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Abstract. Autonomous agents that communicate using probabilistic information and use Bayesian networks for
knowledge representation need an update mechanism that goes beyond conditioning on the basis of evidence. In
a related paper (M. Valtorta, Y.G. Kim, and J. Vomlel, International Journal of Approximate Reasoning, vol. 29,
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1. Introduction and Motivation

The problem of updating a probability distribution rep-
resented by a Bayesian net upon the presentation of
soft evidence is called the problem of soft eviden-
tial update. In this paper, we describe BC-Hugin,1 a
program that implements soft evidential update (for
Bayesian networks). A companion article by the au-
thors [1] contains theoretical and methodological pre-
liminaries and should be read in conjunction with this
paper.2

The motivation for this work is our desire to let
agents that use probabilistic models (and especially
Bayesian nets) communicate with each other by ex-
changing beliefs.

While this is not the focus of this paper, we need
to describe briefly our agent model, which is called
the Agent-Encapsulated Bayesian Network (AEBN)
model, originally due to Bloemeke [2]. Each agent in

an AEBN model uses as its model of the world a single
Bayesian network (which we also call an AEBN). The
agents communicate via message passing. Each mes-
sage is a distribution on variables shared between the
individual networks.

The variables of each AEBN are divided into three
groups: those about which other agents have better
knowledge (input set), those that are only used within
the agent (local set), and those of which the agent has
the best knowledge, and which other agents may want
(output set). The variables in the input set and the out-
put set are shared, while those in the local set are not.
An agent consumes (or subscribes to) zero or more
variables in the input set and produces (or publishes)
zero or more variables in the output set.

The mechanism for integrating the view of the other
agents on a shared variable is to replace the agent’s
current belief in that variable with that of the commu-
nicating agent. When an agent receives a message from
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a publisher, it modifies the probabilities in its internal
model, so that its local distribution either becomes con-
sistent with the other agent’s view or is inconsistent
with it.

Therefore, except for a zero-probability situation,3

after updating using all evidence, we still require that
all appropriate marginals of the updated distribution
be equal to the evidence entered. The deservedly cel-
ebrated junction tree algorithm for probability update
[3–6] was not designed to satisfy this requirement, and
in fact it does not, as we will show in Section 3.1.

When a publisher makes a new observation, it sends
a message to its subscribers. In turn, the subscribers
adjust their internal view of the world and send their
published values to their subscribers. Assuming that
the graph of agent communication (which we simply
call agent graph as in [2]) is a DAG, equilibrium is
reached, and a kind of global consistency is assured,
because the belief in each shared variable is the same
in every agent.

The restriction that one of the agents has oracular
knowledge of a variable may seem excessive. How-
ever, it is permissible to have multiple views of a com-
mon variable. For example, in a multiagent system for
interpretation, two agents may issue a report that corre-
sponds to the same (unknown) physical quantity. Noth-
ing prevents another agent from integrating the reports
of these agents and effectively obtain a new (and possi-
bly more accurate) view of the same underlying quan-
tity. As another example, it is possible for a subscriber
agent to model known reporting errors or biases of the
publisher, as we will show in Section 2.2.

In the special case in which the agent graph is a tree,
there is at most only one directed path from one agent
to another. In the general case, the agent graph is not a
tree, and there may be multiple directed paths from one
agent to another. Such multiple paths lead to possible
double counting of information, which is often known
as the rumor problem. We do not address this impor-
tant problem in this paper, but cf. [2]. It is also possible
to consider directed cycles (and in particular, the tight
cycles resulting from bi-directional communication in
agent graphs), by appropriately sequencing messages
between agents. We do not address this extension fur-
ther in this paper, but the reader must be made aware
of the very interesting and important work by Xiang
on Multiply Sectioned Bayesian networks for related
results [7, 8].

The rest of paper is organized as follows. In Sec-
tion 2, we explain the notion of soft evidence with

an example that also illustrates the AEBN model (in
Section 2.2). Section 3.1 is devoted to a discussion of
why the junction tree method does not support soft ev-
idential update. We than present a modification of the
junction tree algorithm, the big clique algorithm, that
supports soft evidential update. In Section 4, we de-
scribe the big clique algorithm and its implementation.
In Section 5, we test the implementation on a suite of
problems, verify that it works correctly, and discuss
the results obtained. Section 6 contains a summary and
evaluation of our work and suggestions for future work.

