an S node, graph G and G’ have the same c-
component partition. Any c-component in G is also a c-component in G/, and
vice versa. Graph G5 and G also have the same c-component partition. Any
c-component in Gg is also a c-component in Gy, and vice versa. From Algo-
rithm Identify(C,T,Q), Algorithm Computing Q[S], and theorem 4, we know
that Q[S] is identifiable in graph G if and only if Q[S] is identifiable in graph
G'.0O

From corollary 1, we have the following, which will be used in the next
section:

Corollary 2 Let S C N in graph G and graph G’ be obtained by removing all outgo-
ing links from S nodes in graph G. Then Q[S] is identifiable in graph G if and only if
Q|S)] is identifiable in graph G'.

5 Identify Algorithm for Pr(S)

Lemma 5 Assume S C N andT C N aredisjunct node sets in graph G, < X1, Xo >
is a directed link in G, X, € S, and X, € S. Assume that graph G' is obtained by
removing link < X1, Xo > from graph G. If Pr(S) is unidentifiable in graph G, then
Pp(S\{X1}) is unidentifiable in G.

The proof of this lemma is in Appendix B.

A direct ancestor set of S in G is a variable set D such that S € D C N, and
if node X € D, then X € S or there is a directed path from X to a node in 5,
and all the nodes on that path are in D.

Lemma 6 Assume D is a direct ancestor set of node set S on graph G. 3 p,\ 5 Q[D]
is identifiable if and only if Q[D)] is identifiable.

Proof:

If part:

By definition, if Q[D] is identifiable, 3\ 5 @[D] is identifiable.

If Q[D] is unidentifiable, then we know from corollary 2 that Q[D] is uniden-
tifiable in graph G’, where G’ is obtained by removing from G all outgoing
links from nodes in D.

Since D is a directed ancestor set of S, we can find an order of nodes in
D\S, say X1, ..., Xk, for which X;, 1 <1i <k, is a parent of at least one node in
SU{Xjy,...,X,;—1}ingraph G. Assume that for X;, 1 < i < k, the link outgoing
from X; that is removed from G to get G’ is ¢;,that graph G, is obtained by
adding link e, to graph G;_1, and that Gy = G'.

Note that Q[D] = Py p(D) is unidentifiable in G’. From lemma 5, Py\ p(D\{X1})
is unidentifiable in graph ;. Using this lemma again, we have Py p (D\{ X1, X»})
is unidentifiable in graph G, and repeating, we have Py p(S) is unidentifiable
in graph G}.. Since G, is a subgraph of G, according to lemma 1, Py p(95) is
unidentifiable in G too. and Py\p(5) = > p\ g Px\p(D) = > p\ s Q[D].0

10



Based on the lemmas above, we can get a general algorithm to solve the
identifibility problem on semi-Markovian models.

Let variable set IV in causal graph G be partitioned into c-components Ny, . ..

and S and T be disjoint observable variable sets in G. According to theorem 2,
we have

k
P(N)=Q[N] = H Q[N;] (17)

where each Q[N;], 1 < i < k is computable from Q[N].
What we want to compute is:

Pls)= >, P\)= > QIN\T] (18)
N\(TUS) N\(TUS)
Let D = An(S)gy,,. Since D is an ancestral set in graph G\r, theo-
rem 1 allows us to conclude that 3\ (7 p) QIN\T] = Q[D]. Therefore, we
can rewrite P,(s) from equation (18) as:

P(s)= Y QIN\TI=Y > QIN\T|=> @[] (19

N\(TUS) D\S N\(TUD) D\S

Since D is a directed ancestor set of S, according to lemma 6, 3 5, ¢ @Q[D] is
identifiable if and only if Q[D] is identifiable. Now the identifiability problem
of Pp(S) is transferred to the identifiability problem of Q[D], which can be
solved by the algorithm in the last section.

Summarizing the discussion following lemma 6, we present the identify
algorithm [3].

Algorithm Identify

INPUT: two disjoint observable variable sets S, T C N. OUTPUT: the expression
for Pp(S) or FAIL.

1. Find all c-components of G:N1, ..., Ny.
Compute all Q[N;],1 < i < k, by theorem 2.
Let D = A’I’L(S)GN\T

Let c-components in graph Gp be Dy, ..., D;.

M

For each D;j,1 < j < I, where D; C N;, 1 < i < k, we compute Q[Dy] by
calling the function identify(D;,N;,Q[N;]). If the function returns FAIL, then
stop and output FAIL.

6. Output Pr(S) = Y\ ¢ 1=, QID;]
Our discussion above shows:

Theorem 5 The identify algorithm for computing Pr(S) is sound and complete.

11



6 Conclusion

We prove that the identification algorithm given by J.Tian and J.Pearl, which
can be used on semi-Markovian graphs, a special case of causal Bayesian net-
works, is complete. This complements the proof of soundness in [3] and is a
stepping stone towards the solution of the longstanding problem of finding a
sound and complete algorithm for the general identifiability question in gen-
eral Bayesian networks. We conjecture that a straightforward extension of the
same algorithm is sound and complete for general causal Bayesian networks.
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Appendix A

Recall that G'g is the subgraph of G that includes all nodes in the observable
node set S and all bidirected links between two S nodes.
Theorem 3 In a semi-Markovian graph G, if

1. G itself is a c-component.
2. S C Nin G, and Gg has only one c-component.

3. All variables in N\ S are ancestors of S.

then @Q[S] is unidentifiable in G.

See Fig. 1 for an example of a graph that has the three properties in the
premise of Theorem 3. Tian and Pearl [3] have proved that this theorem is true
when T just includes one node. Here we show that this theorem is true in the
general case.

General Unidentifiable Subgraph

For a given G that satifies the properties given in theorem 3 , assume G’ is a
subgraph of G that satisfies the three properties below

1. G’ is a c-component.

2. Let the observable node set in G’ be N/, and let S’ = N' N S. Then, S’ is
not empty and Gg is a c-component.

3. N\’ is not empty and all nodes in N\ S’ are ancestors of S” in G'.

Then we say that G’ is an unidentifiable subgraph of G. From lemma 1 and
lemma 2, if Q[S’] is unidentifiable in G’, Q[S] is unidentifiable in G. See Fig. 2
for an example.

Assume G is an unidentifiable subgraph of G' and no subgraph of G™ ob-
tained by removing edges from G is an unidentifiable subgraph of G. We say
G™ is a general unidentifiable subgraph. See Fig. 3 for an example. For any semi-
Markovian graph G we study here, we can find at least one general uniden-
tifiable subgraph, and we may therefore focus on general unidentifiable sub-
graphs.

From now on, in this appendix, we assume the graph G we studying is a
general unidentifiable subgraph.

Any general unidentifiable subgraph has the four properties below:
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Tl TZ SO
A ‘

Figure 1: A graph that satisfies the properties of Theorem 3

S,
’ .
T14’ Tz - So

Figure 2: An unidentifiable subgraph of Fig. 1

Figure 3: Three general unidentifiable subgraphs of Fig. 1
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Graph Property 1 If we take each bidirected link as an edge, then G n by itself is a
free tree.

Recall that a free tree (sometimes called an unrooted tree) is a connected
undirected graph with no cycles. Note that Gy can be obtained by removing
all links between observable nodes from G. This property says that graph G is
connected by bidirected links. If |N| = m, then we have just m — 1 bidirected
links in G.

Graph Property 2 If we take each bidirected link as an edge in G'g, then G g by itself
is a free tree.

This property says that subgraph G is also connected by bidirected links.
If |S| = n, then we have just n — 1 bidirected links in G's.

Graph Property 3 Foreach T; € T = N(G)\S, there is a unique directed path from
it to an S node.

This property is true because if there are two paths, we can break one of them
and 7Tj is still an ancestor of .S, so G is not a general unidentifiable subgraph.

This property also tells us there are just |T'| directed links in G, and each T;
has just one directed link out from it.

Graph Property 4 There are no directed links out of S nodes.

Extension of S Node

From graph property 4, we know that no node in S has outgoing links. But
there are three kind of links that can enter an S node S;. The first type includes
directed links from 7" nodes to S, the second type includes bidirected links
between 7" nodes and S}, and the third type includes bidirected links between
S; and other S nodes.

Lemma 7 Assume that e is a first type or second type link into node S; € S. Add an
extra S node S’ to graph G, make e point to S} instead of S; and add a bidirected link
between S; and S’;. Call the new graph G'. If Q[S U {S}}] is unidentifiable in G' then
Q|[S] is unidentifiable in G.

Proof:

Note that in &, S}- has only two links into it. One is the e we are dealing
with and the other is the bidirected link between S; and 7.

A) If e is a first type link, then we conclude that for S; in G, in addition the
bidirected link between S; and 57, S; has at least one other bidirected link get
into it. (See Fig. 4).

