Agent-Encapsulated Bayesian Networks
and the Rumor Problem

Scott Langevin
Department of Computer
Science and Engineering

University of South Carolina

langevin@cec.sc.edu

ABSTRACT

We present a multiagent organization for data interpreta-
tion and fusion in which each agent uses an encapsulated
Bayesian network for knowledge representation, and agents
communicate by exchanging beliefs (marginal posterior prob-
abilities) on shared variables. We call this organization
an Agent-Encapsulated Bayesian Network (AEBN) system.
Communication of probabilities among agents leads to ru-
mors, i.e. potential double counting of information. We
show how to compensate for rumors in AEBN systems by
passing extended messages that contain joint probabilities.
We analyze the complexity of the proposed solution using
simple parameters of the probabilistic multiagent system.

Categories and Subject Descriptors

1.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving— Uncertainty, “fuzzy,” and probabilistic reasoning;
1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Coherence and coordination, Intelligent agents,
Multiagent systems

General Terms
Algorithms, Design, Theory

Keywords

Communication protocols, Distributed problem solving, Knowl-

edge representation, Reasoning (single and multi-agent)

1. INTRODUCTION

It is well known that communication of probabilities among
agents leads to potential double counting of information.
This fundamental problem is due to mishandling of depen-
dent or correlated variables and is known as the rumor prob-
lem [13].

We first present a method to link multiple, individually
designed, Bayesian networks together to form a multiagent
system. Each agent in the system will use a probabilistic
model as its internal model of the world and communicates
with other agents in the system by passing messages. The
messages sent and received are distributions on variables of
Cite as: Agent-Encapsulated Bayesian Networks
and the Rumor Problem, Authorl, Author2 and Author3, Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010), van der Hoek, Kaminka, Luck and Sen (eds.), May,
10-14, 2010, Toronto, Canada, pp. XXX-XXX.

Copyright (©) 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Marco Valtorta
Department of Computer
Science and Engineering

University of South Carolina

mgv@cec.sc.edu

Mark Bloemeke
LogicBlox, Inc.
Atlanta, GA
mark.bloemeke@logicblox.com

interest that are shared between the agents. We then de-
scribe the rumor problem in the context of our chosen agent
model. Finally, we present a solution to the rumor prob-
lem for our chosen agent model that compensates for double
counting of information by extending agent communication.
We show that the solution is efficient.

2. AGENT ENCAPSULATED BN SYSTEMS

An Agent Encapsulated Bayesian Network (AEBN) [1, 9]
is an agent that utilizes a Bayesian network for its inter-
nal representation of the world. How the agent utilizes this
representation in decision support or goal based planning is
unimportant so long as the world view is updated based only
on local observations and observations received in the form
of probabilistic messages from communicating agents.

In an AEBN system the agents communicate through the
transmission of probability distributions on shared variables.
The topology of the communication in the multiagent sys-
tem forms a DAG structure. The Bayesian network of each
agent can be divided into three distinct sets of variables: I,
those about which other agents have better knowledge; L,
those that are used only within the agent; and O, those that
this agent has the best knowledge of and that other agents
may want. This effectively produces two classes of variables
in the agent: its local variables, L, and its shared variables,
I and O.

The mechanism for integrating the view of the other agents
on a shared variable is to simply replace the agent’s current
belief in the variable with that of the communicating agent.
For this reason, all communication in the AEBN system oc-
curs through the passing of messages that essentially contain
the “correct” views on some shared variables. When an agent
receives one of these messages, it modifies its internal model
so that its local distribution either becomes consistent with
the other agents’ view or becomes inconsistent by entering
a zero probability configuration.

This method of sharing beliefs can be characterized as
a producer-consumer relationship in which one agent has
complete knowledge of the correct state, or distribution, of
a variable and shares the knowledge with one or more agents
who wish to integrate the belief into their local models. The
agent who has this knowledge of a variable is called the pub-
lisher and the agents receiving these messages are known as
subscribers. When a new observation is made by a pub-
lisher, the agent sends a message indicating the observation
to its subscribers. The subscribers in turn adjust their in-
ternal view of the world and send their published variables
on to their subscribers.

