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A B S T R A C T  

This paper defines statistical consistency, a property that we propose as a 
necessary characteristic of  any calculus for evidence combination. Statistical con- 
sistency holds when the combination of  repeated observations of  a system in a 
given state leads to the indication that the system is in that state of  nature. We 
show that, for a suitable choice of  parameters, Dempster's rule has this desirable 
property, both for simple systems and for systems composed of  a hierarchy of  
subsystems and described by diagnostic or fault trees, but for other parameter 
values the rule leads to the wrong conclusion. A necessary and sufficient condition 
for the existence of  simple bpa's being statistically consistent is that Po + ql > 1, 
where Po and ql are the reliability (or specificity) and sensitivity of  individual 
sensors detecting malfunctions in components and (sub)systems. A sufficient condi- 
tion for statistical consistency is that the reliability and sensitivity of  each sensor be 
greater than 0.5 .  We show that statistical consistency is preserved under diagnostic 
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tree formation. 
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1. I N T R O D U C T I O N  

This paper is concerned with the use of Dempster-Shafer theory for 
representing information and making decisions in a diagnostic setting. 
Dempster-Shafer theory represents pieces of evidence by belief functions and 
combines them according to Dempster's rule. There is still no general agree- 
ment on the interpretation of degrees of belief, which explains why (1) there 
does not exist a standard belief assessment methodology, and (2) the validity of 
Dempster's rule is an object of  controversy (Shafer [1], Walley [2]). 

With respect to this debate, we consider the attribution of beliefs to pieces of 
evidence and their combination by Dempster's rule without reference to any 
underlying interpretation or theoretical justification. As a practical matter, the 
fundamental question is: "Does  it work?" In particular, we define an asymp- 
totic property, which we call statistical consistency, and propose it as a 
modest necessary condition for the proper performance of Dempster's rule. 
Even though statistical consistency is a natural but rather weak requirement, it 
is not automatically achieved by Dempster-Shafer theory. 

In the simplest case, we show that repeated independent readings of a sensor 
(or readings on multiple independent sensors) that has unknown reliability 
(specificity) Po and unknown sensitivity ql will finally identify the true state 
of a system if and only if the degrees of belief s o and s 1 associated with the 
readings "correct functioning" and "malfunctioning," respectively, satisfy 

( 1  - -  So) pO/(1-pO) < 1 - -  S 1 < (1 - So) (I-ql)/ql 

The result provides constraints on the values of the beliefs to be attributed to 
the pieces of  evidence in that case. It may be that s o and s I are chosen in such 
a way that these constraints are not satisfied, because Po and ql may be 
unknown, thus leading to statistically inconsistent calculations. Indeed, if 
Po + ql < 1, then there is no choice of probability masses So, s I that leads to 
statistically consistent results. If  the values of Po and q~ are not known 
exactly, but bounds for these quantities are known, the existence of belief 
values s o and s 1 giving statistically consistent results depends only on the 
bounds. In particular, if both the reliability and the sensitivity of the sensors 
are greater than 0.5, then the choice s o = s 1 will always work provided 
0 < s o = s I < 1. Normally, one may configure the sensors so that both Po 
and ql are greater than 0.5. However, unforeseen circumstances may cause 
one or both of these numbers to decline in such a way that Po + ql is less than 
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1, unbeknownst to the operator. 
Furthermore, we show that local statistical consistency in a fault tree or 

diagnostic tree implies global statistical consistency. 
We assume that the reader is familiar with the basics of the Dempster-Shafer 

theory of evidence (e.g., Shafer [3], Shenoy and Shafer [4], Smets [5]). 

