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Abstract

A Prolog technology theorem prover (PTTP) is an extension of Prolog that is complete
for the full first-order predicate calculus. It differs from Prolog in its use of unification
with the occurs check for soundness, the model-elimination reduction rule that is added to
Prolog inferences to make the inference system complete, and depth-first iterative-deepening
search instead of unbounded depth-first search to make the search strategy complete. A
Prolog technology theorem prover has been implemented by an extended Prolog-to-LISP
compiler that supports these additional features. It is capable of proving theorems in the

full first-order predicate calculus at a rate of thousands of inferences per second.
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1 Introduction

Despite Prolog’s logic heritage and its use of theorem-proving unification and resolution
operations, Prolog fails to qualify as a full general-purpose theorem-proving system. There

are three main reasons for this:

e Many Prolog systems use an unsound unification algorithm
e Prolog’s inference system is not complete for non-Horn clauses

e Prolog’s unbounded depth-first search strategy is incomplete.

Nevertheless, Prolog is quite interesting from a theorem-proving standpoint because
of its very high speed as compared with conventional theorem-proving programs. The
objective of a Prolog technology theorem prover (PTTP)is to remedy the above deficiencies
while retaining as fully as possible the high performance of well-engineered Prolog systems.
PTTP also extends Prolog by providing the capability of printing the proofs it finds and
by being able to limit the size of the search space somewhat.

Our current effort to secure the advantages of Prolog for general-purpose theorem prov-
ing is the construction of an extended Prolog compiler. This process yields a few thousand

inferences per second (lips) for general-purpose theorem proving on the Symbolics 3600

LISP machine.

2 Implementation

Our PTTP extended Prolog-to-LISP compiler is written in COMMON LISP for the Sym-
bolics 3600 LISP machine. It translates Prolog procedures into COMMON LISP? functions

2Two nonstandard features of Symbolics COMMON LISP are used: (1) The stack-1let macro is employed
instead of the let special form in some places. This permits PTTP to run with all consing done on the stack
rather than in the heap, reduces execution time, and eliminates the need for garbage collection. (2) Symbolics
debugger functions are used to examine the stack upon completion of a proof in order to print it. This reduces
the overhead required to retain the information necessary to print the proof. When running on machines

other than the 3600, the usual let special form is used and proof printing is impossible.



that are then compiled by the LISP compiler. Being written in COMMON LISP, PTTP
can be run on other computers that support COMMON LISP, such as Sun workstations
and Macintosh personal computers. However, performance on other computers may suffer,
since it was developed and tuned for 3600s and not these other machines.

We shall not describe the implementation in great detail, since many of its aspects are
more matters of expediency than optimal design. Nevertheless, the current implementation
is sufficient to demonstrate the value of the ideas—namely, that complete theorem provers
with unprecedented inference rates can be implemented.

Each Prolog procedure (a list of clauses with the same predicate in the head literal) is
translated by our compiler into a single LISP function, to which is passed the procedure’s

arguments and a continuation. The procedure

plargs1).
plargs2) <- q(...).
plargs3) <- r(...), s(...).

is translated into something like

function p (args,cont);
begin
if unify(args,argsl) then cont();
undo-unify;
if unify(args,args2) then q(...,cont);
undo-unify;
if unify(args,args3) then r(...,s(...,cont));
undo-unify
end

This approach to Prolog compilation is also described by Cohen [9].
We discuss below Prolog’s deficiencies for general-purpose theorem proving and examine

the manner in which they are dealt with by the current PTTP implementation.

3 Sound Unification

The first obstacle to general-purpose theorem proving that must be overcome is Prolog’s

use of unification without the occurs check. For reasons of efficiency, many implementations



of Prolog do not check whether a variable is being bound to a term that contains that same
variable. This can result in unsound or even nonterminating unification. The following
Prolog programs “prove” that there is a number whose successor is less than itself and that

there is a person that is his own parent:

X<(X+1).
<- (Y+1)«Y.

parent (X,mother(X)).
<- parent(Y,Y).

The invalid results rely upon the creation of circular bindings for X and Y during unification.
Besides leading to incorrect results, circular bindings may lead to nonterminating unifica-
tion. If the values of X and Y in the first example are unified later, the unification would not
terminate unless a unification algorithm capable of handling infinite terms were used [10].

Although applying the occurs check in logic programming can be quite costly, it is less
likely to be too expensive in theorem proving, since the huge terms sometimes generated in
logic programming are less likely to appear in theorem proving.

Accordingly, we simply compile occurs checks in except when they are obviously unnec-
essary. During unification of the actual and formal arguments, which are initially variable-
disjoint, the first binding of a variable is guaranteed not to need the occurs check; only when
a second occurrence of a variable is seen does it become necessary to compile in an occurs
check. In the special case where no variables are repeated in one of the terms, i.e., when
the term is linear, no occurs check will be necessary for the entire unification operation.

There are alternative methods to assuring sound unification. Plaisted [28] has suggested
an elegant method, which we currently use in another version of PTTP, of transforming
clauses to isolate parts that may require unification with the occurs check. Repeated oc-
currences of variables are replaced by new variables so as to make the clause head linear.
Matching the clause head with a goal can then proceed without the occurs check and will
not create any circular bindings. The new variables in the transformed clause head are then

unified with the original variables by sound unification in the transformed clause body.



In the above examples, the clauses X<(X+1) and parent (X,mother (X)) are replaced by
the clauses X<(X1+1) <- unify(X,X1) and parent(X,mother(X1)) <- unify(X,X1), in
which the occurs check needs to be performed only during the unification of X and X1.

This transformation makes it easy to incorporate sound unification into Prolog systems
that lack it. A new built-in predicate unify that performs sound unification must be added,
but no changes to the Prolog-virtual-machine instruction set are strictly necessary.

An alternative approach is to allow creation of circular bindings by an always terminating
unification algorithm and to check at some point whether the bindings are circular. This
latter check can be performed immediately or be delayed, for example, until a possible proof
has been completed. Delaying the check may substantially reduce the cost of unification at
the risk of allowing many inferences to be drawn after a circular term is created—inferences
that could have been cut off by checking immediately. We have no data on the trade-off

between the cost of the occurs check and the amount of search saved.

4 Complete Inference System

Prolog’s inference system is complete for Horn sets of clauses, i.e., sets of clauses such that
no clause has more than a single positive literal. In developing a Prolog technology theorem
prover, the inference system must be extended to make it complete for non-Horn sets of
clauses as well.

However, one should consider only those means for extending Prolog’s inference system
that permit highly efficient Prolog implementation techniques. Some of the most impor-
tant factors contributing to the high speed of well-engineered Prolog implementations are
compilation and efficient representations for derived clauses and variable substitutions.

Prolog, using depth-first search and input resolution (in which one of the two clauses
resolved upon must be an input clause), needs to represent only a single derived clause
at a time. Variable binding during unification is accomplished by undoable destructive
assignment.

Two methods for handling substitutions are usually employed in conventional resolution



theorem proving. The simple method is to form resolvents fully by applying the unifying
substitution to the parent clauses. This is far more expensive in both time and space than
Prolog inference.