In G’, we call the observable parent of S§- Ty, the unobservable node on
the bidirected link between S; and S; Uy, and the another unobservable node,
which is a parent of S;, Uy. Uy has two observable children: one is S, and the
other we call S;. (See Fig. 4).
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Figure 4: S node extension: Case A

To

If Q[S U {S}}] is unidentifiable in G’ then we have two models M; and M,
on G’ that

PM(N(G) U{S}}) = PM2(N(G) U{S}}) (20)

A
but for some (¢, s, sj),

PtMl (8782) 7& PtMQ(S,S;-), (21)
where ¢ is an instance of variable set T(G) = N(G)\S(G), s is an instance of
variable set S, s; is a value for variable S;. We assumein s, S; = s; and S; = s;.

Now, we create two models M| and M} on graph G based on models M,
and M.
For any node X in G, which is notin {S;, U, S;}, k = 1,2, we define

PMi(z[pa(X)) = PM*(z]pa(X)) (22)

The state space of S; in M; is given by S(S5}) x S(S;), where S(S5}) and
S(S;) are the state spaces of S} and S in M.

Note that the parent set of S; in G is the parent set of S; in G’ minus Uy plus
To.

The state space of U; in M, is defined as S(Uy) x S(U;), where S(Up) and
S(Uy) are the state spaces of Uy and Uy in Mj,.

The state space of node S, in Mj, is the same as the state space of S; in Mj,.

Now we define:

PMi(uh) = PMi((ug, ur)) = PM* (ug) x PMr(uy) (23)

Here u} is an instance of U; in M;, uo and u; are instances for Uy and U; in M.
We define )
PMi((s5,55)[to, (uo, u1),pa’(S5)) =
My, (o Mj, / (24)
PYE(sk]to, uo) x P (s5]uo, ut, pa’ (Sy)),

where pa/(S;) is an instance of the parent set of S; in G except for Uy and Tp.
Note that pa’(.S;) is also an instance of parent set of S; in G’ except U and U .
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We also define
PM’/"(Si|pa/(Si)7 (uo,u1)) = PMi (silpa’(Si),u1), (25)

where pa’(S;) is an instance of the parent set of S; on G except Us.
From these definitions, it follows that
PMi (', (s5,87)) = PMi(n 55, s5) = PM2(n/ s, s) = PMi (', (s5,55)), (26)
where, n’ is an instance of N\{S;} in G.
But for any (¢, s, (s}, s7)),

PN (s5,8)) = M 55,8)) # PM2 (S 55,8 P2 (S (55,8)), (27)

where, s’ = s\{s;}. Therefore, Q[S] is unidentifiable in G.

B) If e is alink of the second type, note that in G’, S; may just has only one
unobservable parent, the one on the bidirected link between S; and S”. This
happens when S just has one node.

Call U; the unobservable node on the bidirected link between S and Sj,
and call Uj the unobservable node that is parent of Sj’. and of the 7" node 1.

Just as in case A, we can construct new models of G based on models for
G’'. We define models for G by letting the state space of U; be the product of
Up and U, in models for G’, and by letting the state space of S; be the product
of the state spaces of 7 and S; in models for G’.

/N

To

Uo U ..
S; S;
Figure 5: S node extension: Case B

From this point on, the proof of the lemma for case B is analogous to that
for case A.J

From the lemma above, and noting that this kind of extension will not affect
the four graph properties of general unidentifiable subgraphs, the graph G we
are studying satisfies also the property below:
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Graph Property 5 Any S node connected with a T node through a directed link or a
bidirected link has just two incoming links. One link is connected to a T node, and the
other link is a bidirected link connected to another S node.

In Fig. 6, we present the process of S node extension on graph B of Fig. 3.

Figure 6: S node extension example

From now on, we assume the graph G we study satisfies all these five graph
properties.
Mathematical Properties

Next, we need some math knowledge.

Math Property 1 Assume we have a number a, 0.5 < a < 1, then forany c, 1 —a <
¢ < a, we can always find a number b, 0 < b < 1, to make that ab+(1—a)(1-b) = c.

Proof: from ab+ (1 —a)(1—b) = ¢, wecangetb = (c+a—1)/(2a —1). Since
ct+a—1>0and c+a < 2a, wehave 0 < b < 1.0

Math Property 2 For given 0.5 < m < 1, n > 0, if we have 0.5 < m +n < 1,
then we can find a,b,c, suchthat 0.5 < a <1,0<b<1,0<c<1l,c#1-b,
ab+ (1 —a)(1—=0)=m,and ac+ (1 —a)(1 —¢) = n.

Proof: Assign a value in (1 —n/2,1) to a. Note that 0.5 < mand m+n < 1,
and therefore 0.5 < a < 1 and a > m. From math property 1, we can find b
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such that ab+ (1 —a)(1 —b) =m. Sincel —a < n/2 <n <1—n < g, using
math property 1 again, we can find ¢ such that ac + (1 — a)(1 — ¢) = n.
If we have c = 1 — b, then

m+n=ab+(1—a)(l1-0)+ac+(1—a)(l—c)=
ab+(1—a)(1-b)+a(l—0)+(1—a)b= (28)
a+l—-—a=1

But this is impossible because m + n < 1.0

Math Property 3 If we have a, b, and c such that 0.5 < b < a < 1, and ca + (1 —
¢)(1 —a) =0, then 0.5 < ¢ < 1. If we have a,b, and ¢ such that 0 < a < b < 0.5,
and ca+ (1 —¢)(1 —a) =b, then 0.5 < ¢ < 1.

Proof: For the first part, from ca + (1 — ¢)(1 —a) = b, wehavec = (b+a —
1)/(2a — 1). From this, b+a —1 > 0, and 2a — 1 > 0, we obtain ¢ > 0. Also,
b+a—1<2a—1,s0c<1,andsince (2a—1)/2=a—-1/2<a—1/24+b—-1/2 =
b+ a—1,weobtain ¢ > 0.5.

For the second part, from ca+(1—c¢)(1—a) = b, wehavec = (1—-b—a)/(1—
2a). From this, 1 —b—a > 0,and 1 — 2a > 0, we obtain ¢ > 0. Also, 1 —b—a <
1—2a,s0c < 1,andsince (1 -2a)/2=1/2—-a<1/2—a+1/2—-b=1-b—aq,
we obtain ¢ > 0.5.00

Math Property 4 If we have two numbers a,b, with 0 < a < 0.5and 0.5 < b < 1,
then ab+ (1 —a)(1 —b) < 0.5.

Proof: we have
05— (ab+ (1 —a)(1—0b)) =
05— (ab+1—a—b+ab) =
b—2ab—05+a= (29)
b(1— 2a) — 0.5(1 — 2a) =
(1-2a)(b—0.5)>0

O

Math Property 5 If we have a number a such that 0.5 < a < 1, and two numbers
b,ce (0,1) thenab+ (1 —a)(1 —b) = ac+ (1 —a)(1 — ¢) ifand only if b = ¢
Proof: we have.

ab+ (1 —a)(1—-5b)=ac+ (1 —a)(l —c) <=
ab—ac+(1—a)(1-b)—(1—-a)(l—¢)=0<=

ab—c)+(1—-a)(b—c) =0 (30)
b—c=0<<=
b=c

O

Math Property 6 Assume that we have positive numbers c,d, 0.5 < ¢ < 1 and
¢+ d < 1. Then, for any number n € [0.5,c) we can always find a number a,
0<a<1,suchthat: axc+(l1—a)xd=n
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Proof: froma x ¢+ (1 —a) x d = n, we geta = (n — d)/(c — d). From
c+d < 1and ¢ > 0.5, we obtain d < 0.5, and therefore ¢ > d, and ¢ — d > 0.
We also have n —d > 0 and n —d < ¢ — d whenn € [0.5,¢). Therefore
0<a=(Mn-d)/(c—d)<1.0

EG Graph and EG® graph

To prove that all graphs that satisfy the 5 graph properties are unidentifiable,
we first show that a class of special graphs, which we call EG graphs, are
unidentifiable. Then we extend the result to show that all graphs that satisfy
the five graph properties are also unidentifiable.

Let G be a graph that satisfies the five graph properties. We define how to
construct £G from G first.

Based on graph property 5, the node set S of G can be divided into three
disjunct sets: S = S?US™ U S?. Here S¢ contains exactly the S nodes that have
a T node as parent. S contains exactly the S nodes that have bidirected links
with T nodes. S™ = S\{S% U S*} contains exactly the S nodes that have no
directed link or bidirected link from any 7" node.

Note that |S?| > 0, because G is a c-component.