At first this restriction that one of the agents has an orac-
ular knowledge of the value of one or more variables may
seem to be an excessively restrictive assumption. It seems
to imply that there can be no mediating belief, among mul-
tiple agents, over a common variable. However, this is not
the case. It is entirely permissible for multiple agents to
have their own view of a common variable so long as each
such view bears its own unique label.

We will assume that observation variables have been in-
troduced as needed and that an agent’s probability distri-
bution upon receipt of messages from other agents, using
the approach of soft evidential update [12, 2]. Therefore,
each agent that receives messages from other agents ob-
tains soft evidence for one or more observation variables.
To update an agent’s distribution P(V') with new evidence
Q(Eh, Es, ..., E,,) for some set of variables {E1, Ea, ..., En} =
I one calculates the joint probability P(V'), dividing by the
marginal probability P(I), and multiplying it by the new
distribution of {F1, Ea, ..., E,}, this corresponds to the ap-
plication of Jeffrey’s rule (also known as the rule of proba-
bility kinematics),

Q) = QEY) - Q(Bs) - .. Q(En), (1)
thus obtaining:
QV) = POV\IIT) - QUI) = % Q). (@)

In the case in which the input variables are not independent
in the receiving agent, Equation 1 does not hold. (See [12,
Section 5] for a detailed discussion on this point.) Lemma 1
in [12] allows the replacement of Equation 2 by:

Q') =pPnIn-eu =" i,)
(1)

where Q7 is the Ii-projection of probability distribution
P on the set of all distributions defined on I and having
Q(E;),i = 1,...,n, as their marginals. In practice, P(V)
could be updated to @*(V) using the big clique algorithm
of [12, 5], lazy big clique algorithm of [7], or the wrapper
methods of [10].

Thus a mechanism similar to that which is already used
for updating probabilities in a Bayesian network adjusts the
world view of the agent, P(V), into a conditional probability
table P(O|I). It then combines that table with the external
view of the inputs, Q(I), to allow the calculation of the new
values for the output variables Q(O).

Given this view of the purpose of each agent in the overall
system, the natural view is that an agent system is a sim-
ple expansion of the Bayesian network formalism to a DAG
in which one conditions on sets of variables (the input vari-
ables) rather than individual variables. This is not strictly
the case for two reasons.

First, the oracular assumption imposes the additional con-
straint that, in the agent system, unlike a Bayesian network,
all parents are not affected by their descendants. More pre-
cisely, the only variables that may affect the variables in an
agent are (1) those in the agent itself and (2) those in a
preceding agent. In order to provide a formal definition of
“preceding agent,” we introduce the notion of communica-
tion graph in Section 3.

Second, when input variables are not independent in the

receiving agent, then the calibration equation 2 must be re-
placed by the formally identical, but substantially and com-
putationally more complex equation 3.

3. COMMUNICATION GRAPHS

In order to represent the message passing and updating
implications of AEBN’s, we define a graphical representation
of the agent system, called a communication graph. This
graph is a DAG whose nodes are the agents and where edges
are drawn from a publisher of a shared variable to each of
the variable’s subscribers. These edges are in turn labeled
with the variable that they share. It is possible for more
than one edge to exist between two nodes, though each will
be uniquely labeled.

We can now formalize the constraint that, in the agent
system, all variables that are parents are not affected by
their descendants. Let A; and A; be two distinct agents,
let Vi, V; be the sets of variables in agent A; and Aj, re-
spectively, and let W; C V;, W; C V;. Then if there is no
directed path in the communication graph from A; to A,
any changes (whether by observation or by intervention) in
the state of the variables in W} does not affect the state of
the variables in W;. This is a very strong condition on the
distribution of the variables in different agents of the agent
system. This is not a symmetric relation, and therefore can-
not be represented by any independence relation, since every
independence relation is symmetric. There is an analogy to
be made with casual Bayesian networks [11]. In a causal
Bayesian network, when a variable is set (by external inter-
vention), the parents of that variable are disconnected from
it; more precisely, the result of the intervention is to create a
new Bayesian network in which we remove the edges incom-
ing into a variable that is set. The analogy, however, is not
complete. In a causal Bayesian network, when a variable is
set by intervention, some of the parent variables may be af-
fected through backdoor paths, as explained in [11, section
3.3]. In an AEBN, there is no possibility for a variable in an
agent to be affected by a descendent agent.