The second less frequently used method involves structure sharing [6], in which a resol-
vent is represented by the parents plus the unifying substitution. Whenever the resolvent
must be examined (e.g., for printing or resolution with another clause), it is traversed, with
variables being implicitly replaced by their substitution values. This is still less efficient than
the method employed in Prolog; resolution requires trees of variable-binding environments,
whereas Prolog requires only linear lists.

The use of input resolution also facilitates the compilation of Prolog programs. In input
resolution, there is a given set of input clauses such that (ignoring run-time assertions) these
clauses are always used as one of the two inputs to each resolution operation. It is thus
quite natural and effective to compile this given set of input clauses. It is more difficult and
expensive to use compilation in more general forms of resolution, since derived clauses can
be resolved with one another and there is consequently no fixed set of clauses to compile.

All this suggests that a good approach to building a PTTP is to employ a complete
inference system that is also an input procedure. Probably the simplest is [an affirmative
form of] the model elimination (ME) procedure [16, 17, 20].°

The ME procedure requires only the addition of the following inference operation to

Prolog to constitute a complete inference system for the first-order predicate calculus:

If the current goal matches the complement of one of its ancestor goals, then
apply the matching substitution and treat the current goal as if it were solved.

This added inference operation is the ME reduction operation. The normal Prolog
inference operation is the ME eztension operation. The two together comprise a complete

inference system for the full first-order predicate calculus.

? Actually, what we are describing here is more closely related to the problem-reduction-oriented MESON
procedure [20, 17], but we will use the term model elimination (ME) because it is more familiar and because

the MESON procedure is derived from the ME procedure.



The reduction operation provides an extra method for solving a goal in addition to the
standard Prolog methods. Just as solution of a goal by matching it against a unit clause in
Prolog does not in general preclude the need for considering alternative solutions, successful
application of the reduction operation cannot be used to eliminate attempts to solve the goal
by other methods, including use of the reduction operation with a different ancestor goal (in
both cases, alternative solutions do not have to be considered if the matching substitution
is empty, i.e., does not instantiate any variables, since the goal will have been solved in a
most general way).

The reduction operation is a form of reasoning by contradiction. If, in trying to prove
P, we discover that P is true if @) is true (i.e., @ D P) and also that @) is true if ~ P is
true (i.e., ~P D ), then P must be true. The rationale is that P is either true or false; if
we assume that P is false, then ¢) must be true and hence P must also be true, which is a
contradiction; therefore, the hypothesis that P is false must be wrong and P must be true.

Note that although exiting a goal in Prolog means that the goal, instantiated by the
current substitution, has been proved, in PTTP, when a goal is exited, all that has been
proved is its instantiation disjoined with all the ancestor goals used in reduction operations
in the solution of the goal. Thus, in the example of proving P from ¢ D P and ~P D @,

expressed by

p <= q.

q <- "p.
<- p.

when goal q is exited, P V ¢, but not ¢, has been proved. The top goal p, when exited,
has been proved; there are no ancestor goals whose negation could have been assumed in
the attempt to prove the top goal.

In Prolog, when a goal is entered, a choice point is established at which the alternatives
are matching the goal with the heads of all the clauses and, if the match is successful,
executing the body of the clause. In PTTP, it is also necessary to consider the additional

alternatives of matching the entered goal with the complement of each of its ancestor goals.



For each such successful match, we proceed in the same manner as if we had matched the
goal with the head of a unit clause.

The reduction rule is implemented by maintaining and using lists of the current ancestor
goals. Ancestor goals are efficiently indexed by predicate symbol and negation by keeping
separate lists in global variables for each predicate symbol or negated predicate symbol.
The compiled code for a procedure then includes code that maintains this list by pushing
the current goal onto it before execution of the body of nonunit clauses and popping it after-
wards. To perform the reduction operation, the code unifies the procedure’s arguments with
elements of the list of ancestor goals whose predicate is the complement of the procedure’s
predicate and executes the continuation for each successful match.

PTTP, unlike Prolog, requires contrapositives of the assertions to be supplied. For each
clause with n literals, n Prolog-like assertions must be provided so that each literal will
be the head of one of the Prolog assertions. Thus, the clause P(a)V P(b) is encoded as
the two Prolog assertions p(a) <- “p(b) and p(b) <- “p(a). PTTP can generate the
contrapositives automatically.

An important thing to note is that this is a complete inference system that does not
require the factoring operation. Basing an extension of Prolog on another form of model
elimination, equivalent to SL-resolution [14], would necessitate an additional factoring op-
eration that instantiates pairs of goals to be identical.

For several reasons we regard factoring as an undesirable operation to add. Adding
another inference operation requires further decision-making about how to order possible
inference operations. Unlike the extension and reduction operations that operate on the
current goal and on an input clause or an ancestor goal that is available on the stack, the
factoring operation operates on the current goal and an unsolved pending subgoal of an
ancestor goal that is not itself an ancestor goal and thus is not so readily available on the
stack. Although the factoring operation is theoretically necessary for the completeness of
many inference systems, it is rarely useful.

The extension of Prolog to full-first order predicate calculus introduces a feature that



is absent in Prolog deduction: indefinite answers. Prolog and PTTP can compute answers
to queries as well as determine their truth. When provided with the goal P(z), they will
attempt to find terms ¢ such that P(¢)is true. In non-Horn clause theorem proving, however,
there may be indefinite answers. For example, in proving Jz P(z) from P(a) V P(b), there
is no single term ¢ for which it is known that P(?) is true.

The example can be expressed in PTTP as

p(a) <- "p(b).
p(b) <- "p(a).
<- p(X).

This set of assertions and the described inference procedure are still insufficient to solve
the problem. Trying to solve p(X) by the first rule results in the subgoal “p(b), which
does not match any clause head or negated ancestor goal (the ancestor p(X) having been
instantiated to p(a) by the rule application). Trying to solve it by the second rule also
fails. To solve problems with indefinite answers, it is necessary to add the negation of the
query as another assertion (n contrapositive assertions if the query has n literals).

In this example, addition of the Prolog assertion “p(Y) results in the finding of two
proofs (p(X) can be matched with p(a) and “p(Y) with “p(b), and vice versa for the
second proof).* These proofs can be taken to compute the conditional answers that if
P(b) is not true then P(a) is and if P(a) is not true then P(b) is (i.e., = P(b) D P(a) and
=P(a) D P(b), which are both equivalent to P(a) VvV P(b)). In other words, either P(a) or
P(b) (or both) is true, but neither P(a) nor P(b) has been proved. In general, indefinite
answers are disjunctions of instances of the query. One instance of the query is included for
each use of the query in the deduction (i.e., its use as the initial list of goals and each use
of its negation).

PTTP can thus be used to derive either definite or indefinite answers. As in Prolog,

definite answers can be derived by simply solving a query. Indefinite answers can be obtained

*Note that no matter how many alternatives may appear in an indefinite answer (e.g., four in the case of
proving 3z P(z) from P(a)V P(b)VP(c)VP(d)), only a single occurrence of the goal’s negation “p(Y) needs to

be added, since any single assertion can always be used arbitrarily many times with different instantiations.



by solving the query with its negation included among the axioms and examining the proof
to find the query’s instantiations.