Assume that in graph G, S* = {5, 5%,..., 5}, }, and these nodes are con-
nected with T' nodes 11,75, ...,T,, with bidirected links. Graph EG(G) is
obtained by adding n; — 1 bidirected links between (77,T}), j = 2,...,n;1 on
G. See Fig. 7 for an example.

=S, -
- PR
T,——T,— S, S,
Yo7 4

v Syl

Figure 7: EG graph for extension result of Fig. 6

So, for any graph G that satisfies the five graph properties given above, we
can generate an EG graph EG(G). Any graph that can be constructed in the
way just described from a graph G that satisfies the 5 properties is called a EG
graph. If in graph G, |S’| = 1, then EG(G) = G, and we call any graph that
satisies this property an EG® graph. We have EG® C EG.

Note that for any EG graph GG, when we take bidirected links as edges, G
is a free tree and a c-component. For observable nodes T',7> € T in graph G,
there is a unique bidirected path from 77 to 75 that includes only nodes in 7.

Also note that for any EG graph with |S;| = n,, if we remove n; — 1 S;
nodes and the bidirected links attached with them, we get an EG® graph. We
will exploit this property in our model construction later.
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o\
T,——T,—= S, *S,
N

Figure 8: EG® graph obtained by removing node S3 in Fig. 7

Unidentifiability of £G Graphs
Model Construction

Assume that, in graph G, |S'| = ny, |S™| = no, |S? = n3, and |T| = ny.
Based on the graph property 1 and the construction of EG graphs, the number
of unobservable nodes (equivalently, bidirected links) in graph EG(G) is m =
n1+n2+n3+n471+n171.

To show that any EG graph is unidentifiable, we create two models M;
and M, and show that they have different causal effects on P;(s) but the same
probabilities on the observable variables.

We define a function cf(v), where v is an instance of vector v = (vy,...,vg),

as
k

cf(v) = Z vi (31)

Our construction for M; and M, is as below:

For the models we create, we assume all the variables are binary, with state
space (0, 1), and for each unobservable node U;, PMi(u; = 0) = 1/2,i € {1,2},
and j € {1,...,m}.

We assign a value 0 < v, < 1 to each observable node X € T'U 5™, and

{ PM(X = zlpa(X)) = v, if cf((pa(X),x)) mod 2 =0 (32)

PMi(X = z|pa(X)) =1—v, ifcf((pa(X),x))mod?2 =1,
where (pa(X), ) is a vector obtained by adding «x at the end of vector pa(X).

ViV, V,

N/

X

Figure 9: A node with three parents

Example 1 In Fig. 9, node X has three parents, and the CPT of X is as follows:
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X V1 ‘/2 Vg PIVI’“(Z‘|U1,’L)2,’U3)
0 0 0 0 |uvy

00 0 1 |1-uw,

0 0 1 0 |1-u,

0 0 1 1 |uv,

0 1 0 0 |1-y,

0 1 0 1 |vy

0 1 1 0 |

01 1 1 |1-u, (33)
1 0 0 0 |[1-y,

1 0 0 1 |,

1 0 1 0 |vy

1 0 1 1 |[1-u

1 1 0 0 |u

1 1 0 1 |1-u,

1 1 1 0 |[1-y,

1 1 1 1 |vy

We also assign a value 0 < v, < 1 to each node X € S Note that X has
just two parents. Assume T, € T is a parent of X, and U,, is the other parent.
We define:

X T, U, ‘ PMe(z|t,, uy)

0 0 0 |

0 0 1 |1-u, (34)
0 1 0 |1/2

0 1 1 |1/2

Note that PM+ (X = 1|t,,u,) = 1 — PMe (X = 0t,, uy).

We assign two values 0 < v} < land 0 < 2 < 1, vl # 1 — 12 with each
node X € S°. Note that X has two unobservable parents. Assume U, is the
parent on the bidirected link between X and a 7" node, and U is the other
parent, which is on the bidirected link between X and an S node. We define:

X U1 UQ ‘ PM’“(I|U1,’U,2)
I

0 0 0 |

0 0 1 |[1-u! (35)
0 1 0 I/%

0 1 1 |1-22

x

Note that PM’“(X = 1|U1,U2) =1- P]\/[k(X = O|U1,U2).

Construction Properties

Here are some properties of this construction.
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First, for eachnode X € T'US™ and for any unobservible node U’ € Pa(X),

> PMH(X = alpa(X)) = 1 (36)
%

Second, for each node X € S and for U, € Pa(X),

> PMUX =ty uy) =1 (37)
U'l:

Third, for each node X € S¢ and for U, € Pa(X),

ZPMi(X = zfur,uz) =1 (38)
Uz

This means that if we marginalize over the U; node, which is the U node on
the S side, we obtain 1.

Recall that n; + ny + n3 + ny is the number of observable variables, and
therefore | U |= 2ny + ng + ng + n4 — 2 in any EG graph.

Lemma 8 Under the construction above, if we can find parameter values for which

PMyT=0,8=0)=>" [[ Plpa(v)) = (1/2)mFr=trstma(39)

U veTuSuU

then for any (s, t), we have PMx (T = t, S = s) = (1/2)mFn2tnstna gpd pMy(N) =
PMz2(N) is always satisfied.

Proof: Since P(u) = 1/2 for all unobservable variables, we just need to show
that whent =0,s =0,

> II Pwlpa(w) =1/2x2m~" (40)
U VeTuS
holds for any (¢, s) pair if it holds for t = 0, s = 0.

(a) For a particular set of values (s,t) = (S1,. .., Sny+tnatngs b1y« stiye v stng),
if T; is a parent of a S node, and ¢; = 1, then equation (40) is satisfied.

Assume the S node which is child of T} is S;,notes when t; = 1,Px(t;|pa(S;)) =
1/2, which is a constant and can be put out. In the remain part, we can always
have a U;, which only appears as one observable node X;’s parent, we can re-
peatly remove P(X;|Pa(X;)) and finally get 1,and n; — 1 extra U nodes we
added when we construct EG graph, so 40 is satisfied.

(b) If for a particular set of values (s,t) = (S1,---, Sny4notngs t1s---»tny),
equation (40) is satisfied, then for the set of values

(817"'7Si7171 - Siasi+17'"7Sn1+n2+’ﬂ37t17"'7t’ﬂ4) (41)

Equation (39) is also satisfied, because

ZU HVeTuS P(v|pa(v))((5, T) = (517 <o Snitnatngs li,... atn4))+
>v verus Pulpa(v))((S,T) = (42)
(517 sy Si—1, 1- SiySidly ey 5n1+n2+n3,t1, s atn4)) = 2711—1
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First for the node S;, we know P(S; = 0[pa(S;) + P(S; = 1|pa(S;) = 1 for
any given pa(S;). so this P(s;|pa(S;) can be removed. Then we can always
select U;, which only appears as one observable node X;’s parent, repeatedly
remove P(X;|Pa(X;)) from (42), and finally obtain 2" ~1,

(0)If for a particular ser of values (s,%) = (S1,..., Sn,4notngst1s--->tny),
equation (39) is satisfied, then for the set of values (s1, ..., Sp,4notngs t1, -, tiz1, 1—
tistit1,- .., tn,) €q. (39) is also satisfied, when T; is not a parent of any S node.

We prove this by showing

ZU HVETUS P(U|pa(v))((87 T) = (51’ <oy Snidnatng, ty,. .. 7tn4)) =

v HveTUS P(v|pa(v)) (43)

((Sv T) = (81, c '7sn1+n2+n3at1a N 7ti717 1-— tivtiJrlv cee 7tn4))

Since 7 is an ancestor of .S, there must be a directed path from 7} to an S node,
and T; must have a child in 7. Assume T is the observable child of T;. From
the construction of £G, we know that we can find an unique bidirected path
from T; to T; and that all the observable nodes on that path are 7" nodes. We
name the unobservable variable set on that path U; ;.