Consider as an example a four-agent system, where a su-
pervisor agent fuses reports from two observer agents, each
of which reports information from a single sensor agent. The
communication graph shown in Figure 1 is constructed by
first identifying shared variables (S, L1, and L), then di-
recting labeled edges from the producing agents to the con-
suming agents. The labels for the edges correspond to the
shared variable. In this example, the edges directed from the
Sensor agent to the Observer; and Observers agents are la-
beled with S, and the edges from Observer, and Observers
to the Supervisor agent are labeled with L1 and L2, respec-
tively. Henceforth this example will be referred to as the
Redundantly Observed Sensor Example (ROSE).

4. REDUNDANT INFLUENCES

It is within the communication graph that the nature of
the rumor problem can be clearly understood. Using the
ROSE communication graph as an example, we can see the
problem centers on the fact that the supervisor agents view
of the world, held in its Bayesian network, is doubly influ-
enced by the initial sensor reading. The supervisor computes
its belief in L, the location of the target, as

Sensor

Supervisor

Figure 1: Redundantly Observed Sensor Example
(ROSE) communication graph.

P(L) =Y P(LI)P(I) (4)

I

which expands to

P(L) = Z P(L|Ly, Ly)m(Observeri)m(Observers) (5)

Ly,L2

where m(Observer;) and m(Observers) are messages the
supervisor agent receives from Observer; and Observers.
Expanding m(Observeri) yields

m(Observery) = Z P(L1]|S)m(Sensor) (6)
s
with m(Observerz) being calculated as
m(Observersy) = Z P(Lz2|S)m(Sensor) (7)
S
Finally, expansion of m(Sensor) yields

m(Sensor) = P(S) (8)

Substitution of equations 6 and 7 into equation 5 leaves
us with the intermediate equation

P(L) = Z P(L|L1,L2)ZP(L1|S)m(Sensor)>< (9)

Lq,Lo S

Z P(L2|S)m(Sensor)
5

Substituting equation 8 into 9 yields

P(L)= Y P(L|Ly,L2) > P(L:|S)P(S) > P(L2|S)P(S)
L1,Lo s s
(10)
Finally, pulling the sums out leaves the following equation
for P(L)

P(L)= Y P(L|Ly, L) P(L1|S)P(S)P(L2|S)P(S)

Ly,L2,S
(11)

In equation 11, P(S) is redundantly incorporated in the
supervisor agent, resulting in a redundantly influenced cal-
culation of P(L), because the correct expression of P(L)
(calculated using the chain rule) is

P(L)= > P(L|L1,L2)P(L1, L) (12)

Lq,L2

Since there exists no directed path between L; and Lo in
the communication graph, neither affects the other in the
ROSE AEBN system.

P(Ly1,Ly) = > P(L1|S)P(L2|S)P(S) (13)
S

Substitution of equation 13 into equation 12 leaves the
correct equation for calculating P(L)

P(L) = Z P(L|L1,L2)P(L1|S)P(L2|S)P(S) (14)
L1,L2,S

where equation 14 is the desirable outcome of message
passing in the agent system and equation 11 is the actual
outcome. Further, this problem can be made arbitrarily
worse simply by adding additional paths between the sensor
and the supervisor agents.

Redundant influences arise in a communication graph when-
ever the combination of messages received by an agent causes
the belief in some shared variable to be over included.

The principal objective of this paper is to allow the han-
dling of the rumor problem in an automated fashion. This
will be achieved using algorithms that first identify redun-
dant influences using the communication graph (Section 4.1)
and then using a communication based solution (Section 5)
to eliminate them.