Unfortunately, because the derivation of indefinite answers requires inclusion of the
query’s negation among the axioms, an otherwise static assertional database may have to
be modified and recompiled when indefinite answers are sought.

Finally we note that PTTP can handle nonclausal assertions and goals in the same
manner as Prolog.

For example, the assertions

p<-q, r.
p <-q, s.

can be collapsed into the single assertion

p <- q, (r; s).

where the , operator specifies conjunction and the ; operator specifies disjunction.

This can result in a substantially diminished search space. PTTP can combine clauses
in this manner automatically or can be provided nonclausal assertions that are transformed
automatically into proper inputs for PTTP, i.e., into contrapositives with a single literal
as the first argument of the <- connective.> Wilkins [38] developed the first nonclausal
version of the model elimination procedure. Nonclausal formulas are also a vital feature of
the TABLOG logic programming language [24].

If the query is nonclausal, its negation must be included among the assertions even when
only definite answers are sought. For example, the proof of P(a)V P(b) from P(a)V P(b)

requires the clauses

p(a) <- "p(b).
p(b) <- "p(a).
“p(a).
“p(b).

<- p(a); p(b).

°The current implementation of PTTP has the limitation that OR branches must be of equal length (e-g.,

p <- q,(r;s) and p <- q,((r1,r2);(s1,s2)) are allowed, but p <- q,(r;(s,t)) is not).

10



where the assertions “"p(a) and “p(b) comprise the negation ~ P(a)A~ P(b) of the query
P(a)V P(b). Further refinement of the inference system may make it unnecessary to include

the negation of the query among the assertions.

5 Complete Search Strategy

Even if the problems of unification without the occurs check and an incomplete inference
system are solved, Prolog is still unsatisfactory as a theorem prover because few theorem-
proving problems can be solved using Prolog’s unbounded depth-first search strategy. The
first example in Section 8 illustrates the problem. Because neither negation nor function
symbols are used, Prolog’s unsound unification and incomplete inference system pose no
difficulties; Prolog fails to solve this example solely because of its unbounded depth-first
search strategy.

For theorem proving, Prolog’s unbounded depth-first search strategy must be replaced
by some complete search strategy, such as breadth-first search or the A* algorithm [26].
However, the arbitrary choice of a complete search strategy may result in losing much of
the efficiency of Prolog implementations. In particular, adopting breadth-first search or
the A* algorithm would make it necessary for Prolog to represent and retain more than
one derived clause at once. Moreover, such strategies would increase memory requirements
substantially.

A simple solution to this problem is to replace Prolog’s unbounded depth-first search
strategy with a bounded one. Backtracking when reaching the depth bound would cause
the entire search space, up to a specified depth, to be searched completely.

It then becomes necessary to determine the depth bound. Too small a depth bound will
result in failure to find a proof. Because the size of the search space grows exponentially as
the depth bound increases, too large a depth bound may result in an enormous amount of
wasted effort. An obvious solution is to run with increasing depth bounds; first one tries
to find a proof with depth 1, then depth 2, and so on, until a proof is found. This is called

depth-first iterative deepening [13] (we also called it staged or consecutively bounded depth-

11



first search [34, 35]). The effect is similar to breadth-first search except that results from
earlier levels are recomputed rather than stored. Thus, when searching is done to depth n,
level n — 1 results are being computed for the second time, level n — 2 results for the third
time, and results at level 1 for the nth time.

Despite a long history of depth-first iterative-deepening search, notably in chess-playing
programs [33], the strategy remained unanalyzed and unadvocated in theorem-proving and
problem-solving applications until quite recently.

Because of the exponential growth in the size of the search space as the depth bound
is increased, the number of recomputed results is not large in comparison with the size of
the search space. In particular, analysis shows that depth-first iterative-deepening search
performs only about % times as many operations as breadth-first search, where b is the
branching factor [35] (for b = 1, i.e., there is no branching, breadth-first search is O(n) and
depth-first iterative deepening is O(n?), where n is the depth). Korf [13] has shown that
depth-first iterative deepening is asymptotically optimal among brute-force search strategies
in terms of solution length, space, and time: it clearly always finds a shortest solution, the
amount of space required is proportional to the depth, and, although the amount of time
required is exponential, this is the case for all brute-force search strategies; in general, it is
still only a constant factor more expensive than breadth-first search.

Depth-first iterative-deepening search can also make use of heuristic information, in
contrast to unbounded breadth- and depth-first search; the latter are uninformed search
strategies that do not take into account heuristic estimates of the remaining distance to a
solution. Informed search strategies, such as the A* algorithm [26], utilize such information
to order the search space. Depth-first iterative-deepening search does not do that, but can
use an estimate of the minimum number of remaining steps to a solution to perform cutoffs
if the estimated number exceeds the number of levels left before the depth bound is reached.
These cutoffs result in lower effective branching factors for depth-first iterative-deepening
search than for breadth-first search. If these estimates uniformly exceed the number of

remaining levels by more than one, then one or more levels can be skipped when the next
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depth bound is set. This test can also be used to determine when a finite search space has
been fully explored. As with the A* algorithm, admissibility—the guarantee of finding a
shortest solution path first—is preserved, provided that the heuristic estimate never exceeds
the actual number of remaining steps to a solution.

The depth-first iterative-deepening search strategy is implemented by using the new
metalevel predicate search. The execution of search(Goal,Max,Min,Inc) attempts to
solve Goal by a sequence of bounded depth-first searches that allow at least Min and at
most Max subgoals, incrementing by at least Inc between searches. The last one, two, or
three arguments of search can be omitted with default values of infinity, zero, and one
assigned to Max, Min, and Inc, respectively. Max can be specified to put a bound on the
total search effort (the number of inferences performed in trying to solve the goal). Total
search effort can also be reduced by specifying Min when it is known that no solution can
be found with fewer than Min subgoals. When the branching factor is small and there are
few new inferences for each additional level of search, total search effort may be reduced by
skipping some levels by specifying an Inc value greater than one.

Skipping levels by specifying Min or Inc is clearly beneficial if the shallowest solution
is on a level that is searched. However, if the shallowest solution is on a skipped level, it
is possible for skipping levels to result in extra effort, as some portion of the deeper levels
will be searched before the shallowest solution (or some other solution) is discovered. For
example, if the shortest solution has 20 subgoals, and we search with a depth bound of 100,
although the level 20 solution will eventually be discovered, vast areas of the search space
up to depth 100 will probably be explored first. In evaluating the trade-off between saving
effort by skipping levels and sometimes wasting effort by finding a solution on a skipped
level during a deeper search, it appears to be beneficial to skip every other level (by setting
Inc to two) if the branching factor is two or less and detrimental if the branching factor is
four or more [35].