2. Soft Evidence

2.1. Evidence

Evidence is a collection of findings on variables. A find-
ing may be hard or soft. A hard finding specifies the
value of a variable. A soft finding specifies the prob-
ability distribution of a variable. Hard evidence is a
collection of hard findings. Soft evidence is a collec-
tion of soft findings.

The correct processing of soft evidential update re-
quires the introduction of special observation vari-
ables. The definition of soft evidence could be general-
ized in three ways. Firstly, we may extend the definition
of finding to allow conditional distributions. Secondly,
we may allow joint (and possibly, conditional) distri-
butions on a collection of variables. Thirdly, we may
allow distributions on arbitrary events (equivalently, ar-
bitrary logic formulae). These three extensions can also
be handled by the introduction of observation variables
as shown in [1].

2.2. An Example

We extend the cow pregnancy network of [5] to a three-
agent system. One of the agents represents a farmer
who needs to evaluate the probability that one of his
or her cows is pregnant. The other agents represent a
Urine Test (UT) expert and a Scanning Test (ST) expert,
respectively.

The farmer subscribes to variable UT, which is pub-
lished by the UT expert, and to variable ST, which is
published by the ST expert, as indicated in Fig. 1. While
we require that the distribution of a variable remain the
same across agents, nothing prevents the farmer from
having a model of the experts and therefore somehow
discounting their advice, as indicated in Fig. 2, where a
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Figure 1. The agent graph of a three-agent system.

Figure 2. Agent graph of Fig. 1 with simple models of the experts.

simple model of the reliability and sensitivity of the two
experts is encoded in the link between the primed vari-
ables (UT ′ and ST ′), which represent the farmer’s view
of the results of the Urine and Scanning tests, respec-
tively, and the unprimed variables (UT and ST), which
are the test results as communicated by the experts.
The farmer possesses a more complicated model of
the two experts in the situation described in Fig. 3,
where it is assumed that the farmer knows that the
expert’s advice is affected by some environmental
factor E .

3. Soft Evidence Problem

3.1. Why Do the Classical Propagation
Methods Fail?

We show, by a simple example, that the junction tree
algorithm does not treat soft evidence properly.

The skeleton of the argument is as follows. In the
junction tree algorithm, messages are passed across
separators from clique to clique. Exactly two messages
are passed between two cliques (say, Ci and C j ), one
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Figure 3. Agent graph of Fig. 1 with complex models of the experts.

Figure 4. The soft finding P(Vi ) is not treated as evidence.

in each direction, as shown in Fig. 4. The first mes-
sage is passed during the DistributeEvidence phase of
the method (say, from Ci to C j ), the second during the
CollectEvidence phase (say, from C j to Ci ). Suppose
that clique Ci contains a node (say, Vi ) for which we
have a soft finding (say, P(Vi )), When Ci sends its mes-
sage to C j , P(C j ) in modified (by calibration). After
the probability of C j has been fully updated (say, to
Q(C j )), C j sends its message to Ci , and the proba-
bility of Ci is modified by calibration. In general, let-
ting Q(Ci ) be the modified probability, we have that∑

Ci \{Vi } Q(Ci ) �= P(Vi ), which implies that the soft
finding P(Vi ) is not treated as evidence.

We now present the promised example that estab-
lishes our claim that the junction tree algorithm does
not handle soft evidence properly. Consider the wet
grass example, shown in Fig. 5 [5, p. 23], and suppose
that our hard evidence is that Holmes’ lawn is certainly
dry (i.e, H = n), while we have soft evidence that
Watson’s lawn, in the form P(W ) = (0.7, 0.3). If this
soft evidence is absorbed in clique WR and the hard
evidence is absorbed in clique HRS, propagation will

Figure 5. The wet grass Bayesian network structure.

consist of two messages through the separator R, as
shown in Fig. 6. After the messages are passed, P is up-
dated to Q, and Q(W ) = (.4439, .5561) �= (.7, .3) =
P(W ).

We have shown that even if soft findings are absorbed
correctly into cliques, the propagation method itself
would not respect the evidence characteristics of the
findings.

The reason is that it is not possible to enter new ev-
idence that contradicts the evidence already entered,
and therefore zero entries are treated in a special way
by the junction tree algorithm: zeroes in probabil-
ity tables remain zeroes after each message (cf. [5,
Lemma 4.1).

Jeffrey’s rule, also known as the rule of probabil-
ity kinematics, provides a way to update a probability
distribution from soft (uncertain, non-categorical, non-
propositional) evidence.