4.1 Identifying Redundant Influences

This section describes a method for identifying redundant
influences in a communication graph. V; redundantly influ-
ences Vj if there exists multiple node-disjoint paths from V;
to Vj. There is a redundant influence between nodes V; and
V; in some communication graph G if either V; redundantly
influences Vj or V; redundantly influences V;

Redundant influences are external to an agent and are de-
pendent on the communication graph topology, therefore,
it cannot be assumed they will be known in advance when
the agents internal model is designed. Hence, the redun-
dant influences are orthogonal to the dependencies that are
encoded in the Bayesian network that is contained within
an agent and it is appropriate to support the processing of
redundant influences separately from the construction of in-
dividual agents.

We claim, given an AEBN communication graph G =
(V, E) with nodes V;,V; € V, where V; is an ancestor of Vj,
it is sufficient to identify all node-disjoint paths from V; to
V; in order to see all routes of redundant influence from V;
to Vj. Following is a skeleton of a proof of our claim.

First we characterize thoroughly the routes through which
redundant influences arrive at a node in the communication
graph.

Assume that we have a communication graph G, as de-
fined above, such that between V; and Vj; there are only n
node disjoint paths {V; — Vi1 — ... = Vip, = V;,.., Vi —
Vo1 = .. = Vg, — V;}, where ki, 1 <1i < n is the length

of path ¢ minus the endpoints (Figure 2). Further, assume
we have more than n redundant influences. Clearly, since
redundant influences must occur along some series of paths,
there must be some paths that are not node-disjoint be-
tween V; and Vj causing the additional redundancies. Each
of these additional paths must take on one of four forms
(assume p, ¢ € [1,n]):

1. It starts at one node along node-disjoint path ¢ and
ends at a different node along node-disjoint path p.
(Figure 3)

2. It starts at one node along path ¢ and ends at node
V;. (Figure 4)

3. It starts at node V; and ends at a node along node-
disjoint path ¢. (Figure 5)

4. Tt starts and ends along node-disjoint path q. (Fig-
ure 6)

In all of these cases, the additional redundant influences
are due to a subgraph that does not include both V; and
Vj. The subgraph effectively amplifies the redundancy be-
tween V; and Vj, but the cause is redundant influences in the
subgraph caused by multiple node disjoint paths between
two nodes in the subgraph. If we were to compensate for
these additional redundancies in the subgraph then we are
left with the redundant influences from the n node disjoint
paths between V; and Vj. In other words, we can recursively
remove redundant influences in subgraphs between V; and
V; and be left with n redundant influences corresponding to
the n node disjoint paths. The remaining n redundancies
could be compensated for similarly. This is a recursive ar-
gument and means we can identify all redundant influences
by examining all pairwise node disjoint paths in the graph.
The Create Redundancy Graph algorithm, described below,
can be used to detect and label node disjoint paths in a
communication graph. Once this algorithm has been run, a
new graph, known as the redundancy graph, is constructed.
The redundancy graph has the same nodes and edges as the
communication graph, but its edge labels are expanded if
and only if there are redundant influences. This graph will
be used, along with the original communication graph, to
compensate for redundant influences in the communication
solution described in Section 5.

o

length k4 length k,
v v

e

Figure 2: n node disjoint paths between V; and V;.

path q .\ - path p
v @ v

)

Figure 3: Case 1, extra redundant influences that
are not node-disjoint.

pathg i 4 i pathp
i Q i

O

Figure 4: Case 2, extra redundant influences that
are not node-disjoint.

Create Redundancy Graph Algorithm:

Start by creating a copy of the communication graph that
will serve as the redundancy graph, and whose labels will be
expanded as described below. For each pair of vertices v,
and v: in the redundancy graph take each variable s; that
is produced by vs and:

1. Create a copy of communication graph for use in the
maximum-flow problem [3].

2. Modify the graph by replacing each node v that has
multiple incoming edges with two nodes v1, v2. Re-
place each incoming edge to v, < x,v >, with a new
edge < z,v1 >, and each outgoing edge from v, <
v,y >, with a new edge < v2,y >. Finally, create a
directed edge < v1,v2 >1.