The search predicate succeeds for each solution it discovers. Backtracking into search

continues the search for additional solutions. When, as in theorem proving, only a single
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solution (proof) is needed, the search call can be followed by a cut operation (as in the
top-level goal <- search(p(b,a,c)), !, write(proved)) to terminate further attempts
to find a solution. Although search does not check whether the solution it found is the
same as a previously discovered one, it will avoid succeeding a second time with solutions
previously found during a level m search that are rediscovered in the course of a later level
n search.

At the beginning of each search, a depth bound representing the number of allowable
subgoals is established by search. The compiled code for each nonunit clause decrements
[undoably upon backtracking] this bound by the number of literals in its body. If the
resulting bound is negative, resolution with the clause fails and backtracking occurs. The
code also keeps track of the minimum amount by which the depth bound is exceeded; this
is used to increment the depth bound for the next search.

This process merely counts subgoals to estimate the number of steps remaining to a
solution and, as is required for admissibility, never overestimates their number, since each
subgoal will require at least one inference step for its solution. It is desirable to have better
(but still admissable) estimators; this may be difficult to achieve, however, because subgoals
can often be removed in a single step—by resolution with a unit clause or by reduction.
Other estimators are discussed in Section 6.

Depth-first iterative-deepening search can be easily parallelized. The simplest way would
be to assign the first n levels of search to the n available processors. As a processor completes
its exhaustive search of a level, it starts working on the next available level. This method
has been called depth-first parallel deepening. This approach has the virtues of requiring
little modification of the system (e.g., multiple running copies of PTTP must each have
their own versions of implementation variables that contain the depth bound, the lists of
ancestor goals, etc.) and, because the searches are independent, extremely low run-time
overhead. It can sometimes even yield a superlinear speedup, i.e., more than n times faster
for n processors. An extreme example of this would be if a solution were found by the very

first inference on level n. Searching the first n levels in parallel would result in an almost
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immediate discovery of a solution, while depth-first iterative deepening would require the
costly, complete search of level n — 1 before performing any level n inferences.

When the number of processors exceeds the number of levels that it is reasonable to
search in parallel (e.g., if 100 processors are available, but a solution is expected to be found
at level 20 or below, or when search of a single level simply takes too long) then methods
that partition the search space for a single level must be employed to take advantage of all
the available processors [29]. This is akin to the OR-parallel execution of standard Prolog

programs.

6 Existing Refinements

The changes made in unification, the inference system, and the search strategy are all
sufficient to create a Prolog technology theorem prover that is complete for the full first-
order predicate calculus. It is of course possible to refine this system by adding restrictions
on the current inference operations, by refining the search process, or by introducing entirely
new inference operations.

The ME procedure justifies the completeness of PTTP even if some goal states are
disallowed.

For example, PTTP remains complete even if we cause the the current goal to fail under

any of the following circumstances:

e A goal is identical to one of its ancestor goals. (It is unnecessary to attempt to solve
a goal while in the process of attempting to solve that same goal.)

e A goal with subgoals is complementary to one of its ancestor goals. (It is unnecessary
to solve a goal that is complementary to an ancestor goal by any means other than
the reduction operation.)

e A goal with subgoals is an instance of a unit clause. (It is unnecessary to solve a goal
that is an instance of a unit clause by any means other than extension by the unit
clause.)

Causing a goal that is identical to an ancestor goal to fail means that commutativity

assertions, such as p(X,Y,Z) <- p(Y,X,Z), do not by themselves lead to an infinite search

15



space, since the sequence of subgoals obtained by commutativity p(a,b,c), p(b,a,c),
p(a,b,c), ...is cut off at the first repetition of p(a,b,c).

Also, since there are a finite number of propositional symbols in any propositional-
calculus problem and any state in which a goal is either identical or complementary (unless
removed by reduction) to an ancestor goal is rejected by the above rules, there can be no
infinitely long deduction sequence for propositional-calculus problems. Thus, they can be
solved safely and completely without any depth bound.

Because the search space in theorem proving is generally exponential, it is always worth
considering criteria for failing goals, so that the exponentially many derivative deductions
can be eliminated. However, the desire to cut off deductions must be balanced against
the cost of checking whether the present deduction is acceptable according to the criteria.
Because depth-first iterative-deepening search requires minimal memory, there is no point
in reducing the number of inferences at the expense of overall increased running time. In
contrast to other theorem-proving systems, it seems that the only reasonable measure of
performance for PTTP is the execution time for a proof.

After experimentation with various alternatives, the current implementation employs

the following more limited forms of the restrictions:

e If the current goal (before unification with any clause in the procedure) is identical to
one of its ancestor goals, then fail.

o If the current goal is exactly complementary to one of its ancestor goals, then perform
the reduction operation and cut (disallow any other inferences on the current goal).

o If the current goal is an instance of a unit clause, then perform the extension operation
and cut (disallow any other inferences on the current goal).

These tests can quickly check for immediate violations of the ME restrictions, but will
not detect violations caused by the application of later substitutions. This is suboptimal
in terms of search-space size reduction, since some states that violate the restrictions are
not eliminated, but relatively sophisticated code for detecting all violations, depending
on demons associated with individual variables that check for identity of goals when the

variable is instantiated, has so far cost much more time than is saved by the diminished
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search space. Thus, these tests seem to be a reasonable compromise between the cost of
checking the ME restrictions and the amount of searching eliminated.

Two possible solutions to this problem are to develop yet more efficient means for
checking these conditions or to perform the checks less often. An effective means of reducing
the frequency of the checks while maintaining most of their value is to restrict them to the
earlier levels of the search. Given the exponential search space, cutoffs by earlier-level checks
reduce the overall search-space size and running time more than do checks that are near
the depth bound.

To make more effective the rule of cutting off alternatives if the current goal is an
instance of a unit clause, the clauses of a procedure are automatically reordered by the
PTTP compiler to put unit clauses ahead of nonunit clauses, unless precluded from doing
so by the user.

We have also experimented with a generalization of the rule to nonunit clauses. In [pure]
Prolog, if a goal is solved without being instantiated, alternative solutions clearly need not
be examined, since they could only solve the same or a more specific goal again. Thus,
it would be legitimate to place a conditional cut at the end of each clause that performs
the cut operation if and only if the invoking goal that matched the head of the clause did
not become further instantiated in the process of its solution (which condition should be
easily checkable by examination of the trail in Prolog implementations). In PTTP, it is
also necessary to verify that no ancestor of the invoking goal is further instantiated by a
reduction operation during solution of the invoking goal.

In some pathological examples, addition of the cut operation results in loss of complete-
ness when used with depth-first iterative-deepening search. Consider the example

p <- q(X), !.
q(s(X)) <- q(X).
q(0).

r <- 8.

S.

<- search(p,r).
The cut operation in the first clause is legitimate because the invoking goal p, which
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lacks variables, cannot have been instantiated. However, in PTTP the depth-first iterative-
deepening search process will never return a solution. When a proof with n subgoals is
sought for any n, the order of the clauses for q will cause an n subgoal proof of p to be
found before any shorter proof; alternatives for p are cut off, and no more subgoals are
allowed for the solution of r, which requires the subgoal s. To solve this problem, we treat
a goal with subgoals that is solved without instantiation as if its solution required zero
subgoals, cut off alternatives, and proceed to solve the remaining goals.