2. STATISTICAL CONSISTENCY 

Dempster's rule is particularly useful in combining uncertain evidence or 
evidence that is contradictory. Consider the simple tree of diagnoses in Figure 
1, which refers to the valve system of the auxiliary feedwater pump in Figure 
2, found in a pressurized water nuclear reactor (Martin [6]) such as the one 
used at Three Mile Island. The auxiliary feedwater pump system serves two 
purposes. It removes heat from the pressurized water in the primary coolant 
loop, and, as it boils, it turns a turbine to produce electricity. The auxiliary 
system is kept at the desired equilibrium state by a set of valves and pumps. In 
the simplest version, two valves (entrance valve E and throttle valve T, 
composing the valve system V) and a pump must be properly coordinated for 
the system to work. The state of the root node in a tree of diagnoses would be 
determined by the possible states of each leaf hypothesis. For trees of 
diagnoses, a subset malfunctioning implies that a superset is malfunctioning, 
that is, the system is working in series. Note that although hypotheses 
concerning states of a system are usually represented as mutually exclusive 
possibilities, it seems more practical here to identify the status of separate 
systems as hypotheses without assuming mutual exclusiveness. It is always 
possible, of course, to create a set of mutually exclusive (logical) combinations 
to represent the same information. We will do that implicitly in the application 
of Dempster's rule. No additional independence assumptions are made with 
regard to the status of the various subsystems so that an arbitrary configuration 
of system states can be represented. 

Now consider the evidence e t collected over time. It is assumed that the 
pieces of evidence collected at different time periods (or from a collection of 
independent sensors) are independent vectors of sensor readings. (Note that we 

I Valve I System ( V ) 

J 
Throttle I I Entrance Valve (T) Valve (E) 

Figure 1. A tree of diagnoses. 
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throttle valve alve 

Figure 2. The auxiliary feedwater pump system. 

assume only sensor reading independence, rather than subsystem indepen- 
dence.) The three sensor readings, e I = { e t l ,  e t 2 ,  e t3}  , are  taken with respect 
to the various subsystems. A knowledge engineer may define e t as 

{~ if sensor reading for the valve system indicates correct function 

e t l  = if the sensor reading for the valve system indicates malfunction 

0 if the sensor reading for the throttle valve is open 

et2 = 1 if the sensor reading for the throttle valve is closed 

0 if the sensor reading for the entrance valve is open 
el3 = 1 if the sensor reading for the entrance valve is closed 

The readings e t do not necessarily follow the same hierarchical patterns as 
the possible states of the (system represented by the) tree of diagnoses. There, 
if either one or both subsystems are failing, then the entire system is failing. 
Altogether, there are four readings, (0,0,0), (1, 0, 1), (1, 1, 0), and (1, 1, 1), 
that constitute noncontradictory evidence corresponding to the four states of 
the tree. There are also four contradictory pieces of evidence: (0, 0, 1), (0, 1, 
0), (1, O, 0), and (0, 1, 1). 

In a real system, the reliability and sensitivity of a sensor may degrade to an 
unacceptable level (Po + qx < 1) without warning, increasing the difficulty of 
reaching a correct diagnosis even further. As an important counterbalance to 
the likely presence of contradictory information in small samples of sensor 
readings, repeated observations should "average out" to give correct conclu- 
sions in the long run. This is the essence of our definition of statistical 
consistency. It is to be viewed as a "structural" criterion for the setup of the 
evidence-combining scheme, not an assertion that diagnostic trees must neces- 
sarily have unlimited access to repeated independent sensor readings. 

Suppose that there are n independent pieces of evidence collected corre- 
sponding to the basic probability assignments (bpa's) m 1, m 2 . . . . .  m, .  Then 
define 

m n = m x (9 m 2 (9 "'" (9 m n 

M ,  is the bpa representing the total information computed using Dempster's 
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rule of combination. Let h i represent the ith hypothesis in the frame of 
discernment O, which gives the various states of the system. Define #~ to be 
the degenerate bpa assigning all mass to h i. The total information combined 
according to Dempster 's rule of combination, M , ,  is defined to be statistically 
consistent  if, for every i, 

lim M ,  ~ / z  i, almost surely, when h i is the true state of nature 
n- - -~  o o  