For the instantiation of PM=(s1,. .., Sy tngtngs 1y -« s bngy Wi gy W Ui 5 ), Ui
is an instance of variable set U; j, u\u; ; is an instance of U\U; ;, and based on
our construction we know that it equals PMi(sy,. 00 80, tngtnastls .-y tio1, 1—
Listitty v stng, ug,j, u/u; j), where u;j is given by reversing all the values in
U, 5

This is because: for node Tj;,
PMe(Ty = t;|pa (Ty), u;) = PM(T; = 1 — t4|pa’ (T3), 1 — u;) (44)

where w; is an instance of unobservable node U; € U, ;, and pa/(T;) is an in-
stance of Pa’(T;) = Pa(t;)\{U;}, and for any node X which has two unobserv-
able parents Uy € Ui7j, U, € Ui’j,

PMr(X = z|pa’ (X),ug,u1) = PM*(X = z|pa’ (X),1 — ug, 1 — uq), (45)

where ug,u; are instances of Uy, U;, and pa’(X) is an instance of Pa'(X) =
Pa(X)\{Uo, Ur}.
For node T},

PM(Ty = t;lpa (Ty), ti,uy) = PM(T) = tlpa(Tj), 1 — ti, 1 — ), (46)
where u; is an instance of unobservable node U; € U, ;, pa’(T}) is an instance
of Pa/(T;) = Pa(t:;)\{Ti, U;}

This equation gives us a one-one map between PM (s, ¢, u) and

PM’“(s,tl,.. .,ti_l,l _tiyti+17~-- ,tm,u), (47)

so equation (43) is satisfied. [
Before we determine the values attached with the observable nodes in M,
k =1,2, we give alemma/
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Lemma 9 Let My, be one of the models we create on an EG graph G. Let between
(Tv,T) and (T, T53),T1,T>, T5 € T be bidirected links. Let M, be defined on a graph
equal to G but with bidirected link (11, T3) instead of (Th,T%). If in both M), and
Mj, the variables attached all nodes are the same, and in model My, equation 40 is
satisfied, then equation 40 is also satisified in M}, and we have PM(N) = PMi(N)

and QM+[S) = QMi[S),

Proof: first, note that we just need to consider the situation in which P(N =
0). From cases a, b, and c in the proof of lemma 8, we know we just need to
consider ) P(s = 0,t = 0) in these two different models. We assume that
in the first graph the unobservable node in bidirected link (77, 7%) is Uiz, the
unobservable node in bidirected link (7%,73) is Uss. In the second graph the
unobservable node in bidirected link (77, T3) is Uy, the unobservable node in
bidirected link (75, T3) is Ujs.

For any instantiation v’ of U\{U12, U3}, we have

PM(SZO,TZO,U/,UHZO,U23ZO)ZPM/( _OT 0u U13—0 U23=0
PM(S:O7T:O,UI,U12:O,U23:1):PM/( —OT Ou U13—0 U23=1
PM(S =0,T=0,u,Uis=1,Up3 =0) = PM' (S =0, T =0,0/,Uy3 =1,Us3 = 1
PM(S=0,T=0,u/,Ups =1,Up =1) = PM'(§ = 0

So, >, PM(S=0,T=0)=,PM(S=0,T=0).0

Unidentifiability of EG° Graph

Note that any EG* graph is also a EG graph and we follow the same model
construction we defined above.

Graph Gg,us,, is a subgraph of a EG? graph. (It is the same when we
take it as a subgraph of the graph G, which generates the EG® graph.). It just
includes observable nodes in Sg U S, plus all bidirected links between them.
Note that when we treat bidirected links as edges, Gg,us,, is a free tree.

Fig. 10 shows the G'5,us,, graph of EG? in Fig. 8

m

ST

Figure 10: Gg,us,, for EG® graph Fig. 7

m

Lemma 10 In graph Gs,us,., Yu [l xes,us, PV (X = Opa(X)) can take any
value in (0.5, 1).

Proof: From the graph properties, we know that for any EG® graph G,
Gs,us,, is a free tree when we take the bidirected links as edges. We prove this
lemma by induction.

First, when there is just one node in S; U S,,, Gs,us,, just has that one
node, and there are no unobservable nodes. And as we defined before, that
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observable node is binary. >~ [Txcg,us,, P (X = 0lpa(X)) = P(X = 0) =
vy, which can be any value in (0.5, 1).
The inductive assumption is that when there are k£ nodes in Gg,us,,,

a=> [[ PMX=o0lpa(X)) (49)

U XeSqUSm

can be any value in (0, 1).

Any particular Gg,us,, has k + 1 nodes can be obtained by adding an ob-
servable node S; in another Gg,us,, with k£ nodes. We can assume that the
added S; is a leaf in the free tree and assume the unobservable parent of S; in
G SaUSm, is Ui.

Based on our construction property, in the new graph with S; and U;, and
in the old graph plus Us, 31, _ 9.1y 2ov [ xes,us,, P(X = 0lpa(X)) =1

So, in the new graph, for S4 =0, 5,, =0and S; =0,

>u, v Hxes,us,ugsy P(X =0lpa(X)) =
ZUi:O XU ersdusmu{si} P(X = 0lpa(X))+
(

D oU=1 .U ersdusmu{si} P(X =0|pa(X)) =
vs; X a+ ZUi:I ZU ersdusm P(X =0|pa(X))(1 —a) = (50)
vs, X a+ (ZU,;:O,I ZU ersdusm P(X = 0[pa(X))—

ZUi:O ZU HXeSduSm P(X = 0[pa(X)))(1 —a) =
vg, xa+ (1—wvg,) x(1—a)

For any value b € (0.5,1), we can set a = (14b)/2, and therefore a € (0.5, 1).
Based on math property 1, we can now choose vg, € (0,1) in such a way that
50is b. O

Example 2 Consider the graph G's,us,, shown in Fig. 10. To make

> I PY (X =0lpa(x)) (51)

U XeSaUSm

equal to 0.8, we can select, for example, vs, = 0.9 and vg, = 7/8 = 0.875. To make it
equal to 0.9, we can select, for example, vs, = 0.95 and vg, = 0.9444444. To make it
equal to 0.95, we can select, for example, vs, = 0.975 and vg, = 0.97368421.

Next, we study graph G gaygmysiy- This is the subgraph of an EG?® graph
obtained by adding node S} and the bidirected link between it and a S node to
graph Gga gm. ‘

We know that the S} node has two U parents in the EG*® graph, U, on the
bidirected link to a S node and U; on the bidirected link to a 7" node.

We name G the graph obtained by adding node U; and the directed link
from U1 to Si to GSdUSmU{S{}'

Then we have the lemma below:
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U

Figure 11: G graph gotten from Fig. 8

Lemma 11 For any value 0.5 < a < 1 and 0.5 < b < a, in any G graph G, we
can force

> I P =opax) =a (52)
U XeSduSmu{Si}
and

>y II PY™&X =o0pa(X)) =0 (53)

Ur=0U\{U1} XeSeusSm™u{Si}

Proof:
Assume in the graph G ga_, g, which is a subgraph for the given G graph,
> I Px=o0PaXx)) =c (54)
U X€SqUSm

then in the G graph, just like in quantity (50), we have

2U,=0 ZU\{Ul} HXeSdUSmu{S{} P(X = 0lpa(X)) =
l/é{c—&— (1-vg)(1—c)

i
1

(55)

and

2vi=1 2o\ uny Hxesausmugsyy P(X = 0lpa(X)) =

V§{C+(1*V§.})(176) (56)

We want to find vg, and vZ;, so that quantity (55) is b, quantity (56) is a — b,
1 1
and z/éi #+ z/gi. From lemma 10 we know that ¢ can be any value in (0.5, 1),
1 1

and based on math property 2 we know that the desired result can always be
achieved. [J

Example 3 Consider the G graph in Fig. 11, and b = 0.7,a = 0.8. to satisfy
equations (52) and (53), we can set v§, = 0.722222,v3 = 0.055555556, vg, = 0.975
and vg, = 0.97368421.

Forb=0.6,a = 0.9, we can set v, = 0.642857, v = 0.2142857, vg, = 0.925
and vg, = 0.9117647.

For a G graph, we denote

> II P (X =0lpa(x)) (57)

U XesSdusmu{si}
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as Ny and

> > [T P =0pa(x)) (58)

Ur=0U\{U:} XeS4usSmuU{Si}

as Mj. Our discussion above shows that we can set values on S nodes to make
Ny, My be any values for which 0.5 < My < Ny < 1.

Next, we focus on the EG® graphs, which form a subset of the EG graphs.

Note that in EG® graph G, G and G are both c-components, and these
two c-components are bidirectly connected by one and only one bidirected link,
which goes through Si. The 5 graphical properties are still satisfied in G.

We define on any £G graph G

M@= JI P"(zlpa(X))(s=0,t=0) (59)
U XeN(G)
and
NG => I P"(zlpa(X))(s =0,t=0) (60)
U XeS(G)

Lemma 12 For any EGS graph G, and any 0.5 < n < 1, there is a model with
N(G) = nand in which M (G) is any value in [0.5,n).