This refinement can substantially reduce the amount of search before a proof is found.
However, it infrequently increases the amount of search and has the disadvantage of not
always finding a shortest proof. This refinement often leads to proofs that use many more
subgoals than the current search limit specifies. For example, a 52-subgoal proof was found
with a search limit of 13 subgoals for Problem 82 in Table 1.

When performing depth-first iterative-deepening search, it is sometimes possible to use
better estimators of the number of remaining goals to complete a solution than to just
count the number of subgoals in the body of the clause. Recognizing that completing a
proof using the clause p <- q, r may really require more than two steps to solve q and
r can result in more cutoffs and a diminished search space. In the case of Prolog-like
problems comnsisting entirely of Horn clauses, when the reduction operation is impossible,
any predicate defined entirely by nonunit clauses will always require more than a single step
to solve. A goal will require in addition at least n subgoals in its solution, where n is the
number of subgoals in the shortest clause in the goal predicate’s definition (for Horn-clause
problems, this computation could easily take account of the minimum estimated costs of
the subgoals as well as simply their number).

For example, when attempting to solve the goal p by the clause p <- q, r, code using
the standard estimator reduces the depth bound by two (the number of literals in the body)
and proceeds if the depth bound is still not less than zero; code using the better estimator
reduces the depth bound by two but proceeds only if the depth bound is still not less than

cost(q) + cost(r), where cost(z) is the minimum estimated cost of solving .
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In the case of non-Horn-clause problems, however, even if a predicate is defined entirely
by nonunit clauses, a goal with that predicate might still be solved in a single step by
a reduction operation. A solution is to include the costs of q or r in the depth-bound
computation only if no ancestor goal with complementary predicate “q or “r exists. This is
a quick check that q or r cannot be removed by reduction. Code using the better estimator

reduces the depth bound by two and proceeds if the depth bound is still not less than

cost(q) if no ancestor goal ~q exists i cost(r) if no ancestor goal “r exists
0 otherwise 0 otherwise

Note that computing cost(q) and cost(r) can be done at compile-time, but that deter-
mining whether “q or “r ancestors exist and summing the results must be done at run-time.

It is certainly possible to devise more refined estimators that check more thoroughly
whether reduction is possible or that compute the cost of a goal depending on what ancestor
goals there are. However, more elaborate estimators may be too expensive to use, since they
may not result in enough reduction in the size of the search space to compensate for their
having to be computed each time a goal is resolved with a nonunit clause. It is important to
find estimators that are both effective in pruning the search space and require little run-time
computation.

Another interesting refinement of the search process is to treat some subgoals that
cannot lead to infinite deduction sequences as zero-cost subgoals for the purpose of iterative-
deepening search. If propositional goals were treated as zero-cost subgoals, propositional-
calculus problems could then be automatically solved while searching for a solution with no
counted subgoals.

It seems reasonable to treat wolf(X) and fox(X) as zero-cost subgoals in the rules
animal (X) <- wolf(X) and animal(X) <- fox(X). If they are treated as ordinary sub-
goals in a problem, the depth bound may result in the taxonomy of animals being searched
insufficiently deeply or, if it is searched deeply enough, the search may require so many
levels of search that the remaining depth bound is insufficient to solve the remaining goals.

The problem would then have to be solved with a greater depth bound. Whether generating
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the animals, as in the goal animal (X), or testing that something is an animal, as in the goal
animal(fido), it is often better to not charge the cost of searching the taxonomy against
the depth bound for the problem.

Application of the commutativity rule p(X,Y,Z) <- p(Y,X,Z) would be “free” if p(Y,X,Z)
is treated as a zero-cost subgoal. This has the flavor of building in commutative unification,
because both p(a,b,c) and p(b,a,c) can be derived from p(a,b,c) using no counted
subgoals.

The use of zero-cost subgoals builds in a bias toward using rules with zero-cost subgoals
(since they consume fewer search levels), increases number of inferences on any level, and
effectively increases the branching factor. Proofs using zero-cost subgoals will be found
with a lower depth bound with this refinement than without, often with great savings in
the number of inferences performed. However, the increased branching factor can result in
a greater number of inferences being performed if zero-cost subgoals appear insufficiently

often in the proof.

7 Possible Future Refinements

It is valuable to investigate other search-space-pruning restrictions. General methods for
“intelligent backtracking” in Prolog systems, of which the conditional-cut methods described
above are a special case, would also be beneficial for PTTP. The adaptation of Prolog intelli-
gent backtracking methods to PTTP is not entirely trivial. As it did for the conditional-cut
operation, the use of bounded search causes a problem for intelligent backtracking methods.
In Prolog, when solving the goals p(X), q(¥), r(X),if goal r fails, p can be directly back-
tracked to, because the computation of q and the bindings for Y it creates are irrelevant to
the failure of r. However, in PTTP, the computation of q can affect the success or failure
of r, by using subgoals that reduce the depth bound available for solving r. The goal r
might be made to succeed with alternative solutions of q that require fewer subgoals in their
solution.

The current implementation lacks either the model-elimination lemma facility [16, 17]
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or the similar C-reduction operation of the graph-construction procedure [32] that can be
used to shorten deductions by recognizing a goal as having been solved previously.

More exotic extensions are also worth considering. Among these are support for equality
reasoning and special unification for algebraic properties such as associativity and commu-
tativity, or for sorted logic or types.

An obvious first step toward including equality reasoning is the addition of a demod-
ulation (equality rewriting) facility that simplifies goals to an irreducible form before any
attempt to solve them. Essentially the same compilation methods as are used for Prolog
clauses can be applied to demodulators, making this equality simplification process quite
rapid. Though useful, demodulation is obviously insufficient for complete inference for
first-order predicate calculus with equality. Worse yet, adding demodulation without fuller
equality handling may make an otherwise complete inference system incomplete. Model
elimination with paramodulation [17] is complete, though the branching factor may be too

high for it to be effective in PTTP.

8 Examples

The first example is the problem of proving that a group is commutative if the square of
every element is the identity element. This is Problem 9, for which performance results
are given in Table 1; Problem 14 and Changé;Lee Problem 2 are the same except for the
order of the clauses. Problem 35 adds clauses for uniqueness, totality, inverse, equality, and
substitutivity.

In the example, we use the common convention that P(z,y, 2) denotes oy = z, where
o is the group multiplication operation. A clause-by-clause description of the input is as
follows: (1) e is a right identity, i.e., z o e = z; (2) e is a left identity; (3-4) the associativity
2

axioms wo z is w if and only if z 0 v is w, where z oy is uw and yo z is v;® (5) for all z, 22 is e;

SThese two 4-literal clauses for associativity can be collapsed into the single assertion p(X,V,W) <-
pU,Z, W), ((pEX,Y, 1), p(Y,Z,V)); ((p(U,Y,X), p(Y,V,Z)) after variables have been renamed and liter-

als reordered. This produces a smaller search space.
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(6) the hypothesis that aob is ¢; (7) the theorem that boa is ¢, and thus o is commutative

The special literal query is used to specify the initial goal in the proof attempt. The
term search(p(b,a,c)) attempts to solve the goal p(b,a,c) by using depth-first iterative-
deepening search and the conjoined cut operation ! discontinues the search after the first
solution is found.