3. Designate vs as the source for the flow problem and vy
as the sink for the flow problem.

4. Set the maximum flow of each edge to 1.

5. Set the maximum flow to 0 for all outgoing edges from
vs that are labeled with a variable other than s; in the
communication graph.

6. Run the maximum-flow problem.

"Without this step, the algorithm would find edge-disjoint
paths instead of node-disjoint paths.

path q path p

1N

Figure 5: Case 3, extra redundant influences that
are not node-disjoint.

/®\

O
pathq i Q i pathp
v v

&~

)

Figure 6: Case 4, extra redundant influences that
are not node-disjoint.

7. If the flow into the sink is greater than 1, then redun-
dant influences exist between the two vertices and the
next step should be applied. Otherwise, go to the next
Vs, Ut, §; combination and run this algorithm again.

8. For each edge in the maximum-flow problem solution
that has flow greater than zero (and therefore is on
a node disjoint path), add the shared variable s; to
the label of the corresponding edge in the redundancy
graph.

The above algorithm is correct if and only if the maximum-
flow problem indicates a positive flow for all edges, and only
the edges, along node disjoint paths from vs to v;. This
is known to be the case [6, Chap. 16], and therefore the
above algorithm will expand the label of all node disjoint
paths, between vs and v:, which by definition are also the
redundant influences, by the shared variable that causes re-
dundant influence through that edge.

The time complexity of the flow problem is O(nm log(%))
where n = |V| and m = |E|. Since we can perform both ini-
tialization and set up of the graph information in O(n+m),
O(nm log(%)) dominates the loop body. Since the loop
body is executed for each pair of nodes, the total time for
the above algorithm is O(n3mlog(’;—2)). This time is within
O(n®) because m in the worst case is n?. Given that this is
a distributed system, algorithms exist to find the maximum

flow in O(n?log®n) time using O(n?(log®n + /m)) com-
munication complexity [8] assuming that each node in the
communication graph has its own processor and knowledge
of the whole graph (which can be accumulated in no worse
than O(m) time).

It is important to note that this is the only step in an
AEBN system that requires global knowledge of the net-
work structure. After the edges have been labeled no fur-
ther knowledge outside of the immediate neighborhood is
necessary.

Considering the ROSE example of Figure 1, the Create
Redundancy Graph algorithm produces the redundancy graph
of Figure 7. In this graph, only two edges have expanded
labels. This arises because only in the case of the cycle (i.e.,
vs = Sensor, v; = Supervisor) will the flow problem return
a flow greater than 1. In this case, all four of the edges be-
tween the Sensor node and the Supervisor node will have a
flow of 1 and therefore will have S added to their edge label.

Sensor

S S
LS LS

Supervisor

Figure 7: The ROSE redundancy graph.

5. COMMUNICATION SOLUTION

This section proposes a method of compensating for re-
dundant influences where agent communication has been ex-
panded to pass joint probabilities along the appropriately
labeled links in the redundancy graph, without any change
in the local Bayesian networks of each agent. Computing
the expanded messages requires the probability update al-
gorithm used by the agents to be flexible enough to allow
the calculation of joints involving fixed input and output
variables.

The calculation of joint probabilities is not trivial, espe-
cially in the presence of soft evidence. The soft evidential
update algorithms such as the big clique [12] and lazy big
clique [7] are based on the junction tree method, and were
designed to compute all single variable marginals, but they
can be used to compute one or several joint probabilities
using techniques such as value or variable propagation, de-
scribed in [4, Section 5.1]. Additionally, the wrapper meth-
ods [10] can be used similarly with a junction tree algorithm,
or with a direct query-based algorithm such as bucket elim-
ination.