Proof: We prove this lemma by induction. First consider there is just one

1
I

Ur~S, -

y
T1 - Solﬁ—tsl

Figure 12: An EG® graph with just one 7' node

T node T} in G(see Fig. 12). Assume the unobservable parent of 17 is U;. For
given 0.5 < n < 1and any 0.5 < m < n, let m' = (m + n)/2. Then from lemma
11, we can force in the G graph obtained from G that Ny = n and My = m/.
Note that N(G) = Ny = n and

M(G) = 3y [ xesur P (X = 0pa(X)) =
ZUlzo ZU\{Ul} HXeSUT PM(X = 0pa(X))+

S vie1 ooy Hxesur PY(X = 0pa(X)) =

V1 X Y=o 2o uny L xes P (X = 0lpa(X))+ 1)
(1= vr) x Xy o1 2oy Hxes PMH(X = 0lpa(X)) =

v, X Mo+ (1= vpy) X (X [Txes PM (X = 0lpa(X))—

ZUlzo ZU\{Ul} [Ixes PMe(X = 0pa(X))) =

v X Mo + (1 — VTl) X (NO — Mo)

Based on math property 2, we know there must be a v, for which M (G) = 1/2.
And for any positive number in [0.5,n), we can always find a value for v, to
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make M (G) equal that number. The proof continues with the inductive step
after an example.

Example 4 For Fig. 12, if we want to set N(G) = 0.8, and M (G) = 0.6, we can
set: vl = 0.722222, 1% = 0.05555556, vs, = 0.975 , vs, — 0.9736841, and
vr, = 0.83333.

Ifwe want N(G) = 0.8, and M (G) = 0.5, we can set: v§, = 0.625,v%, = 0.125,
Vs, = 0.95, v, = 0.9444444, and vy, = 0.75.

If we want N(G) = 0.7, and M(G) = 0.5, we can set: vy, = 0.6111111,vg, =
0.055555556, vg, = 0.975 , vg, = 0.97368421, and vy, = 0.8.

Assume that this lemma is true for each graph EG® with |T| = k. Now
consider an EG® graph G with |T| =k + 1.

From graph property 1, when we take G,, as a free tree, in EG® graph G,
we can find a T'node X, which is a leaf of the free tree.

A), This T'node X has no observable parent. Since it is a leaf of the free tree,
we know there is only one bidirected link into it. Clearly, that bidirected link
connects it with another 7" node.

From lemma 9, we can change the bidirected link until it is between X and
its child. When X is T, Fig. 14 gives an example of this situation. Note when
we remove X and the bidirected link attached with it, we will geta EG® graph
with |T| = k.

B), This 7" node X has only one observable parent, as node 75 in Fig. 8.
Note that X has one observable parent and one unobservable parent. Because
we just consider the case that all observables are 0, so, for X’s only child V,
P(v|Pa(v) NN = 0, pa(v) NU), where Pa(v) N N is the observable parents set
of V and Pa(v) N U is the unobservable parents set of V, is unchanged before
and after we add X and the bidirected link attached with it into the original
which by itself is an EG® graph with |T| = k.

C), This X node has more than one observable parent, as node 75 in Fig. 13.

T, ts, .

! \ 'y
\ T g~
“ . /«/4 2 0 1

0

4

Figure 13: Bidirected link free tree leaf X has more than one parent

Consider the tree of directed links between observable nodes, and reverse
the direction of these links. On this tree, we can find at least two leaves, which
are X's observable ancestors. In our example, they are nodes 7; and 7. Based
on the definition of EG® node, we know at least one of them has no bidirected
link to any S nodes. We take that node as the new X we select, and from lemma
9 we know that if there are more than one bidirected links into this new X, we
can always find an equivalent EG*® graph with just one bidirected link into this
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new X. Fig. 14 shows the equivalent graph of Fig. 13. Note that we are back in

A Vs,
\\'T Ny
/,4 z

T i

o

Figure 14: Graph Equivalent to that of Fig. 13

the situation of case A).

In both case A) and case B), consider the graph G’ obtained by removing
X and the bidirected link attached with it from G. This subgraph G’ is still an
EG?® graph with |T| = k. Based on the inductive assumption, for any given
05 <n < 1lany 0.5 < m < n,and m' = (m + n)/2, we can always have
N(G")=nand M(G') =m/'.

Note that we have N(G) = N(G’). Assuming that the observable parent of
X is Uy, we have

M(G) = 3y M xesur PM*(X = 0[pa(X)) =
S ti—0 2oy Hxesor P (X = 0[pa(X))+
Ui=1 ZU\{Ul} [Ixesur PMe(X = 0lpa(X)) =
Ve X M(G") + (1 = v) Xy [xesur yxy PMH(X = 0pa(X))— (62)
S vi—0 2oy Hxesur xy PM(X = 0pa(X))) =
ve X M(G') + (1 = vg)(N(G') = M(G")) =
Vg xm' + (1 —vg)(n—m').

Note that in the above equation we have

S I PM (X =0pa(X)) = N(@), (63)

U XeSUT\{X}

because if we just insert node U; and the link from it to a 7" node 77 in &,
from equation (36), we have that U; and P(T} = O|pa(T})) can be removed
from the above equation. Since G is a c-component, this kind of removing
can continue until all 7" nodes and U nodes on bidirected links between the T’
nodes are removed, and we finally get N(G").

Based on math property 6, we can always find a solution v, to make M (G) €
[1/2,m/). So M(G) can be m, which is in [0.5,m).

With lemma 8 and lemma 12, we have already proved that any EG® graph
G is unidentifiable. We can generate two models M; and M, following our
construction process, and select different /N values for them, but force in both
models the M value to be 1/2, which means equation 39 holds.
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Example 5 For Fig. 8,if we want to set N(G) = 0.8, and M(G) = 0.6, we can set:
VéQ = 0.72222222, V%Q = 0.055555556, vs, = 0.975 , vg, = 0.97368421, v, = 0.9
and vy, = 0.91666667.

Ifwe want toset N(G) = 0.8, and M (G) = 0.5, we can set: v§, = 0.72222222, v =
0.055555556, vg, = 0.975 , vg, = 0.97368421, vy, = 0.75 and vy, = 0.8333333.

If we want to set N(G) = 0.9, and M (G) = 0.5, we can set: vy, = 0.75,vg, =
0.125, vg, = 0.95, vg, = 0.94444444, vy, = 0.6666667 and vy, = 0.8.

Example 6 For Fig. 13, if we want to set N(G) = 0.8, and M(G) = 0.6, we can
set: vk, = 0.7222222, 02 = 0.05555556, vs, = 0.975 , vs, = 0.97368421,v7, =
0.94444444, vy, = 0.9285714 and vy, = 0.9375.

If we want to set N(G) = 0.8, and M (G) = 0.5, we can set: v, = 0.625,v% =
0.125, vg, = 0.95, vs, = 0.94444444, vz, = 0.91666667, vr, = 0.875 and vy, =
0.9.

If we want to set N(G) = 0.9, and M(G) = 0.5, we can set: vy, = 0.75,vg, =
0.125, vg, = 0.95, vs, = 0.9444444,v7, = 0.8666667, vy, = 0.7142857 and
vy, = 0.818181818.

Example 7 All setting for Fig. 13 can also be used on Fig. 14.

Unidentifiability of £G Graph

In a general EG graph G, assume |S?| > 1, For eachnode X € {S5,...,5) _1},
there is a bidirected link between X and a 7' node and a bidirected link between
X and a S node. Note that when we remove X and the two bidirected links
attached with it, the result is still a EG graph. As we mentioned before, by
repeatingly removing all nodes in {Si,...,S. _,}, we finally obtain an EG*
graph.

In the example of Fig. 15, if we remove node S3 , U; and U, we obtain an
EG? graph.

- Sz -

. R
Tl T2 SO Sl
A SO AN 4

Ues, «- U,

Figure 15: EG graph with two named U nodes

Lemma 13 Inany EG graph G with |S*| = ny, we can find a, b such that 0.5 < b <
a < 1,and make M(G) = b x 2m~1, N(G) = a x 2™~ 1,

Proof: We will prove this lemma by induction.
When |S?| = 1, G is an EG® graph, and the result follows from lemma 12.
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Assume for all EG graphs with |S?| = k this lemma is still true, and con-
sider an EG graph with |S?| = k + 1. Note that if we remove an S° node X
and the bidirected links attached to it from G, we obtain an EG graph G’ with
IS = k.