Compilation time for the example is specified in parts: translation from extended Pro-
log to LISP by the PTTP compiler (0.284 seconds) and translation from LISP to machine
code by the Symbolics LISP compiler (14.436 seconds). There has been no effort to opti-
mize compilation time. A PTTP compiler that compiled directly to Prolog-virtual-machine
instructions could be expected to run as fast as the current PTTP compiler and would

eliminate the time-consuming LISP compilation.

GROUP2-EXAMPLE
The symbols u, v, w, x, y, and z denote variables.

1. p(x,e,x).

2. ple,x,x).

3. px,v,w) <- plx,y,u) , ply,z,v) , plu,z,w).
4. p(u,z,w) <- plx,y,u) , ply,z,v) , p(x,v,w).
5. p(x,x,e).
6. p(a,b,c).

7. query <- search(p(b,a,c)) , !.
Compilation time: 0.284 seconds (PTTP) + 14.436 seconds (LISP)

Start searching with no subgoals.

0 inferences so far. Start searching with at most 3 subgoals.
8 inferences so far. Start searching with at most 6 subgoals.
157 inferences so far. Start searching with at most 9 subgoals.

Proof:
Goal# Wff# WEff Instance

¢ 0 7  query <- p(b,a,c).

¢ 1 3 p(b,a,c) <- p(b,b,e) , p(b,c,a) , ple,c,c).

¢ 2) 5 p(b,b,e).

¢ 3) 4 p(b,c,a) <- p(a,c,b) , plc,c,e) , p(a,e,a).

( 4) 3 pa,c,b) <- p(a,a,e) , p(a,b,c) , ple,b,b).
( 5) 5 pla,a,e).

( 6) 6 p(a,b,c).
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(¢ n 2 p(e,b,b).
( 8) 5 p(c,c,e).
¢ 9 1 p(a,e,a).
( 10) 2 p(e,c,c).
1,136 inferences so far. Search ended by cut.

Execution time: 1,136 inferences in 0.262 seconds (4.34 K lips)

The proof is printed as a list of the final instantiations of the clauses that are used in
each proof step. The initial clause is query <- p(b,a,c). Its only subgoal is p(b,a,c)
whose solution starts on line (1) and uses the clause p(b,a,c) <- p(b,b,e) , p(b,c,a)
, ple,c,c). Its subgoals p(b,b,e), p(b,c,a), and p(e,c,c) are then solved, starting on
lines (2), (3), and (10), respectively. Indentation is used to help identify subgoal relation-
ships.

Of particular note in this proof is the fact that PTTP did not search slavishly for a
solution with 0, 1, 2, 3, ..., 9 subgoals, but instead skipped all the searches except those
for solutions with 0, 3, 6, and 9 subgoals. This was accomplished not by specifying a search
increment, but was done automatically, as described earlier. Upon completion of the search
for a solution with no subgoals, it was recognized that any solution must extend the initial
goal p(b,a,c) by either clause (3) or (4), since these are the only nonunit clauses. Each
of these introduces 3 subgoals, so a solution with only 1 or 2 subgoals is an impossibility.
The same thing occurred in the searches for solutions with 3 and 6 subgoals, as a result of
which levels 4, 5, 7, and 8 were skipped.

PTTP performed 0, 8, and 157 inferences cumulatively after completing the searches
for solutions with 0, 3, and 6 subgoals, respectively. Search for a solution with 9 subgoals

terminated successfully after 1,136 inferences had been performed.

The second example is part of a proof that any number greater than 1 has a prime
divisor. This is Problem 3 in Table 1; it is also, except for clause order, the same as
Chang&Lee Problem 8.

A clause-by-clause description of the input is as follows: (1) z divides ; (2) if z divides

y, and y divides z, then & divides z; (3) if # is not prime, then it has a divisor g(z) that is
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(4) greater than 1 and (5) less than z; (6) the induction hypothesis that for all z between
1 and a there is a prime f(z) that (7) divides z; (8) a is greater than 1; (9) the negation
of the theorem, necessary when seeking indefinite answers; (10) the theorem that a has a
prime divisor.

PRIM-EXAMPLE

The symbols x, y, and z denote variables.
1. d(x,x).

“d(x,y) ; “d(y,z) ; d(x,z).

p(x) ; d(g(x),x).

p(x) ; 1(1,g(x)).

p(x) ; 1(g(x),x).

“1(1,x) ; "1(x,a) ; p(f(x)).

“1(1,x) ; "1(x,a) ; d(f(x),x).

1(1,a).

plx) ; ~“dx,a).

O 0 ~N O 0 W N

10. query <- search((p(x) , d(x,a))) , !.
Compilation time: 0.875 seconds (PTTP) + 20.390 seconds (LISP)

Start searching with no subgoals.

0 inferences so far. Start searching with at most 1 subgoal.

3 inferences so far. Start searching with at most 2 subgoals.

9 inferences so far. Start searching with at most 3 subgoals.

27 inferences so far. Start searching with at most 4 subgoals.

57 inferences so far. Start searching with at most 5 subgoals.
110 inferences so far. Start searching with at most 6 subgoals.
194 inferences so far. Start searching with at most 7 subgoals.
355 inferences so far. Start searching with at most 8 subgoals.
593 inferences so far. Start searching with at most 9 subgoals.
1,082 inferences so far. Start searching with at most 10 subgoals.
1,828 inferences so far. Start searching with at most 11 subgoals.

Goal# Wff# WEff Instance

( 0) 10 query <- p(a) , d(a,a).

¢ 1 43 p(a) <- "1(1,g(a)).

¢ 2) 6a “1(1,g(a)) <- 1(g(a),a) , “p(f(glal))).

¢ 3) 5b 1(g(a),a) <- "p(a).

¢ 4 “p(a).

( 5) 9a “p(f(gla))) <- d(f(g(a)),a).

( 86) 2c d(f(ga)),a) <- d(f(g(a)),gla)) , d(g(a),a).
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« 7 7c d(f(ga)),gla)) <- 1(1,g(a)) , 1(g(a),a).
( 8) 1(1,g(a)).
¢ 9) 5b 1(g(a),a) <- “p(a).
( 10) “p(a).
(11)  3b d(g(a),a) <- “p(a).
( 12) “p(a).
( 13) 1 d(a,a).
3,104 inferences so far. Search ended by cut.

Execution time: 3,104 inferences in 0.646 seconds (4.81 K lips)

In this proof, lines (4), (8), (10), and (12) show subgoals being solved by the reduction
operation. In particular, the goals “p(a) of lines (4), (10), and (12) match the complement
of their ancestor goal p(a) in line (1), while the goal 1(1,g(a)) of line (8) matches the
complement of its ancestor goal “1(1,g(a)) in line (2).