Care must be taken when removing redundant influences
to ensure all redundant influences are correctly compensated
for. This is done by ordering the removal of the redun-
dant influences. Consider an example where an agent a; re-
ceives three messages from neighboring agents: ¢1(A, B, C),
¢2(A, B, D), and ¢3(A, E). Agent a; subscribes to the in-

put variables C'; D and E, hence its local Bayesian net-
work calculates P(O|C, D, E) and therefore needs to cal-
culate the joint probability, P(C, D, E), from the received
messages. The three messages contain redundant influences:
¢1(A, B,C) and ¢2(A, B, D) share redundant influences on
variables A and B, and ¢3(A, E) shares a redundant influ-
ence with ¢1(A, B, C) and ¢2(A, B, D) on variable A (Figure
8). If we first remove the redundant influence common to
all, A, we can divide two of the messages by P(A) and have:

_ $1(A,B,C) _ $1(A,B,C)

BN = S o@E) T e

_ ¢2(A737D) _ ¢1(AvaD)
B %%(A,E) o 9(4)

¢2(B, D|A)

Next, we eliminate the remaining redundant influence, B,
that is common to ¢ (B, C|A) and ¢5(B, D|A), by dividing
one of the messages by P(B):

94(B,ClA) _ $1(B.ClA) _ 61(A,B,C)

¢1(C|A,B) = #2(A,B,D) ~ ¢(B) $(A)p(B)

A,D

The correct joint probability is retrieved by combining the
updated messages, @7 (C|A, B), ¢5(B, D|A), and ¢3(A, E),

Finally, the required joint probability of the inputs is cal-
culated by marginalizing,

P(C,D,E) =Y _¢(A B,C,D,E)
A,B

This is correct, if the shared redundant influence ¢(A, B) =
¢(A)p(B), which means A and B are independent. However,
this is not correct in general and therefore removal of the re-
dundant influences in this order is incorrect. See Figure 9
and 10 for an example of different dependence characteris-
tics of multiple redundant influences based on the topology
of the redundancy graph. The removal of redundant influ-
ences must be ordered so as to not lose any dependence rela-
tions among the redundant influences. In this example, this
can be achieved by first removing the redundant influence
(A, B) from ¢1(A, B,C), and then removing the redundant
influence A from ¢3(A, E). This can be restated, more gen-
erally, as removing the largest shared redundant influences
first, followed by the second largest, and so on. Thus, the
redundant influences can be ordered by decreasing size and
removed in this order from the received messages. A formal
description of this procedure is now presented.

For each agent a;(1 <4 < n) in the communication graph,
there are k;(0 < k; < n — 1) incoming edges, e(;,;)(0 < j <
ks). Each of these edges carries a message @(; ;) that is
a joint probability table over the variables that make up
the corresponding label in the redundancy graph. Start by
defining R; to be the set of all messages received by agent
a; that contain a redundant influence (i.e., messages that
contain any variables in common with another message).
More formally R; is

AB,D
AB,C l AE

oy’

Figure 8: Multiple overlapping redundant influ-

ences.

Figure 9: Agent T has redundant influences A and
B that are independent.

R: = U B0 ldom (¢,)Ndom(daiy) # 0,0 <1< kil # 5

0<j<k;

To compensate for redundant influences received in mes-
sages at agent a; the procedure Remove Redundant Influ-
ences should be invoked by a; before absorbing messages
into its local Bayesian network. This procedure will pre-
process the messages and remove any redundant influences.
The resulting redundancy-free messages are stored in the
nodes of the redundancy filter tree and can safely be com-
bined together with the messages containing no redundant
influences and marginalized to the needed input probabili-
ties. Finally, the resulting joint of the inputs are then ab-
sorbed into the local Bayesian network using any probabilis-
tic update method that supports soft evidential update.

Create Redundancy Filter Tree Algorithm:

Create a fully connected graph where the nodes of the
graph have a one to one correspondence with the messages
in R;. Associate with each node the corresponding mes-
sage. The weight of an edge between a node n; and nj;
is |dom(¢;) Ndom(¢;)|, where ¢; is the message associated
with node n; and ¢; is the message associated with node n;.
Find a maximum spanning tree for this graph and set the
root of the tree to a node with the largest domain. We call
this tree the redundancy filter tree.