From the inductive assumption, we know that we canhave 0.5 < b < a < 1,
M(G') =bx2*"!, and N(G') = a x 2k~1. Assume the U node on the bidirected
link connecting X with a 7' node is U; and the U node on the bidirected link
connected X with a S node is U, and remember that the CPT we create for X
is

X U1 U2 ‘ PM’“(Z‘|U1,U2)

0 0 0 |t

0 0 1 [1—u! (64)
0 1 0 1/%

0 1 1 1—v2

x

In the graph G,

M(G) = ZU HXESUT P (X =0Jpa(X)) =

2 o01=0,05=0 207\ {010} L xesur PMi(X = 0lpa(X))+
doti=1,05=0 200\ (U105} L xesur PMi(X = 0lpa(X))+
> th=0.0s=1 2ot {0 L xesur P (X = 0lpa(X))+
ZU1:1,U2:1 EU\{Ul,UQ} HXeSuT P (X =0lpa(X)) = (65)
Vg X D0, 20,0520 2o\ (U102} L xesur (xp P (X = 0lpa(X))+

(1= v3) X X0 21, vm—0 v qu,vsy Hxesur pxy P (X = 0lpa(X))+

Vi X 30,01 2o\ (0n,0s ) L xesur gxy P (X = 0lpa(X)+

(1-v3) x DUy =1,Us=1 ZU\{Ul,Ug} HXESUT\{X} PMe(X = Olpa(X))

We have
> > [T PM(xX=0pa(X))=MG)  (66)

U1=0,U2=0 U\{U,,Us} X€SUT\{X}

and
ZU1:1,U2:0 ZU\{Ul,UQ} HXeSuT {X} P (X =0lpa(X)) =
2 ts=0 2otn (s L xesur (xy P (X = 0lpa(X))— 67)
U1=0,Us=0 220\{Uy, U2} L xesum (x) PMr(X = 0lpa(X)) =
N(G") — M(G"),
where,
> > I PY(X =0lpa(x)) = N(&) (68)

Us=0 U\{Uz} XeSUT\{X}

This is true because when we marginalize away U, based on equation (36),
the CPT of a 7' node which is a child of U; can be removed from the left side of
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the above equation. Because G'r is a c-component, we can repeat this kind of
removing and finally get N(G").
We also have

Dt =0,0a=1 20\ {002} L xesum (xy P (X = 0[pa(X)) =

ZU1:O ZU\{Ul} HXESUT\{X} PMr(X :Aﬂpa(x))— (69)
U1 =0,U2=0 20\ {010} L xesum xy P (X = 0lpa(X)) =
- M(G")
We have

o II PM(x =0lpa(x)) =25 70)

Ur=0 U\{U,} XeSUT\{X}

This is true because when we marginalize away U;, based on equations (36),
(37) and (38), the CPT of the S node which is a child of Us can be removed
from the left side of the above equation first. Since G is a c-component, we can
repeat this kind of removal and finally remove all N(G) nodes. Note that in
@', the number of unobservable nodes minus the number of observable nodes
equals £ — 1 and all the unobservable nodes are binary. So, we finally obtain
equation (70).

We also have

ZUlzl,UQZI EU\{Ul,Ug} HXeSuT {X} P (X =0lpa(X)) =
2vy=1 2oy Hxesurygxy P (X = 0lpa(X))— (71)

Uy =1,U,=0 ZU\{Ul,Ug} HXeSuT\{X} PYe(X = 0pa(X)) =
281 — (N(G") = M(G"))

This is because, by the argument just given,

> > I PY (X =o0lpa(x))=2"". (72)

Ur=1U\{U;} XeSuT\{X}
We finally obtain

M(G) = v, M(G") + vz (N(G') — M(G")+

(1—V)(2" T M(G) + (1 =) = N(@) + M(G)) =

vl x 28=1p 4 12 x 2F=1(g — b)+ (73)
(1—1/)><2’C 1(1 b)+ (1 —v2)x 2k 11 —-a+b) =

2k=1(y b+ v2(a—b)+ (1 - )(1—b) (1-v2)(1—a+10))

Note that here, for any given 0 < o < min(0.5 — a + b, (b — 0.5)/2). Since
b—a>051-b<05<b—a <, based on math property 1, we can find
a0 < vl < 1tomake vlb+ (1 —v)(1 —b) =b— a. Because we also have
a—b<05—a<05<1-—(a—0),still based on math property 1, we can
also find a 2 to make v2(a — b) + (1 — v2)(1 — a + b) = 0.5 — . From math
property 3 we have that v} > 0.5 and v2 > 0.5 here. So, v} # 1 — v2. When we
use these v/} and 2 in the equation above, we have M (G) = 2¥71(b+1/2—20).
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For 0.5 <b—2a < 1,letd = (b+1/2 —2)/2. We have 0.5 < &’ < 1 and
M(G) = 2"V,

N(G) = >y [lxes PMF(X = Opa(X)) =

Dt —0,U2=0 2o\ (v, 0s} L xes PMH(X = 0lpa(X))+
D U1=0,Us=1 2200\ {1, 0a} L xes PMr(X = 0lpa(X))+
D =1,Us=0 20\ {002} L xes P (X = Olpa(X))+
ZUlzl,ngl ZU\{Ul,U2} [Ixes PMe(X = Olpa(X)) =

Vg X D1, 20,.05=0 2ot [0y 0n} L xes(xy P (X = 0lpa(X))+ (74)
(1= v2) X 30,1, vs—0 vt} L xesy (g PHH(X = 0lpa(X))+

Va X D0 —0.0s=1 2ot (0.0} LLxes (xy P (X = Olpa(X))+

(1= v2) Y —1, 01 v or,0s L xesy(xy PMH(X = 0lpa(X)) =

VpN(G') + (1 =) (2" = N(G) + vz N(G') + (1 = v3)(2F = N(G")) =

2N (g +vR)a+ (2 — vy —v7)(2 —a))

Here we have

> =0.0s=1 2o\ (1.0} L xesy (xy PMH(X = Olpa(X)) =

> th=0 2oy xes (xy PM* (X = 0lpa(X))— (75)
DU, =0,U2=0 2o\ {1, 0s} L xesy(xy P (X = 0lpa(X)) =
—oh _N(G)

and

Dt =1, Ua=1 2ot (0,0} L xesy (x P (X = 0fpa(X)) =

>vi=1 2oy Hxes oy PM(X = 0lpa(X) (76)
DU, 21,Us=0 2o0\ (v, Ua} L xesy (xp P (X = 0lpa(X)) =
=2F - N(G)

If we let (v2 +1v2)/2 =z, wehave 0.5 < z < 1, and

N(G)=2(ma+ (1 —2)(2 — a)) (77)

Note that 0.5 < a < 1,0.25 < a/2 < 0.5. If weleta' = za + (1 — 2)(2 — a),
we have

ad=za+(1-2)2-a)>za+(1-2)a=a>05 (78)
and
d=za+(1-2)2-a)=2xxa/2+(1—-x)(1—-a/2)) (79)
From math property 4 we have
zxa/2+(1—z)(1—a/2) <05 (80)
So, finally we have

05<d=2xxa/2+(1—2)(1-a/2))<2x05=1 (81)
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Note that

a —b =
(Wr4+v2)2xa+2—-vl-12)/2x(2—a)-

(pb+ (1 =) (A =b) +vi(a—b)+ (1 —v2)(1 —a+D)/2=
=1/2Wwka+via+(1—-v)2—-a)+(1-12)(2—a)- (82)
(1b+V(a—b) (I—v)(1=b)+1-v))1—-a+b) =

—(1)/2( la—=b)+1v20+ (1 —v) (1 —a+b)+(1—v2)(1-0))

>

Sowehave 0.5 <V <ad < 1.0

Example 8 For Fig. 15, if we set vy, = 0.75,v%, = 0.125, vs, = 0.95, vs, =
0.9444444, vy, = 0.9, vy, = 0.87h.vy, = 0.9 and vg, = 0.55, we have N(G) =
0.955, and M (G) = 0.53.

We now provide a lemma that, when combined with lemma 8, shows that
any EG graph is unidentifiable.

Lemma 14 For any EG graph G, if S = ny we can create two models such that in
both of them M (G) = 1/2 x 2™~ but the N (G) are not equal.

Proof: When in G, |S?| = 1, from lemma 12, this lemma have be proved.

When in G |SY| = k + 1, assume node X € S?, and graph G’ is obtained by
removing X and the bidirected links attached to it from G. G’ is still an EG
graph, and from lemma 13 we know we can have a model satisfying 0.5 < b <
a<1, M(G’) =bx 281, N(G') = a x 2"~1. Here we show we can get two
pairs (v}, v2) such that rnake in both of them M (G) = 1/2 x 2¥ but N(G) is not
equal. From the proof of lemma 13, we know

M(G) = 2 (b + v2a— ) + (L= ) (1= b) + (1= v2) (1 —a +D)) (83)
and

N(G) = 251 (v + v2)a + (2 - v} —12)(2 — a)) (84)

For any given 0 < a < min(0.5—a+b,b— 05) b—a>0.51-b<0.5<0.5+
a < b, based on math property 1, we can find a v to make v b+(1—vl)(1-b) =
0.5+ a. Because we also have a —b < 0.5 —a < 0.5 < 1 — (a — b), still based on
math property 1, we can find a v2 to make v2(a—b)+(1—v2)(1—a+b) = 0.5—q,
then we have M(G) = 1/2 x 2*. From math property 3 we have property
vl >0.5and v2 > 0.5 here. So, v} >#£ 1 — 2.