Examination of the proof shows clauses (10) and (9), the theorem and its negation, each
appearing once in the proof. The instantiations used reveal the answer to be that either
(a) a is prime and a divides a or (b) f(g(a)), a prime divisor of a divisor of a, divides a.

This problem required all of PTTP’s extensions of Prolog: sound unification, complete

search, the reduction operation, and indefinite answers.

9 Performance

It is never an easy task to find a large number of problems with suitable accessibility, variety,
and difficulty. We used the Wilson and Minker study [39] as a source of problems.”

They took Problems 1-9 from Reboh et al. [31], problems 10-19 from Michie et al. [25],
problems 20-25 from Fleisig et al. [12], problems 26-58 from Wos [41], and problems 59-86
from Lawrence and Starkey [15]. This problem set has also been used to test the Markgraf

Karl Refutation Procedure connection-graph resolution theorem-proving program [7, 30].

"The technical-report version of their article includes a listing of the problems. Their tabulated results
show problems named EX5-T1, EX5-T2, LS76, and LS86, but the listing contains only a single problem
EXS5, a problem LS76 with two theorems, and no problem LS86. Thus, we tried 85 problems: EX5, LS76-T1,
LS76-T2, and all the other problems. Problems DBABHP, EX6-T1, EX6-T2, W0OS23, and WOS26 were

corrected.
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We have so far solved 78 of the 85 problems; 49 were solved in less (often much less)
than a second each (not counting compilation time); 70 were solved in less than a minute
each. Wilson and Minker solved 62 of the problems, while 63 were solved by the Markgraf
Karl Refutation Procedure. We, like the other researchers, generally had the most difficulty
with some of the Fleisig examples and the Wos examples. In principle, the Fleisig examples
are obtainable by a system like ours, since their system also implemented the model elim-
ination procedure. However, to control the search space, they used completeness-limiting
parameters, such as the number of times a clause could be used in a proof.

Wos, of course, solved all the problems (in 1965!) that he contributed to the Wilson
and Minker study. Our failure to solve some of them is attributable to the current limits of
PTTP—its need to explore an exponential search space, unmitigated by redundancy control
mechanisms like demodulation and subsumption, by pure backward chaining. Fleisig et al.
indicated that their implementation of model elimination rarely succeeded on problems with
large sets of clauses. The Wos examples have comparatively large numbers of clauses with
few predicates and many variables, so that they can be easily applied; we find some of them
too difficult.

Table 1 presents the results for solved problems.® The depth of proof is expressed as
m + n, where m is the number of initial goals (i.e., the length of the top clause of the

“**? is shown in place of the number of

derivation) and n is the number of subgoals.
subgoals if the problem is solved with the refinement that allows cutting off alternatives of
a goal that is solved by a nonunit clause without instantiation. These proofs often have
many more subgoals than a shortest proof and the subgoal limit that was in effect at the
time they were found. Time is measured on a Symbolics 3600 with an instruction fetch
unit (IFU). The times shown here are just the times spent searching for proofs; compilation

time and the time required for printing the proof and information about the search are not

included.

8These results were obtained in June-July 1987 by a version of PTTP that has not been distributed.
Versions distributed earlier do not have all the capabilities described in this paper, though many of these

results can be duplicated with those earlier versions.
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The results are for problem solutions with essentially no heuristic modification of the
problem inputs or search process. Experimentation has shown that these results can often
be substantially improved. The order of clauses in the input and the order of literals within
the clauses were maintained, except that clauses were reordered so that unit clauses precede
nonunit clauses (to facilitate pruning the search space when the current goal is an instance
of a unit clause). Large performance gains have often, though not uniformly, been found
when literals in the bodies of input clauses are reordered to put those with fewer free
variables earlier in the list of subgoals. Literal reordering can be easily done automatically
at compile-time.

Depth-first iterative deepening was performed using the default settings so that no levels
of search were omitted by user specification. Low branching factors make skipping every
other level of search quite effective for some of these problems. We also did not use the
suggested refinements of better estimators of the number of remaining steps to a solution
or zero-cost subgoals though these too can often result in much better performance.

PTTP’s ability to use nonclausal formulas was also not employed. Many of the results
shown here can be significantly improved upon by using nonclausal formulas. If clauses can
be combined into nonclausal formulas without reordering literals or clauses, the number of
inferences is guaranteed to decrease (in any search space in which the combined clauses are
used).

At the end of the table, we also provide results for the problems that appear in Chang
and Lee [8], pp. 298-305. All nine problems were solved in a total of a little more than one

second.

10 Related Work

There are several other efforts to design and construct Prolog-like systems that perform
sound and complete deduction for the full-first order predicate calculus. F-Prolog [36] is
very similar in its interfaces and basic algorithms to PTTP. It includes unification with the

occurs check, the reduction operation (solving a goal in the context of a set of assumptions
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that includes the negations of ancestor goals), and either simple bounded depth-first search
or depth-first iterative-deepening search. F-Prolog also performs nonclausal inference. Its
implementation in Prolog rather than as a Prolog extension makes it much slower than
PTTP.

Other inference systems that are complete extensions of Prolog for non-Horn clauses
have been proposed by Eder [11], Loveland [18, 19], Plaisted [28] and a group at Technische
Universitdat Miinchen (TUM) [3].

In Eder’s system, the non-Horn clause ~ PV~ @V RV S is represented by the clause r;
s <- p, q, and only the literals r and s are matched in resolution operations. Non-Horn
proofs involving case analysis are generated by resolution using lemmas consisting of “excess
positive literals”. Unlike PTTP, Eder’s system requires factoring. His system also tries to
eliminate some redundancy that we do not: in his system proving 3z P(z) from P(a)V P(b)
results in one proof, not two.

Loveland employs the same representation for non-Horn clauses and likewise resolves
only on the head literals. He intends his system to be used primarily for sets of clauses
that are “near-Horn”—i.e., only a few clauses have more than one positive literal. This is a
broad, useful class of problems. Loveland’s system operates by solving the initial query in
exactly the same way as Prolog, except that, when r or s of a non-Horn clause r; s <- p,
q is resolved on, the remaining head literal s or r becomes a deferred head. Upon completion
of a “proof” of the query, if any head literals were deferred, the proof is reattempted, this
time with goals being solvable by matching them to deferred heads. When no goals or
deferred heads remain, the query has been solved.

Plaisted has implemented a new theorem prover using a new method based on his
simplified problem reduction format [27]. His system also does not require contrapositives.
Plaisted emphasizes the unnatural backward-chaining searches that can result from the use
of contrapositives. For example, solving and(a,b) by and(X,Y) <- X, Y seems natural,
but use of the contrapositive "X <- “and(X,Y), Y is procedurally unattractive. Much

the same can be said for the functional reflexive axiom £(X,U)=f(X,V) <- U=V and its
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contrapositive U=V <- “f£(X,U)=£(X,V). His system does require the use of splitting rules
that may be difficult to control (the current system being intended to improve control
over the splitting rules in the original simplified problem reduction format). This inference
system also has some ability to do forward chaining as well as Prolog’s backward chaining.
The theorem prover includes demodulation to partially implement equality. Like PTTP,
Plaisted’s system uses depth-first iterative-deepening search. It allows user specification of
zero-cost rules by using the :-- connective instead of the usual : - connective. An important
operational difference between his system and PTTP is the caching of goal solutions to
eliminate repeated solutions. Caching can, of course, reduce the number of inferences
substantially. However, it requires different, less efficient representations of derived clauses
than PTTP because results have to be retained and, in addition, it requires more storage.
Caching and other features preclude the same high inference rate that is possible for PTTP;
Plaisted’s system currently runs at about 15 lips on a Sun 3. However, the control of
redundancy that caching provides makes his system competitive with PTTP in total solution
time for some problems.