In this formulation O functions as a parameter space, and the randomness of 
M n is due to the imperfect nature of the sensor system. Here the reliability is 
the probability that the sensor indicates that the system is working correctly 
given that it is. The sensitivity is the probability that the sensor indicates that 
the system is malfunctioning given that is the case. First, define the space 
O = {h o, hi}, where h o is the hypothesis that a component is functioning 
properly, and h~ is the hypothesis that a component is malfunctioning. For the 
sake of motivation, it is useful to compare the following coin-tossing problem 
with the reliability and sensitivity of a sensor reading within an automatic 
monitoring system. Imagine that there are two biased coins. Let h o be the 
hypothesis that the first coin is biased heads, with P ( H l h o ) =  Po and 
P ( T l h o )  = qo. Let h~ be the hypothesis that the second coin is biased tails, 
with P ( H  I hi) = Pi and P ( T  I h l) = ql.  Therefore the reliability of a sensor 
reading P(0  1 ho) is equivalent to P ( H I  ho), the probability of observing the 
head for the biased heads coin. The sensitivity P ( l l h  0 is equivalent to 
P ( T  I h O, which is the probability of observing a tails for a biased tails coin. 
(See Shafer [1] and Walley [2] for a broader discussion of how to represent 
statistical information using the Dempster-Shafer theory of evidence.) 

Now consider statistical consistency for Dempster 's rule of combination. If  a 
coin is either biased heads or biased tails, how is Dempster-Shafer theory 
going to determine its bias? In standard statistical practice, the procedure is to 
toss the coin n times, observe the number of heads, then perform an 
appropriate test of hypotheses. To apply Dempster-Shafer theory to determine 
which coin is being tossed, let 

n = total number of coin tosses 

n o = number of coin tosses resulting in a head 

nl = number of coin tosses resulting in a tail 

If  the j th toss of the coin results in a head, then assign the bpa mj(ho)  = s o, 
where 0 < s o < 1, and assign the remainder of the mass to O, that is, 
mj(O)  = 1 - s o. The assignment of the mass 1 - s o to O represents the 
measure of uncertainty of other possible alternatives. If  the j th toss is tails, 
then assign the bpa m j ( h i )  = s 1, and assign the remaining mass to O, that is, 
mj(O)  = 1 - s I. Stated in other terms, for each piece of evidence, a simple 
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support function will be defined that has as its focal element the hypothesis the 
evidence supports. 

The strong law of  large numbers (SLLN) implies that, with probability 1 for 
a large number of  independent coin tosses, the eventual number of  heads 
appearing face side up will be approximately equal to the probability of  getting 
a head multiplied by the number of  coin tosses (Feller [7]). Similarly, the 
eventual number of  tails will be approximately equal to the number of  coin 
tosses multiplied by the probability of  getting a tail. We will analyze the 
limiting distribution of  the bpa when there are two states of  nature h o and h~ 
to determine the values s o and sl for which M n is statistically consistent. We 
will find the region of  consistency for three cases: first, the case in which h o is 
true; second, the one in which h~ is true; finally, the case in which it is 
unknown which state of  nature is true. 

We compute the combined bpa 's  using Barnett 's  algorithm [8], which is 
based on the permutational invariance of  Dempster ' s  rule. The first step of  the 
algorithm is to calculate the combined evidence for each focal element. M ° 
and M ~, the bpa 's  based on the combined evidence for h o and h 1, respec- 
tively, can be calculated as 

M ° ( h o )  = 1 - (1 - S o )  n° , M ° ( O )  = (1 - S o )  n° 

M ' ( h , )  = 1 - ( l  - s , )  n' ,  M ' ( O )  = (1 - s , )  n' 

The next step is to calculate the total bpa M n = M ° * M 1. The orthogonal 
sum is 

M n ( h o )  = 
[1  - (1  - s o ) n ° ]  (1  - S,) n' 

(1 - -  S 0 )  nO "Jr" ( 1  - -  S l )  n '  - (1  - S o ) n ° ( 1  - S,)  n' 

M n ( h , )  -- 
(1  - S o ) n ° [ 1  - (1  - s l )  n']  

(1 - So) n° + (1 - s , )  n ' -  (1 - So)n°(1 - s , )  n' 

M n ( O )  = 
(1 - S0)nO(1 -- S , )  nl 

(1 - S o ) n ° +  (1 - S l )  nl  - ( 1  - S o ) n ° ( 1  - S l )  n l  

These bpa 's  provide statistically consistent results as long as 

lim M n ( h o )  = 1, lim m n ( h l )  = O ,  lim M n ( O  ) = 0 
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almost surely, when h o is the true state of  nature. The region of  consistency 
for M~, given h 0 is the true state of  nature, is 