For different values of « satisifying 0 < a<min(0.5—a+bb—0.5), we
can select more than one pair of (v}, v2) for which M(G) = 1/2 x 2*. Assume
that (¢, d) and (¢, d") are two of those pairs. Wehavec # ¢’ and c+d # ¢ + d'.

First we know for (¢, d) and (¢/,d’), we have

ch+dla—b)+(1—-c)1-b)+(1—-d)(l—a+b)=1 (85)
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and
db+da—b)+(1-)1=b+1-d)1—a+b)=1 (86)

Ifc+d=c +d,letd =c+7,v#0,thend = d—+, and place them into
equation (86):

(c+7)b+(d=7)a—b)+ (1= (c+7)(A—b) + (1 ([d—))(1 —a+b) =1 >
ch+dla—-b)+1—-c)1-b)+(1—-d)(1—a+b)+
Yo—v(a—=0) —y(1-0)+v(1—-a+b) =1
~(4b — 2a) = 0 =
2b = a (Wrong)
(87)
So,wehavec+d #c +d,
Note:

N(G) = 2572 (w2 + v2)a+ (2 — vt —12)(2 - a) =
2 (2 4 12)/2 x af2+ (1 (E +v2)/2)(1 - a/2))

From math property 5, we know with (¢, d) and (¢, d'), we will get different
N(G) values. O

(88)

Example 9 For this example, the EG® graph is obtained by removing node Sa from
the EG graph of Fig. 15. We can set v§, = 0.75,v¢ = 0.125, vs, = 0.95, vs, =
0.9444444, v, = 0.9 and v, = 0.875.

With these values, if we select v, = 0.9,v% = 0.7, we can obtain model 1 with
MY (G) =1/2,and N'(G) = 0.94.

If we select vy, = 0.8,v¢ = 0.65, we can obtain model 2 with M*(G) = 1/2,
and N?(G) = 0.955.

Unidentifiability of G

So far we have proved with our construction that we can create two models
M, and M, to show any EG graph G’ is unidentifiable. We need to show that
any graph G that satisfies the five graph properties is unidentifiable. We start
by showing the following lemma:

Lemma 15 Assume EG graph Gy is obtained by adding bidirected links {e1, ..., ex}
to graph G, which satisfies the 5 graph properties. Graphs {G1, ..., Gy} are defined
as: G;, 1 < i < k, is obtained by removing e; from G;_1, and Gy, = G. Then, each
G, 1 < i < k, is unidentifiable.

Proof: We want to show that for any G;, 1 < ¢ < k, we can find two models
M" and M? on G;, which satisfy:

S II P ehbaxsn =Y T[ P"(lpa(X)(st) (89)

U(G:) NUU(G;) U(G:) NUU(G;)
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but for one (s',t’)

> I P (alpa(x)(s ) # Z [I P (xlpa(x))(s',t") (90)

U(G:) TUU(G:) U(G:) TUU(Gy)

Note that all the G; models have the same S%,5%,5™ and T sets, and the
same G graph.

For Gy, which is an EG graph, we know that we can have two model M*
and M2, such that:

All nodes are binary and, especially, all observable nodes are binary.

For any unobservable node U; € U(Gj) we have

PMl(UjZUj):PIVIQ(UjZUj):Oé (91)

here, & means a constant, which, for Gy, is 1/2.
For any node X € TUS™, for any unobservable node U’ € Pa(X ), we have

ZPMl( = z|pa(X Z PM2(X = g|pa(X)) = (92)
U/
For any node X € Sd forU, € Pa(X), we have
ZPMl (X =zlty,u,) = ZPMQ(X = 2|tz ur = 1) =« (93)
Us U,

For any node X € S?, we have for U € Pa(X), one of Uy’s child is an S
node, and

ZPMI(X = zfur, uz) = ZPMz(X = zfur, u2) = @ (94)

In all the equations above, « is a constant, although it may be different for
different X and marginalized U nodes. In G|, all the as are equal to 1, and we
have that equations (89) and (90) are satisfied.

Assume that on graph G, all the equations from (89) to (94) above are satis-
fied. We will now remove each of the edges added to the G graph to obtain the
EG graph. Assume that the bidirected < 77,75 > is the extra link we remove
from G, to get graph G;+1. Uy is the unobservable node on that link in G;. T}
is connected with S node S; through a bidirected link. 75 is connected with S
node Sj, through another bidirected link.

We know (g is a c-component and a bidirected link free tree. So, there
is a unique bidirected path in Gs from S; to Si. By adding to this path the
bidirected link from 77 to S; and 75 to Sk, we have a unique bidirected path
from T} to 75, and all observable nodes in this path are S nodes. We name
them Sy, ..., S in order, and the unobservable nodes on this path are named
Ui, ...,Uis1, where Uy is on the bidirected link between 77 and 51, Us is on the
bidirected link between S; and 5o, ..., Ury1 is on the bidirected link between
Sy to Th.
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We construct two models M| and M; on graph G;1. The construction is
based on models M; and M, on graph G;.

In model M}, k = 1,2, for all the unobservable variables that are not in
{U1,...,Ugs1}, we define their state space to be the same as the state space in
Mj,. For each X that belongs to this class,

PMi(X =2) =P (X =2),k=1,2. (95)

We rename all the unobservable variables that arein {Us, ..., Uxy1} as {U7, .
in Mj,. We define their state space in M, as the product of their state space in
M, and the state space of Uy in My, which is (0, 1). For each X that belongs to
this class,

PMi(X = (z,u9)) = PM*(X = 2) x PMr(Uy = ug) = PM*(X = 2)/2.  (96)

The state space of all the observable variables is unchanged, i.e., it is the
same as in Mj,. Therefore, all the observable variables are still binary variables.

For each observable variable X not in {T1,T%, 51,..., Sk}, we map an in-
stance pa(X) in model M}, to an instance pa’(X) in model M;, like this: if ¥
is an observable node in Pa(x), or Y is an unobservable node but is not in
{U1,...,U; 1 },and Y = yis in pa(X), then Y = y is also in pa’(X). If Y is an
unobservable node in Pa(X) and Y is in {U],...,U; .}, we denote the value
of Yinpa(X)asY = (u¥,u}), and we have Y = u¥ in pa’(X). We define

PMi(z[pa(X)) = PMe(x|pa’ (X)) (97)
For X = T3, we define
PMi(z|pd (X), Ul = (u1,u0)) = PM*(z|pa’(X), Uy = u1,Up = ug).  (98)

Here, pa/(X) is an instance of Pa(17), except for Uy and U;.
For X = Ty, we define

PMi(z|pd’(X), Upyy = (urs1,uo)) = PM*(2|pd (X), Ups1 = wir1, Uy = up).

99)
Here, pa’(X) is an instance of Pa(1), except for Uy and Uj41.
For observable variable S; in {51, ..., S}, we define
PMi(silpa(Si)) = PMi(silpa’(S), U} = (ui,uf), Ulyy = (wiy1,upth))
_ [ PMi(silpd’(S:), Ui = wi, Uipr = wip1)  ufy = ug
-{ 1 L
(100)

Here, pa/(S;) is an instance of Pa(S;) except for U; and U, 4;.
Note that with this construction equations (91), (92), (93), and (94) still hold,
and for any node S; in 54, . .., Si, we have, for fixed uy,

Y. PMi(sifpa(Si) = a (101)

U!=(Ui,uo)
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> PMi(s;|pa(S;)) = a (102)
U/ 1=Uit1,u0)
From the two equations above and equations (91), (92), (93) and (94), we
have inboth M}, k = 1,2

P(s,t) =

>u Hpun P@lpa(X))(s,t) =

2o 2oy, Hoow Pelpa(X) Ty vy, 3 P@)(s,8) =

v v, ZU& Z{U’ Uit} [Iun Plalpa(X)) H{Ul,Ué,Ué,...,U];H} P(u)(s,t) =

2900y

2ou 2w, 0 208U DU )
[Iyun P(xlpa(X)) H{U1,Uz,Ué,Ug,Ué,.“,U)’CJrl} P(u)(s,t) =
ZU/ ZU1,U2 ZU&,UOQ Z{UévaéH}
ZU/ ZUl,Ug ZU(},Ug Z{Ué,,,_’U,’ﬁJrl}
HU’UN P($|pa(X))H{UI,UQ,U(%,UOZ,U&,M
Lur X010z 20 UZ AUV ) Lo
[Ion Pzlpa(X)) 11 UsUs, UL U2 UL, U P(u)(s, t,ul # ud)+

{ 0 0 3 )c+1}
220 220 U Us 2203,02,08 24U, 0,3 Huow Plalpa(X))

1_ 2 3

H{Ul,U2,U3,Ug,Ug,Ug,Ui,,,,,Ul;H} P(u)(s,t,up = ug # ug)+
2200 220, Vs U5 2203 02,08 22404, 3 Horon Pllpa(X))
H{Ul,U2,U3,Ué,Ug,Ug’Ué,m’U];+l} P(u) (s, t,up = ut =ug) =