Jeffrey’s rule can be written as:

Q(A) =
∑

i

P(A | Bi ) · Q(Bi )
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Figure 6. The junction tree algorithm and the wet grass network.

where Q(B) is soft evidence, and P(A | B) is the con-
ditional probability of A given B before evidence. Jef-
frey’s rule applies in situations in which P(A | B) is
invariant w.r.t. P(B) but leads to errors when this con-
dition does not hold. The reader is referred to [9, 10]
and [1] for a discussion of the rule and its deficiencies.

An alternative method of updating in the presence
of uncertain evidence is the virtual evidence method
[9–12]. The virtual evidence method takes the position
that likelihood ratios are stabler than probability distri-
butions [9, Section 2.3.3]. Pearl [9, 10] observes that
the virtual evidence method can be viewed as formally
equivalent to the likelihood ratio version of Jeffrey’s
rule. Suppose that we obtain evidence on a variable B,
with values bi . Letting Q(bi ) be the evidence and P(bi )
be the prior probability of B, the ratio Q(B)/P(B) may
be used in the virtual evidence method, resulting in an
updated distribution whose marginal over B is the soft
evidence Q(B). As Pearl [10, p. 71] explains, “beliefs
updated by Jeffrey’s rule cannot be distinguished from
those updated by Bayes conditionalization on some
[our emphasis] virtual evidence.” Please see [1, Sec-
tion 3.2] for further discussion of the difference be-
tween the virtual evidence method and soft evidential
update and the end of Section 5.2 for an example con-
trasting the two. From a methodological viewpoint, it is
important to note that, unlike mechanical applications
of maximum-entropy methods, the soft evidential up-
date method preserves the independence structure cap-

tured in a Bayesian network and therefore avoids para-
doxical results noted by several authors (e.g., [13]). We
refer to [1] and [14, Theorem 3.3] for a precise discus-
sion of this point.

4. Big Clique Algorithm

Here, we suggest a soft evidence absorption algorithm.
This algorithm combines two methods: junction tree
propagation and Iterative Proportional Fitting Proce-
dure (IPFP).

4.1. Algorithm

The big clique algorithm modifies the junction tree al-
gorithm as follows:

1. Build a junction tree that includes all variables for
which soft evidence is given in one clique, the big
clique C1. (These variables may appear in other
cliques as well.)

2. Update P(V ) to a distribution P∗(V ) by execut-
ing the junction tree algorithm using only hard
evidence. P∗(V ) is a distributed representation of
P(V | hard evidence), in the sense of the remark fol-
lowing Theorem 4.2 in [5]: the product of all clique
tables divided by the product of all separator tables
is equal to P(V | hard evidence).
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3. Absorb all soft evidence in C1 (with the algorithm
described in Section 4.4).

4. Call the routine DistributeEvidence from C1. This
routine and the correctness of this step are presented
in Section 4.3.

4.2. Construction of the Junction Tree

In order to insure that all variables for which soft evi-
dence is given (soft evidence nodes) belong to the big
clique, the following steps are executed:

1. moralize the Bayesian network graph;
2. add edges between each pair of soft evidence nodes;
3. triangulate.

The second step is unique to the big clique algorithm.
Moralization and triangulation may be performed in the
usual way. In particular, any of the many heuristic or
approximate algorithms for triangulation may be used
(see, e.g., [15, 16]). The implementation described in
this paper uses a very simple heuristic, because perfor-
mance is not the main concern of this research.

4.3. Propagation of Soft Evidence

First, recall that Step 2 in the modified junction tree
algorithm leads to a distributed representation of the
posterior probability of all variables given all hard find-
ings. Second, observe that the product of the table for
the special clique that has absorbed all soft evidence (as
done in Step 3) multiplied by the tables for the other
cliques and divided by the tables of the separators is a
representation of the posterior probability of all vari-
ables given the soft evidence and the hard evidence.
(Hard evidence had already been absorbed in Step 2).

We now need to restore consistency between the spe-
cial clique and the other cliques. To do so, we propagate
from the clique that has absorbed soft evidence using
the Hugin DistributeEvidence algorithm, which is de-
scribed in [5]. This algorithm has three important prop-
erties: (1) it updates the probability tables of the other
cliques while it maintains the invariant that the product
of the clique tables divided by the separator tables is
equal to the joint probability table for all variables in
the Bayesian network; (2) it insures local consistency
and (Theorem 4.5 in [5]) global consistency; (3) it does
not disturb hard findings, because it does not remove
zeros. (It may introduce new zeros in special cases.)