We note that the redundancy filter tree only needs to be
constructed once. If new messages arrive, the new messages
need to be associated with the corresponding nodes of the
redundancy filter tree before the Remove Redundant Influ-
ences procedure is invoked. This can be done in O(n) if
a mapping of message source to redundancy tree node is
maintained, where n is the number of messages that contain
redundant influences.

we
>
™

AB,C

AB,D @

Figure 10: Agent T has redundant influences A and
B, where B is dependent on A.

Remove Redundant Influences Algorithm:

The set of messages ® received by agent a; is split into
two disjoint sets ®r and ®g, where ®r contains all messages
containing redundant influences and ®g are the remaining
messages s = {®\Pr}. Since Ps does not contain any
redundant influences, it does not require any pre-processing
before absorption into agent a;’s local Bayesian network. To
remove the redundant influences in ®r, construct a redun-
dancy filter tree using procedure Create Redundancy Filter
Tree. Redundant influences are removed starting from the
root of the tree and passing messages down the tree towards
the leaves. This is achieved by the root node invoking Re-
move Redundancy on each of its neighbors. After all mes-
sages have been processed, the set ®% of redundancy-free
messages are retrieved from each node in the redundancy
filter tree and combined with ®s. Finally, the appropriate
marginal of the resulting joint can be absorbed into the local
Bayesian network.

Remove Redundancy Algorithm:

Let n; and n; be two adjacent nodes in the redundancy
filter tree and ¢; and ¢; be their respective redundantly
influenced messages. If n; invokes Remove Redundancy on
nj, then:

1. Let D; = dom(¢:) and D; = dom(¢;)

2. Set the message ¢Dmpj from n; to n; to

2.

D;\D;ND;

¢D;nD; =

3. n; invokes Remove Redundancy on all adjacent nodes
except n;

4. n; absorbs the message ¢p,np; by updating ¢;:
®;

¢D;ND;

¢; =

Returning to the ROSE example, consider the problem of
correcting the redundant influence on the Supervisor agent.
The two incoming messages correspond to m(Observer;) =
¢(L1,S) and m(Observers) = ¢(La2,S) which lead to the
double counting of P(S). To remove the redundant influ-
ence, Pr and g are calculated as,

®r = {#(L1,85),¢(L2,S)}, s =0

From ®g, the redundancy filter tree (shown in Figure 11)
is constructed. Set the root of the tree to the node corre-
sponding to the message ¢(L1,S), and then invoke Remove
Redundancy on the roots neighboring nodes. The result of
message passing in the tree is shown in Figure 12. The set of
redundancy-free messages, @, are retrieved from each node
in the tree,

@}} = {@(th),
Combining ®% and ®g gives

¢(L2|5)}

P(Li1,Ls, S

ITenITos
= ¢(L1, S)¢(L2|S)

This can in turn be marginalized to

ZP Li,L2, S

from which the desired probablhty P(L) can be computed
as

P(L1, L2) =

P(L)= Y P(L|L1,Ls) > P(L1|S)P(L:|S)P(S)
S

Ly,L2

>

Ly,L2

P(L|L1, L2)P (L1, L2)

Figure 11: Redundancy filter tree for the Supervisor
agent in the ROSE example.

Figure 12: Message passing in the Supervisor agent
redundancy filter tree. The node labels reflect the
updated agent messages.

5.1 Cost of Communication Solution

In order to discuss the cost of the communication solution,
we introduce the following communication and redundancy
graph dependent terms:

n - the number of agents in the communication graph.
m - the number of edges in the communication graph.

$i,1 < i < m - the number of variables along an edge in
the redundancy graph.

Smaz - the largest label in the redundancy graph, i.e.,

Smax = MaAX S§;
1<i<m

b - the number of states in the largest shared variable

From these defined constants, the communication solu-
tion cost is easily evaluated. It requires one probabilistic
message to be sent along each edge in the communication
graph. Each of these messages contains a table which has a
single floating point number for each entry, with the num-
ber of entries in the table being equivalent to the size of the
cross-product of the variables that are in the label of the
corresponding edge in the redundancy graph. Thus, using
the transmission of a single floating point number as our
base unit of communication cost, we have,

i b (15)

as the upper bound on the total cost of communication. This
is clearly bounded above by,

i pmas (16)
=1

since Smar dominates s; for 1 < i < m.
Simplifying equation 16, the total communication cost for
the communication solution is,

mbmas (17)