U 20U, ZU&,U@ Z{U’

greoUppn

[oon PElpa(X)) I v, v,0802.08

U]’CJrl} P(u)(s,t,ué = u2) =

37..A,U,’Hl} P(u)(sv 2 u(l) 7é u%)+
,,,,, Uk+1 ZU(},...,U(’;+1 [Trun Plalpa(X))
H{Ul,...,Uk+1} P(U)(S,t,Ué == u§+1)7

(103)
where, U’ = U\{U1,...,Ui+1}. Note that, in the last expression of the above
equation, all the terme except the last one are equal to a constant, so they are
equal in M] and M). Based on equation (89), we know the last term is also
equal in both models. So, we have PMi(s,t) = PMz(s,t) for any (s,t). That
is equation (89) still holds in models M| and M;, and in both M}, k = 1,2, for
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Pt(S) =

>ov s Pxlpa(X))(s,t) =
2v 2o,y Hoos PElpa(XO) i oy Plu)(s,) =
DU 2ouy 2aul 2oquy UL} [Trus Plpa(X)) [0, v s

200 ETEEe
ZU’ ZUl,Uz ZU&,U@ Z{U{’w'wU{cH}
[Tous Palpa(X)) H{Ul,UQ,U(},Ug,Ué7,,,,Ué+1} P(u)(s,t) =
2oyt 20, Uy 203, U3 25U )
[T Plzlpa(X)) H{Ul,Ug,Ug,Ug,Ug,...,U,;H} P(u)(s, t,uy # ug)+
2200 22U, Us 22U U2 2oL UYL}
vos P@lpalX) i, v 03,02,00,.00,03 P(u)(s,t,ug = uj) =
ZU’ ZUl,Uz ZU(},Ug Z{Ug,i..,U;CH}
[Ius Pzlpa(X)) H{U1,Ug,Ug,Ug,U:;,...,U,;H} P(u)(s,t,ud # ud)+
S Xm0y L0 03,08 L0y Horus Plalpa(X)
H{U1,U2,U3,U§,Ug,Ug,Ujl.,...,U;cH} P(u)(s, t,up = uf # ug)+
Z C 0,05 203,03 200, Loros Plalpa(X)

k+1
v, vs05,08 w202 04,07, ) P(u)(s, tup = ug = u) =
> ZUl,Uz ZU(},Ug Z{U;},A..,U;CH}

[us Plzlpa(X)) H{U1,UQ,Ug,Ug,U:;,...,U,;H} P(u) (s, t,up # uf)+
~~~~~ Uk41 ZU&,...,Ué°+1 HU’USkP(‘TkDa’(X))
+1
H{U““,Uk“} P(u)(s,t,uy = ... = u0+ )
(104)

Note that in the last expression of the above equation, all the terms except
the last one are equal to a constant, so they are equal in M| and 1. Based on
equation (90), we know that the last term is not equal in M7 and Mj. So, we
have PtMl(s)(S =0T =0) # PtMQ(s)(S = 0,7 = 0), which means equation
(90) still holds for M|,k =1,2.

By repeating this construction, we conclude that all graph models {Gy, G1, . . .

are unidentifiable. (O

Example 10 The Hugin files for the models constructed in this appendix for the G
graph of Fig. 6 (D) can be downloaded from
http://lwww.cse.sc.edu/"mgv/reports/exampleD1TS.net

and http://lwww.cse.sc.edu/"mgv/reports/exampleD2TS.net

Appendix B

Lemma 5 Assume S C N and 7" C N are disjunct node sets in graph G, <
X1, X, >isadirected link in G, X; € S, and X, € S. Assume that graph G’ is
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obtained by removing link < X, X5 > from graph G. If Pr(S) is unidentifiable
in graph G, then Pr(S\{X1}) is unidentifiable in G.

Proof:

By definition, in graph G’, P;(s) is given by:

P(s)= > > Il Pwlpavi) [T Poy) (105

ViE(N\S)\T Ur€U V;EN\T V,eU

In graph G,

Pt(s\{xm— > > 11 Pilpa(vi) [ P(v;)  (106)
E(N\S)\TU{X1} Ux€U V;EN\T V,eU

When Pr(S) is unidentifiable in graph G’, we know there are two models
M; and M, on G’ such that: PMi(n) = PM2(n), which means:

> I P ilpavi)) TT P i) = D TT P (wilpa(vi)) TT P*(v)

UreU VieN V€U UreU VieN V,eU
(107)

but for at least one (s, t) ,PM (s) # PM2(s).

Now based on M; and M,, we create models M and M3 on graph G. First,
we define a probability function F' from S(X;7) to (0,1), where S(X;) is the
state space of X; in model M;, i = 1,2. Forany a € S(X;), P(F(a) = 0) > 0,
P(F(a)=1)>0and P(F(a) =0)+ P(F(a) =1) = 1.

For any node X, which is an unobservable node or a node in N\({X>} U
CH(X5)), we define, fori = 1,2

PMi(z|pa(X)) = P (z|pa(X)) (108)

The state space of X in M/ is defined as S(X2) x {0, 1}, where S(X3) is the
state space of Xy in M;,i = 1,2.
For 25 € S(X2),i=1,2,k=0,1, we define

PMi((9, k) |pa(X2), 1) = PMi(x5|pa(Xs)) x P(F(x1) = k), (109)
where Pa(X5) is the parent set of X5 in graph G’. So, Pa(X2) U {X;} is the

parent set of X in graph G.
Note that, for a given (pa(X2),z1), we have

ZPM (w2, k)|pa(X2), x1) ZPM (z2]pa(Xa)) x ZP(F(wl) =k) =1

T2, k xr2 k
(110)
For any node X € Ch(X5), we define
PMi(zlpa(X), (22, k)) = P (alpa’(X), 22), (111)
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where Pa/(X) = Pa(X)\{X2} is the parent set of X in graph G, except for
node X,. Then for any instance n of N in model M/ and M3, if X; = z; and
Xy = (z9, k) in n, we have

PMi(p) =
Yuvevlvien PMi(vg|pa(V7)) HVjeU PMi(vy) =
UnelU HVieN pih (vilpa(V;)) H\/jeUP 1(”1’)(”) x P(F(x1) = k) (112)
Yuveev Hvien P2 (ilpa(Vi) [Ty, ep P2 (0)(n) x P(F(21) = k)
ZUkeU [Tvien P (vilpa(V;)) HVjeU P (vj) =

PM: (n).

We know that for a given (s, t), P} (s) # P'?(s), and we assume that X; =
T and X2 = T2 in s.

Note that ) PMi(s\{z1}) < 1, because after setting the values of the T'
nodes, the result model is still a Bayesian network.

Assume that P! (s) = a > PM*(s) = b > 0. If we define P(F(zx;) = 0) =
0.5, but P(F(z) = 0) = (a —b)/4 for all z € S(X;),x # x1, we have that for
(S\{$2}7 (562, 0)7 t)

P (s\ {21 })(S\{ X1} = (s\{w1, 22}, (22,0)),T = 1) =

> vie(MaNTULx ) ower Lvievyr P (vilpa(V))

(S\{ X1} = (s\{z1, 22}, (2,0)), T =1) >

DXz e\ 2veu Lvievyr P (vilpa(V7))

(S\{Xl} = (S\{x1>$2}7 (1'27 0))7T = t) =

ZV,G(N\S’)\T ZUkeU H%EV\T P (vilpa(Vi))(§ =8, T =) x P(F(z1) =0) =
= 0.5a,

but

P (s\ {1 })(S\{ X1} = (s\{z1, 22}, (22,0)),T = 1) =

dviemsnruixa ) vwer Lvienr PM: (v5]pa(V;))

(S\{X1} = (s\{z1, 22}, (22,0)), T = t) = )

le=x1 ZVZE(N\S)\T ZukeU Hviev\T PM: (vilpa(V3))

(S\{X1} = (s\{z1, 22}, (22,0)), T = )+

ZX17£m1 ZWG(N\S)\T ZUkeU Hviev\T P> (vilpa(V;))

(S\{X1} = (s\{@1, 22}, (22,0)),T =) <

Yviewnsne 2vev Lvievyr PM2 (vilpa(Vi)) (S = 5,T = t) x P(F(x1) = 0)+
Vie(MSNTU{X} 2oter Lvieve P2 (vilpa(V;))

(S\{X1} =s\{z1}, T =1t) x P(F(X; # 21) =0) <

0.5b+ > x, PM*(s\{21}) x (a —b)/4 <

0.5b+ (a — b)/4 < 0.5a

(114)
From the models M| and M, thus constructed, we know Pr(S\{X;} is
unidentifiable in G.O
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