Finally, observe that the table for the clique that con-
tains all variables for which we have soft findings in un-

Figure 7. The big clique calls CollectEvidence.

changed by a DistributeEvidence call that starts at that
clique. Therefore, the result of propagation is to obtain
a globally consistent distributed representation of the
posterior in which all findings, hard and soft, hold.

We remark that the big clique algorithm could be
simplified by removing the DistributeEvidence part
from the second step. In other words, it is suffi-
cient to carry out one CollectEvidence operation to
the special clique (using only hard evidence) and one
DistributeEvidence from the special clique (after ab-
sorbing soft evidence in the special clique). See Fig. 9
for an example: there is only one DistributeEvidence
operation, in Step 4, after absorption of soft evidence
in Step 3. From this point on, we redefine the big clique
algorithm to be this simplified version. Figures 7 and 8
illustrate the CollectEvidence and DistributeEvidence
operations. Figure 9 illustrates the operation of the
whole big clique algorithm on the lawn example. In
this special case, the junction tree is the same as that
constructed by the junction tree algorithm (ef. Fig. 6),
but the order of operations is different. In particular,
note how the absorption of soft evidence is delayed.

Figure 8. The big clique calls DistributeEvidence.
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Figure 9. Operation of the big clique algorithm on the lawn example.

4.4. Absorption of Soft Evidence

We define absorption in the special big clique C1 as
the process by which the joint probability P(C1), is
updated to conform to soft evidence on variables A ⊆
C1, where A = {A1, A2, . . . , Ak}.

Let Q(C1) be the joint probability after absorption.
Then ∀ i

∑
C1\Ai

Q(C1) = P(Ai ), where P(Ai ) is the
soft evidence on Ai , i = 1, . . . , k. Absorption of soft
evidence in clique C1 is carried out by using the Itera-
tive Proportional Fitting Procedure (IPFP) and consists
of cycles of k steps, one per finding. Each step corre-
sponds to one soft finding. The appropriate formulae
are:

Q(0)(C1) = P(C1)

Q(i)(C1) = Qi−1(C1) · P(A j )

Qi−1(A j )

where j = ((i − 1) mod k) + 1.
For a simple example, suppose we have the clique

{A, B} with joint probability as given in Table 1 (all
variables are binary). Suppose that soft evidence on

Table 1. Table for P(A, B).

A

B y n

y .56 .03

n .14 .27

Table 2. Table for P(A, B, e).

A

B y n

y .392 .021

n .042 .081

variable B is available in the form of P(B) = (.7, .3).
We compute the updated joint probability Q(B) in two
steps.

The result of the multiplication by P(B) is in Table 2.
The result of the division by Q(0)(B) = (.59, .41) is
in Table 3. Note that

∑
{A,B}\{B} Q(A, B) = P(B) =

(0.7, 0.3), as claimed.
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Table 3. Table for P(A, B, e)
after normalization.

A

B y n

y .664 .036

n .102 .198

One step of IPFP is sufficient when there is only one
soft finding. In general, however, several cycles may be
necessary for IPFP to converge. See [15, 17, 18] for the
proof of convergence in the general discrete case and
for bounds on the number of cycles in special cases.

More generally, if all pairs of distinct observation
variables are independent in the original distribution
then they are independent in the updated distribution
as well, and the soft evidential update method requires
only one cycle to converge, i.e. only n steps are suffi-
cient (see [1] for details).

In AEBN systems, soft observations are messages
from publishing agents and may be dependent when
the AEBN graph is not a tree. The correct modeling of
dependence in the receiving agent requires knowledge
of the AEBN agent graph. A full treatment of this as-
pect is beyond the scope of this paper, but we mention
Bloemeke’s work on this topic [2].

4.5. Implementation: BC-Hugin

In order to support the big clique algorithm, we im-
plemented in Java BC-Hugin, which is an extension of
the Hugin system (see Fig. 10 for the BC-Hugin intro-
ductory screen). As mentioned earlier, the big clique
algorithm requires new methods, such as creating a big
clique and soft evidence absorption, that are not sup-

Figure 10. Opening window for BC-Hugin.

ported by the junction tree propagation that is already
implemented by the Hugin API. Also the Hugin API
does not allow us to control basic methods that are
necessary for the new methods.