The time complexity of the communication solution can
be simplified by ignoring the cost of the creation of the re-
dundancy filter tree since it is the complexity of building a
maximal spanning tree of a graph of at most O(n?), and it
is done only once. The cost of the Remove Redundant In-
fluences is O(mb°me=), since there are at most m nodes in
the redundancy filter tree and therefore m messages need to
be computed. The last step of the communication solution
requires all redundancy-free messages to be combined into a
joint probability and marginalized to the required distribu-
tion of input variables: this also takes time O(mb°™a=). So,
the overall time complexity of the communication solution
is O(mb°mee).

6. CONCLUSIONS

The elimination of rumors in probabilistic agent commu-
nication is a difficult, longstanding problem that limits the
applicability of graphical probabilistic models for knowledge
representation in multiagent systems. Xiang [13] showed
that, under a number of postulated assumptions, a correct
probabilistic solution requires the topology of the communi-
cating agents to be a tree. We relaxed some of the assump-
tions by postulating an oracular assumption, which states
that the probability distribution of a variable published by

an agent cannot be changed by the agents that subscribe
to it. Under this new assumption, it is possible to com-
pensate for rumors. We described how to do this in detail,
using several graphical devices and algorithms that operate
on them. We also analyzed the time complexity of our solu-
tion. It is our hope that the proposed techniques will allow
more agent systems to take advantage of fully probabilistic
knowledge representation formalisms, such as Bayesian net-
works. In future work, we plan to analyze and evaluate the
tradeoffs between our approach and that of others (especially
Xiang). We will also explore extending the AEBN commu-
nication protocol to allow bidirectional influences; our initial
approach is to serialize cycles in communication.

7. REFERENCES

[1] M. Bloemeke. Agent Encapsulated Bayesian Networks.
PhD thesis, Department of Computer Science,
University of South Carolina, 1998.

[2] H. Chan and A. Darwiche. On the revision of
probabilistic beliefs using uncertain evidence. In
Proceedings of the Fighteenth International Joint
Conference on Artificial Intelligence, pages 99-105,
Acapulco, Mexico, 2003.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
Cambridge, MA, 2003.

[4] F. V. Jensen. An Introduction to Bayesian Networks.
Springer-Verlag, New York, NY, 1995.

[5] Y.-G. Kim, M. Valtorta, and J. Vomlel. A prototypical
system for soft evidential update. Applied Intelligence,
21(1), July—August 2004.

[6] D. C. Kozen. The Design and Analysis of Algorithms.
Springer-Verlag, New York, 1992.

[7] S. Langevin and M. Valtorta. Performance evaluation
of algorithms for soft evidential update in Bayesian
networks: First results. In Proceedings of the Second
International Conference on Scalable Uncertainty
Management (SUM-08), pages 284-297, Naples, Italy,
October 2008.

[8] L. Motyckova. Maximum flow problem in distributed
environment. In SOFSEM ’95: Theory and Practice of
Informatics, pages 425—430, Berlin, 1995.
Springer-Verlag.

[9] R. Pan. Semantically-Linked Bayesian Network: A
Framework for Probabilistic Inference over Multiple
Bayesian Networks. PhD thesis, Department of
Computer Science and Electrical Engineering,
University of Maryland, 2006.

[10] R. Pan, Y. Peng, and Z. Ding. Belief update in
Bayesian networks using uncertain evidence. In
ICTAI pages 441-444. TEEE Computer Society, 2006.

[11] J. Pearl. Causality: Modeling, Reasoning, and
Inference. Cambridge University Press, Cambridge,
2000.

[12] M. Valtorta, Y.-G. Kim, and J. Vomlel. Soft evidential
update for probabilistic multiagent systems.
International Journal of Approximate Reasoning,
29(1):71-106, January 2002.

[13] Y. Xiang. Probabilistic Reasoning in Multiagent
Systems: A Graphical Models Approach. Cambridge
University Press, Cambridge, 2002.