( 1  - -  So) p° 
< 1  

(1 - S l )  qO 

For ease of  visualization, the region of  consistency is displayed as a function of  
t o = 1 - s o and t I = 1 - s~ in Figure 3. In the second case h~ is the true 
state of  nature. The analysis is very similar, except now for Mn to be 
statistically consistent when h I is the true hypothesis, the limit for M ,  should 
be (almost surely) 

lim M,,(ho) = 0, lim Mn(hl) = 1 ,  lim M n ( O  ) = 0 

The region of  consistency for M n (cf. Figure 4), given h I is the true state of  
nature, is 

( 1  - -  So) p~ 
> 1  

( l  - -  S I )  q l  

I f  it is unknown which is the true state of  nature for the two-hypothesis case, 
Dempster 's  rule will be statistically consistent as long as the mass assigned to 
O for each simple support function lies in the intersection of  the regions of  
both previous cases. This region of  mutual consistency, described in Figure 5, 
is characterized by 

(1 - So) p°/O-'°) < 1 - s i < (1 - SO) (1-ql>/ql 

This region is clearly nonempty if and only if Po > 1 - qi. 
The preceding discussion is summarized in the following theorem. 

t l  

S 
~tO 

0 

F i g u r e  3. Region of consistency when h o is the true state of nature (t o = 1 - s 0, 
t I = 1 - s  0. 
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11 

gb 
tO 

0 

Figure 4. Region of consistency when h I is the true state of nature (t  o = 1 - s o, 
t I = 1 - s l ) .  

THEOREM 1 Consider a simple two-state system with independent sen- 
sor readings indicating whether the system is funct ioning correctly or 
malfunctioning. There exist probability masses s o, s I under which 
Demps ter ' s  rule is statistically consistent i f  and only i f  

po + ql > 1 

where Po and q~ are the sensor reliability and sensitivity, respectively. 

It is quite possible that the rel iabil i ty and sensit ivity are not  known  precisely.  
The fol lowing is a convenien t  sufficient condi t ion  that applies when  the 

reliabil i ty and sensit ivity are bounded  from below. 

COROLLARY 1 I f  the reliability Po and the sensitivity ql are both 
greater than 0.5,  then Demps ter ' s  rule is statistically consistent f o r  any 
bpa with O < s o = s~ < 1. 

I f  all we know is that Po > a  and q~ > b for known  constants  O < a ,  
b < 1, then it is still possible  to use Corol lary  1 a long with grouped sensor  
observat ions.  That  is, i f  Po > a and q~ > b are both guaranteed,  then a series 
a r rangement  of  k sensors will  have rel iabil i ty and sensit ivity greater than 0.5 

t l  

o t o  

F i g u r e  5. Region of consistency when the true state of nature is unknown (t o = 1 - s o, 
t I = 1 - s 0. 
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as long as 

k > max[ log(1/2)  log( l /2)  

[ log(l ~ a ) '  log(l  - b) 

If, on the other hand, both Po and ql are known to be less than 0.5, then it 
is still possible to use Corollary 1 by interchanging the interpretation of the 
sensor readings. (When the sensor says " O K , "  it means "not  OK,"  and vice 
versa.) 

3. STATISTICAL CONSISTENCY IN DIAGNOSTIC TREES 

Dempster's rule of combination can determine, in the limit, the status of a 
single system given that the evidence is collected as a simple support function 
and bpa's are assigned within the region of mutual consistency. However, can 
the Dempster-Shafer theory produce statistically consistent results for a sys- 
tem organized in a diagnostic tree structure? In this section, we show that the 
answer is yes, if the bpa's for each of the subsystems are assigned within the 
corresponding region of mutual consistency. 

Assume that each node in the tree has its own independent sensor reading to 
collect evidence in the form of simple support functions for the hypothesis that 
it confirms. In practice, we would like to combine the information derived 
from multiple sensor readings on each node* of the diagnostic tree to obtain a 
complete assessment of the state of the system or a part of it. Is Dempster's 
rule statistically consistent when the information from all the sensors is 
combined? 