Therefore, we implemented BC-Hugin from scratch.
The creation of a junction tree and the propagation
method was implemented by following Jensen’s algo-
rithms [5]. BC-Hugin reads net files or hkb files that
were created by Hugin. The Hugin API (version 5.1) is
used to read and load these files.4 An example of a file
open menu window is presented in Fig. 11. BC-Hugin
propagates the evidence (hard or soft) that is entered,
thereby computing the marginal posterior probability
of every variable.

4.5.1. Example: Flood. This example is adapted
from Jensen [5]. Figure 12 shows the given flood model,
and we set the rain node as the only soft evidence node.
Figure 13 shows the junction tree created by BC-Hugin.
Clique 1 on the top of the tree is the big clique that in-
cludes all soft evidence nodes. The value window (in
Fig. 14) is designed to provide visual results for each
propagation. A hard finding is represented by a radio
button while a text-box represents a soft finding.

5. Evaluation

Soft evidential updating can be formalized as a con-
strained optimization task. The goal is to find a proba-
bility distribution such that

1. It satisfies all the constrains introduced by different
types of soft evidence.

2. It optimizes a chosen criterion among all distribu-
tions satisfying these constraints.
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Figure 11. File open window for BC-Hugin.

Figure 12. Flood example.

It can be proved that the big clique algorithm com-
putes a distribution that both satisfies all the constraints
introduced by soft evidence and is closest to the original
distribution. See [1] for details and proofs.

The evaluation of BC-Hugin consists of two steps:

1. Testing the hard evidential absorption of BC-Hugin:
we use only hard evidence and compare results with
Hugin.

2. Testing the soft evidence absorption: we create re-
sults with hard and soft evidence.

5.1. Testing Hard Evidence Absorption

In this test, we test the hard evidential absorption of
BC-Hugin by comparing results with Hugin. We use

the junction tree propagation algorithm for hard evi-
dential updating. Thus, BC-Hugin with only hard evi-
dence must produce the same results as Hugin. For the
test, we used the input files listed in Table 4, and those
files were provided by the Hugin system. For each test
file, we created a full combination of findings for each
node, propagated and compared results. For example,
if there are five nodes in a test file and each node has
two states, the total number of combination of findings
will be 35 by considering the absence of a finding as a
state. We found that even though BC-Hugin was much
slower than Hugin for large networks (such as the sim-
ple poker example), BC-Hugin produced correct val-
ues, sometimes with minor numeric differences. The
biggest numeric differences for each test file are listed
in Table 4. The magnitude of the relative error ( (α−a)

α
,

where α is the correct value as computed by Hugin and
a is the “approximation” computed by BC-Hugin) is
typically small.

5.2. Testing the Dependency of Soft Evidence

In hard evidence absorption, each item of hard evidence
is independent of the others, and the joint probability of
hard evidence is represented by the multiplication of the
probability of each item of evidence. On the other hand,
as explained in Section 4.4, there exists a dependency
relationship between items of soft evidence when the
corresponding variables are dependent in the model of
the agent that receives the evidence.
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Figure 13. BC-Hugin clique tree window for flood example. The node Rain is the soft evidence.

Figure 14. BC-Hugin node window for flood example. The node Rain is the soft evidence.

Two examples based on the stud farm model [5,
Section 3.2.1] follow. See Fig. 15 for the Bayesian net-
work structure. In both examples, hard evidence is en-
tered for node “John”, and soft evidence is entered for
nodes “Ann” and “Eric”. The clique tree built by BC-
Hugin for this situation is shown in Fig. 16.5 The initial

marginal probabilities before entering evidence are dis-
played by BC-Hugin in the window shown in Fig. 17.

Suppose that we enter the hard evidence that “John”
is sick. The marginal posterior probabilities that “Ann”
is a carrier and that “Eric” is a carrier increase to
0.6236 and 0.3862, respectively. When there is hard
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Table 4. Test file list.