Consider the valve system example described in Figures 1 and 2. If we 
identify each node with the corresponding (sub)system, the flame of possible 
states for the valve system in the auxiliary feedwater pump is O = 
{ ET,  E T  c, ECT, ECTC}, represented by the tree of Venn diagrams in Figure 
6. Let too, mt,  m e be the bpa's computed by combining the evidence from n 
independent observations at each of the three nodes in isolation. (The depen- 
dence on n, the number of sensor readings, will not be indicated from here 
on.) Let us assume that all sensors are sufficiently sensitive and reliable to 
satisfy the conditions of Theorem 1. Then the analysis of the previous section 
applies for each node and 

lim mj = ~ i j ,  almost surely, for every i ,  
n---cOo 

* We use "node" for the component or subsystem that it indicates. 
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where Izij is the degenerate bpa assigning all mass to hi j, and h,7 indicates 
that node j is in state i for j in { v, t, e}. Consider now M o = m o • m e • m t, 
where the combination takes place on { V, V c, O}. Also, consider M e = 
m o ~ m e • m t ,  where the combination takes place on {E, E c, O}, and 
M t = m v • m e • mr,  where the combination takes place on { T, T c, O}. 
(Combinations on coarser or more refined frames require minimal extension or 
projection operations, as described, for example, by Shafer et al. [9].) The 
total information combined on the diagnostic tree of Figure 6 is statistically 
consistent if 

lim Mj = #i j ,  almost surely, for every i, 
H--+ Oo 

where hij  is the true state of nature, for j in { o, t, e}. 
Before stating and proving our result, we give three definitions. 

Global  bpa (gb): The bpa on the state of a subsystem or on the whole 
system computed by combining all available evidence in the tree using 
Dempster's rule 

Loca l  bpa (/b): The bpa on the state of a subsystem derived from evidence 
(e.g., sensor readings) pertaining to the subsystem only 

Subtree global bpa (sgb): The bpa on the state of a subsystem derived from 
evidence (e.g., sensor readings) pertaining to the subsystem and to its 
components only 

THEOREM 2 Le t  a binary diagnostic tree be given. I f  the local bpa 

collected at each node is statistically consistent ,  then each global  boa is 

statistically consistent.  

Proof First we shall show that the global bpa at the root node n is 
statistically consistent for the evidence collected at the root node and the 
projected coarsenings of the evidence collected at each of its first-generation 
nodes. Second, we shall show how to compute statistically consistent sgb's for 

V 

V e 

Figure 6. Diagnostic tree for the valve system. 
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all nodes in the fault tree. Third, we give an algorithm to compute the gb at 
each node of the tree and show that each gb is statistically consistent. 

CLAIM 1 The global bpa at the root node n of  the diagnostic tree is 
statistically consistent. 

PROOF OF CLAIM 1 This proof is by induction in the height of the tree. 
Basis. The base case is a tree of three nodes (height 1), as shown in Figure 

6. We can show that the base case holds by computing Mo,  M e, and M t and 
showing that their limit behaves as required by the definition of statistical 
consistency when the bpa's and performance parameters for every node in the 
tree satisfy the conditions of Theorem 1. This is a straightforward computa- 
tion. 

Induc t i ve  step.  Take any tree of  height d + 1, d > 1. Let n be the root of 
the tree. There are two subcases. In the first case, n has two children. (See 
Figure 7.) Call the children p and q. Since d > 1, p and q are roots of 
nontrivial subtrees. Call the subtrees S1 and $2. Detach S1 and $2 from the 
tree; the induction hypothesis is that the gb 's  at p and q for subtrees S1 and 
$2 in isolation are statistically consistent. By definition of sgb, the sgb's at p 
and q are statistically consistent. By the hypothesis of the theorem, the lb at n 
is statistically consistent. The gb at n is therefore the combination of three 
locally consistent belief functions in a tree of height 1. By computations totally 
analogous to those of the base case, gb(n) is statistically consistent. 

In the second case n has only one child. (See Figure 8.) Call the child p.  
Since d > 1, p is the root of  a nontrivial subtree. Call the subtree S1. Detach 
S1 from the tree; the induction hypothesis is that the gb at p for subtree S1 in 
isolation is statistically consistent. By the hypothesis of the theorem, the lb at n 
is statistically consistent. The gb at rn is therefore the combination of two 
locally consistent belief functions in a tree of height 1. The reader can easily 
verify that such a combination is statistically consistent. (End of proof of claim 
1.) 

The inductive proof of claim 1 can be used as the specification of an 
algorithm to compute the global bpa at the root of the tree and the sgb's at all 

Figure 7. A tree of height d + 1 with two subtrees. 
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Figure 8. A tree of height d + 1 with one subtree. 

internal nodes of the tree. Now we show how to compute the global bpa at all 
nodes in the tree while preserving statistical consistency. 

Basis. We have already computed gb of the root node n, and it is 
statistically consistent. 

Inductive step for the theorem. Consider the situation described in Figure 
7. We have gb(n), sgb(p), and sgb(q). All of these bpa's are statistically 
consistent. Now we can compute gb(p)  by combining gb(n) and sgb(p) using 
Dempster's rule. A simple computation shows that gb(p)  is statistically 
consistent. Similarly, gb(q) is statistically consistent. 

We remark that we can substitute the fault tree (Barlow et al. [10], Dempster 
and Kong [11]) of Figure 9 for the diagnostic tree of Figure 6 with no gain or 
loss of information. Similarly, the fault tree of Figure 11 corresponds to the 
diagnostic tree of Figure 10. (A convention concerning the relative size of 
complemented versus noncomplemented partitions indicates whether a node is 
an AND or an OR node.) As an illustration, the fault tree of Figure 11 could be 
interpreted as representing a power supply system (A)  for the throttle valve. 
Assume that there are a primary (P )  and a secondary (Q) power supply. When 
the primary supply fails, the secondary automatically takes over, so that the 
power supply system is faulty if and only if both the primary and secondary 
systems are faulty. The reader can show that Dempster's rule is statistically 

Figure 9. Fault tree equivalent to the diagnostic tree of Figure 6. 
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J 
P 

pc a o~ 

Figure 10. Diagnostic tree for the power system. 

consistent on the tree of Figure 10 under the same conditions as for the tree of 
Figure 6. More generally, Theorem 2 holds for fault trees with AND and OR 
nodes and where nodes may have more than two children; that is, each 
(sub)system is composed of several components in series (OR) or parallel 
(AND). The proof of this general result is similar to that of Theorem 2. 

4. C O N C L U S I O N  

We derive necessary and sufficient conditions for the statistical consistency 
of Dempster 's rule on diagnostic trees (and fault trees). The conditions are 
described by a region of consistency for the degrees of belief associated with 
the readings "correct  functioning" or "malfunctioning." This region is 
determined by the reliability and sensitivity of sensors and does not depend on 
the particular series/parallel arrangement of components. In particular, the 
result shows that if both the reliability and sensitivity of a sensor are greater 
than 0.5, then Dempster 's rule will be statistically consistent for any assign- 
ment of masses 0 < s o = s~ < 1. On the other hand, if Po + q] < 1, then the 
region of mutual consistency is empty and Dempster 's rule may well lead us to 
the wrong conclusion. 

LAL 

Figure 11. Fault tree equivalent to the diagnostic tree of Figure 10. 
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One practical implication of these results is that the sensitivity and reliability 
of a sensor do not need to be extremely close to 1 to determine the true state of 
a system. Dempster's rule of combination will provide a total bpa that can 
accurately determine the status of a system as long as sufficiently many 
independent observations can be obtained. Even if the reliability and/or 
sensitivity is less than 0.5, combinations of sensor readings could replace a 
single reading to provide values in excess of 0.5. The important thing is that 
(lower) bounds mus: be known for these quantities. 

The sampling scheme used here is the most direct for our analysis. How- 
ever, a variety of alternative sampling plans exist that will maintain the same 
balance of sensor readings as above, that is, those that obey the law of large 
numbers. For example, instead of a complete sample of all nodes each time, 
sensor data may arrive sequentially and at random, or sampling may occur 
according to a finite ergodic Markov chain over states consisting of nodes of 
the tree together with sensor readings at those nodes. Since statistical consis- 
tency is preserved on the fault tree structure, it is sufficient that the local bpa's 
be consistent. Thus any sampling scheme that samples each node infinitely 
often can be expected to provide consistency. 
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