Variables/
Test name File name Number of instantiations Largest error

Family out family out.net 5/243 4.9471855E-6

Wet grass wet grass.net 4/81 4.708767E-6

Visiting asia asia.net 8/6561 5.185604E-6

Stud farm (Fig. 15) stfrm.net 12/708588 5.364418E-6

Flood flood.net 6/972 5.1259995E-6

Mrs Gibbon mrs gibbon.net 5/243 4.827976E-6

Simple Poker (Exercise 3.5(i) in [9]) ex-3.5-i.net 5/18000

Simple Poker (Exercise 3.5(ii) in [9]) ex-3.5-ii.net 7/486000 5.066395E-6

Figure 15. Stud farm model.

evidence that “John” is sick, its ancestors “Ann” and
“Eric” become d-connected and therefore6 dependent,
because only “John” is instantiated in the chain 〈”Ann”,
“Dorothy”, “Henry”, “John”, “Irene”, “Eric”〉. There-
fore, when we enter (0.5, 0.5) as soft evidence into
“Ann” and “Eric” respectively, and do a propagation,
the resulting joint probability for P(Ann, Eric) shows
dependency of soft evidence, as displayed in Table 5.
P(Ann) × P(Eric) is 0.25 for each combination of
the values of Ann and Eric, while the joint probabil-
ities, as computed using BC-Hugin, reflect a strong
preference for single faults. For example, P(Ann =
pure, Eric = carrier) is much greater than P(Ann =
carrier, Eric = carrier). It is easy to show (by alge-

Table 5. P(Ann, Eric) and (P(Ann) × P(Eric)) for soft
evidence (0.5, 0.5).

Ann = pure Ann = carrier

Eric = pure 0.0001 (0.25) 0.4999 (0.25)

Eric = carrier 0.4999 (0.25) 0.0001 (0.25)

braic manipulation) that P(Ann = pure, Eric = pure)
must be equal to P(Ann = carrier, Eric = carrier)
and P(Ann = pure, Eric = carrier) must be equal to
P(Ann = carrier, Eric = pure).

Table 6 shows similar results for the situation in
which the soft evidence (0.8, 0.2) is entered for both
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Figure 16. BC-Hugin clique tree window for stud farm example. There is soft evidence for Ann and Eric.

Figure 17. BC-Hugin probability input window for stud farm example, before entering evidence.
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Table 6. P(Ann, Eric) and (P(Ann) × P(Eric))
for soft evidence (0.8, 0.2).

Ann = pure Ann = carrier

Eric = pure 0.6000 (0.64) 0.2000 (0.16)

Eric = carrier 0.2000 (0.16) 0.0000 (0.04)

Table 7. P(Ann, Eric) computed using the soft evidence method
and (P(Ann, Eric) computed using the virtual evidence method),
with evidence (0.5, 0.5).

Ann = pure Ann = carrier

Eric = pure 0.0001 (0.0152) 0.4999 (0.6048)

Eric = carrier 0.4999 (0.3710) 0.0001 (0.0054)

“Ann” and “Eric”. In this case, P(Ann =
carrier, Eric = carrier) is much smaller than the value
(0.04) obtained by assuming independence. Analo-
gously to the previous case, it is easy to show that
P(Ann = pure, Eric = carrier) must be equal to
P(Ann = carrier, Eric = pure).

Table 7 compares the results obtained by the virtual
evidence and soft evidence methods when the evidence
for Ann and Eric is (0.5, 0.5). The virtual evidence inter-
pretation is that we do not know anything new, whereas
the soft evidence interpretation is that the probability
that Ann is a carrier is 1

2 , and the probability that Eric
is a carrier is 1

2 , which is something very different and,
in this case at least, clearly appropriate.

5.3. Testing Soft Evidence Absorption 1: Comparing
Hard with Soft Evidence

The main purpose of this test is to observe the behav-
ior of BC-Hugin when soft evidence is entered. Since
hard evidence is a special case of soft evidence, when
we enter 0 and 1 as soft evidence, the result from BC-
Hugin’s soft evidential absorption must be same as the

Table 8. Stud farm example for soft/hard evidence update.

Case Evidence Ann(A) Henry(H) John(J)
no. (hard or soft) P(carrier, pure) P(carrier, pure) P(sick, carrier, pure)

1a Hard: I = (0, 1) (0.0001, 0.9999) (0.0001, 0.9999) (0, 0, 1)

1b Soft: I = (0, 1) (0.0001, 0.9999) (0.0001, 0.9999) (0, 0.0001, 0.9999)

2a Hard: I = (1, 0) (0.25, 0.75) (0.17, 0.83) (0.042, 0.5, 0.458)

2b Soft: I = (1, 0) (0.25, 0.75) (0.17, 0.83) (0.042, 0.5, 0.458)

result from Hugin with the findings entered as hard
evidence. Note that the evidence was entered in BC-
Hugin as soft evidence, even though it could have been
entered as hard evidence, as it should be apparent from
the BC-Hugin probability input windows. Therefore,
this test is different from the one of Section 5.1. We
executed this test with the files in Table 4 and obtained
correct results. Table 8 shows one example from stud
farm. We chose to display the updated probability of
three nodes (“Henry,” “Ann,” and “John”) among the
12 nodes in the model. For each case, the hard evidence
(step a) and soft evidence (step b) for “Irene” are en-
tered and compared, and BC-Hugin produced correct
results.

5.4. Testing Soft Evidence Absorption 2:
Observation with Soft Evidence

In this test, we demonstrate the operation of BC-Hugin
on two examples with soft evidence as well as hard
evidence. The first example is the Wet grass exam-
ple of Section 3.1. Since this example is reasonably
small, we manually computed each value of nodes
with soft evidence in order to verify the correctness
of the result. Please note that the value of the soft ev-
idence node (“Holmes”) did not change after propa-
gation, which fulfills the requirement of soft evidence
absorption.

We entered soft evidence for the “Holmes” node and
hard evidence for another node to capture the behavior
of soft evidence. In Table 9, when we assigned higher
probability for the yes state in “Holmes,” then “Sprin-
kler,” “Watson,” and “Rain” have higher probability for
the yes state too. This is the correct behavior because the
probability for Holmes’ grass being wet is influenced
by “Sprinkler” and “Rain.” When there is hard evidence
added to this soft evidence (say there is no rain, case
5), “Watson” has the same value as in case 2, because
the node “Watson” is blocked by the hard evidence
“Rain”. Also “Sprinkler” now is the only influence for
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Table 9. Wet grass example with soft evidence node “Holmes”.

Case Evidence Holmes(H) Watson(W) Sprinkler(S) Rain(R)
no. (hard or soft) P(yes, no) P(yes, no) P(yes, no) P(yes, no)

1 No evidence (0.27, 0.73) (0.36, 0.64) (0.1, 0.9) (0.2, 0.8)

2 Hard: R = (0, 1.0) (0.09, 0.91) (0.2, 0.8) (0.1, 0.9) (0, 1.0)

3 Soft: H = (0.5, 0.5) (0.5, 0.5) (0.49, 0.51) (0.17, 0.83) (0.37, 0.63)

4 Soft: H = (0.8, 0.2) (0.8, 0.2) (0.67, 0.33) (0.27, 0.73) (0.59, 0.41)

5 Soft: H = (0.8, 0.2), (0.8, 0.2) (0.2, 0.8) (0.8022, 0.1978) (0, 1.0)
Hard: R = (0, 1.0)

“Holmes”, the probability distribution is close to that
of “Holmes”, the soft evidence, because Q(S = y) =
P(S = y | H = y) · Q(H = y) + P(S = y | H =
n) · Q(H = n) = 1 ·0.8+0.11 ·0.2 = (0.8022). (Since
R = y, P(S = y | H = y) = P(S | H = y, R = y)
and P(S = y | H = n) = P(S | H = n, R = y).)

Figure 18 shows the behavior of three nodes in the
stud farm model when the soft evidence node (“Irene”)
has incremental changes. The values for the carrier
state increase linearly following with the linear increase
of the value in “Irene”. For the single soft evidence case,
this linear increment behavior is correct because soft

Figure 18. The linear behavior of nodes in stud farm model.

evidential update follows Jeffrey’s rule. In general, this
is only true after introducing observation variables, as
explained in Sections 2 and 3.1 and, in more detail, in
[1]. In this particular example, however, the required
conditional probabilities are invariant upon presenta-
tion of soft evidence. Recall that Jeffrey’s rule is,

Q(A) =
∑

i

P(A | Bi ) · Q(Bi )

where Q(B) is soft evidence, and P(A | B) is the con-
ditional probability of A given B.
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Since the conditional probability P(A | B) is fixed,
this formula can be represented by a multivariate poly-
nomial such that the soft evidence is the determining
variable. For example, let α1, α2 be the conditional
probability for P(John = pure | Irene = pure) and
P(John = pure | Irene = carrier) respectively, and
Q1, Q2 be Q(Irene = pure) and Q(Irene = carrier) re-
spectively. Then Q(John = pure) = α1 ·Q1+α2 ·Q2 =
α1 · Q1 + α2 · (1 − Q1) = (α1 − α2) · Q1 + α2. Since
α1 and α2 are constant, this function is linear. We note
that this is a slight generalization of the polynomial
network representation discussed in [19] and based on
the following theorem [20] (as stated in [21]): “Let BN
be a Bayesian network. Let a be a state of the variable
A, let e be a set of observations, and let t be a sim-
ple parameter in BN. Then, P(a, e) as well as P(e) are
linear functions in t .”

6. Conclusion

We have described BC-Hugin, a program for soft ev-
idential update that implements the big clique algo-
rithm. We have given several examples of use of BC-
Hugin. We have tested BC-Hugin in various ways.

6.1. Complexity Issues

In [1], we describe an alternative algorithm for soft
evidential update, based on the space-saving imple-
mentation of IPFP [22], which does not require the
construction of a big clique but requires iteration over
all the cliques. To be more precise, it is necessary to
iterate only on cliques that form a path in the junction
tree that includes all soft evidence variables.

We illustrate this point and the existence of a trade-
off between the two algorithms by examples on a simple
class of Bayesian networks. Consider a Bayesian net-
work structure that consists of a single path of n nodes,
as in Fig. 19. The junction tree of minimum state-space
size for that graph is shown in Fig. 20.

Assume that soft evidence is entered on two nodes
that are not adjacent. The big clique built by the big
clique algorithm in this case will contain three nodes:

Figure 19. A path of n nodes.

two of them are the soft evidence nodes, and the third
one is a node between the soft evidence nodes in the
chain. Clearly, the state space for the junction tree built
by the big clique algorithm is larger than the state space
for the junction tree of Fig. 20, if each variable has more
than two values.

With respect to Fig. 19, assume that soft evi-
dence is observed for nodes Vt and Vu , with u >

t + 1. The algorithm based on the state-space sav-
ing implementation of IPFP requires cycling over
each clique between Vt , Vt+1 and Vu−1, Vu , i.e.,
{Vt , Vt+1}, {Vt+1, Vt+2}, . . . , {Vu−1, Vu}. The union of
these cliques is a superset of the big clique. Still, it is
possible for the state-space saving implementation of
IPFP to be faster, because each cycle of IPFP requires
propagation in a junction tree all of whose cliques con-
tain only two nodes, while the junction tree for the big
clique algorithm contains at least one cliques with three
nodes.

The precise trade-off depends on the state-space size
of the individual variables and on how far apart in the
path the variables Vt and Vu are: by making the dis-
tance between t and u larger, we force the space saving
implementation of IPFP to iterate over a larger num-
ber of nodes, while the big clique algorithm will al-
ways iterate only over three nodes. We conjecture that
this is the dominant factor in the complexity of these
procedures; further analysis and experimentation are
needed.

6.2. Future Work

The implementation could be tuned for performance.
In particular, as described in Section 4.2, the size of the
junction tree constructed by BC-Hugin could be greatly
reduced by using standard techniques. We need to work
on application of soft evidential update to decision nets
(influence diagrams). We need to compare more thor-
oughly the big clique algorithm to the iterative modi-
fication of the junction tree algorithm described in [1]
and based on the state-space saving implementation
of IPFP [22]. We need to study further the possibility
or impossibility of algorithms that require neither a big
clique nor iteration over all nodes. The rumor problems
for agent-encapsulated Bayesian networks needs to be
solved. The infrastructure necessary for large-scale ap-
plications of soft evidential update needs to be built.
See [23] for the design and prototypical implementa-
tion of a system for time-critical decision making with
communicating agents that uses soft evidential update.
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Figure 20. The junction tree of minimum total state-space size for the path network.
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Notes

1. We thank Christian Riekher, managing director of Hugin Ltd. for
allowing us to use this name for our research prototype. Actual
use of Hugin in BC-Hugin is minimal, as explained in Section 4.5.

2. Some introductory material is adapted from [1].
3. BC-Hugin identifies zero probability situations at run time in a

way similar to Hugin.
4. Since this version of the API is written in C++, a Java bridge

was developed to allow use of these functions. Newer versions of
the Hugin API are available in Java.

5. This tree is not optimal. As discussed in Section 4.2, no attempt
was made to optimize junction tree construction.

6. The absence of d-connectedness (d-separation) implies indepen-
dence. D-connectedeness implies dependence, except for patho-
logical probability tables [24, Section 4]. The tables in the stud
farm example are not pathological.
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