TUM’s PROTHEO (Prolog-like theorem prover) is a Prolog-like extension based on the
connection method [4, 1]. It uses depth-bounded search, lemmas to eliminate redundant
computations, and has some bottom-up as well as top-down reasoning capabilities.

PTTP is also somewhat related to other efforts (too numerous to mention) on logic pro-
gramming and, as extensions for handling equality are developed, the efforts on rewriting-
and narrowing-based logic programming and functional programming. PTTP differs from
this work in its emphasis on doing sound and complete deduction, as well as in deemphasis
of its use as a programming language.

Another valuable method for using Prolog technology in theorem proving is being de-
veloped at Argonne National Laboratory [5]. The Argonne researchers plan to use Prolog
technology (an implementation of the Warren abstract machine [37]) to reimplement their
powerful interactive theorem-proving system LMA4ITP [21, 22, 23].

The work on PTTP has tried to extend Prolog to general-purpose theorem proving
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in such a way as to get the highest possible inference rate. We are willing to perform
more inferences if their individual cost can be kept low. The Argonne approach, on the
other hand, is to use Prolog technology to modify their system so as to make exactly the
same inferences as before, only faster. Model elimination is perhaps the closest match to
Prolog of an inference system for the full first-order predicate calculus, so that using Prolog
technology to speed up the other inference operations in LMA+ITP will not yield the
same high inference rate as can be attained by a Prolog technology theorem prover. Thus,
there is a trade-off between the higher inference rate of PTTP and the greater flexibility of

LMA+ITP that often allows much smaller search spaces.

11 Conclusion

A Prolog technology theorem prover has numerous advantages. For problems that are not
too difficult, namely, if the proof is not too deep or the branching factor too large, PTTP
can explore the search space rapidly and return an answer promptly. Given the use of depth-
first search, memory requirements are almost neglible. It can be a very helpful reasoning
utility. It is exceptionally straightforward to use, since its inference system and search
strategy are essentially fixed. Prolog computations can be embedded without difficulty in
the theorem-proving process because it is implemented as an extension of Prolog itself.
Because of its simplicity, it is comparatively easy to implement correctly and its behavior
is comprehensible.

The results in Table 1 show very competitive results that were obtained with little varia-
tion in the inference system or search strategy. The inference system and search strategy are
complete without qualification. We did not, for example, eliminate costly but theoretically
necessary inference rules like factoring, use extra inference operations like demodulation that
can sometimes result in loss of completeness, discard any derived clauses because they were
too long or their terms too complex, impose limits on the number of times a clause could
be used in a proof, or utilize any other heuristics to restrict the search space. Successful

proofs by other theorem-proving systems sometimes depend more on completeness-limiting
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restrictions than on the underlying inference system and search strategy; this is not the
case for PTTP, for which completeness is limited only by the amount of time we are willing
to allow in the search for progressively deeper proofs.

In solving these test problems, we did not even employ additional techniques (e.g., clause
and literal reordering, nonclausal formulas, skipping levels of search, better estimators of
number of remaining subgoals to a solution, or zero-cost subgoals) which we have determined
often yield much better performance.

Our prototype implementation is also definitely nonoptimal. A better design for the
3600 (with microcode support for a Prolog virtual machine [37]) could perhaps yield an
increase in speed by a factor of 5 or 10. Such a design would also reduce compilation time
and object code size. The current PTTP-to-LISP compiler is fast enough, though there
has been no effort to optimize it. However, compiling the resulting LISP code is somewhat
slow and the resulting object code quite large. Compiling directly to a virtual-machine
instruction set should not take much longer than compiling to LISP and the object code
would be much smaller.

Despite its high performance and many possible improvements, PTTP is not a panacea
for the problem of theorem proving in general. Solutions to the hardest problems will
probably always require human assistance in specifying strategies and in determining where
to search for a solution.

The major strength of PTTP—implementation of high-speed backward-chaining deduction—
is also its major weakness. Formulas sometimes have no computationally reasonable backward-
chaining procedural interpretation. For example, the associativity clause p(U,Z,W) <-
pX,Y,0), p(Y,Z,V), p(X,V,W), when applied to the goal p(b,a,c), will try to find in-
stances of X and Y whose product is b. Reordering the literals in the body does not yield
any more natural computation. Forward-chaining hyperresolution looks more attractive for
problems like this. The adoption of Prolog’s representation for derived clauses allows a very
high inference rate, but precludes clause retention for such operations as subsumption to

eliminate search-space redundancy. Deep proofs will be difficult to find.

31



For handling the hard problems that are currently beyond its reach, a Prolog technology
theorem prover can be improved by incorporating some of the refinements suggested above.
In addition, it may be speeded up by improvements in Prolog machine technology. It should
always be possible to build a PTTP that runs at a respectable fraction of Prolog’s speed.
Projected machines with execution measured in megalips would make possible a PTTP
orders of magnitude faster than the current one, which is already quite fast.

For hard problems, PTTP can be used as a reasoning component in a larger theorem-
proving system. For example, a Prolog technology theorem prover could play a role like that
of the Terminator [2] in the Markgraf Karl Refutation Procedure or of an implementation
of the linked inference principle [40] in the Argonne theorem provers.

It is our hope that, with PTTP, we have helped establish a new standard of performance

for theorem-proving programs working on problems comparable in difficulty to our examples.
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Table 1

Problem Number of Depth of Number of Run Time
Clauses Proof Inferences (sec)
1. BURSTALL 19 1411 690 0.132
2. SHORTBURST 11 1+ 5 35 0.005
3. PRIM 9 2+11 3,104 0.646
4. HAS-PARTS-T1 8 1+9 87 0.020
5. HAS-PARTS-T2 8 1423 14,598 4.834
6. ANCES2 7 2417 957 0.053
7. NUM1 7 1+5 21 0.004
8. GROUP! 6 1+ 3 5 0.002
9. GROUP2 7 1+9 1,136 0.262
10. EW1 6 1+ 6 37 0.003
11. EW2 5 24+ 5 32 0.003
12. EW3 9 3+15 771 0.049
13. ROB1 3 4+ 4 15 0.001
14. ROB2 7 1+9 1,402 0.320
15. DM 4 1+ 3 5 0.002
16. QW 3 3+ 9 1,406 0.300
17. MQW 5 24+ 4 535 0.158
18. DBABHP 14 1410 1,168 0.362
19. APABHP 18 1+13 1,707,214 872.509
20. EX4-T1 7 34H* 7,010 2.688
21. EX4-T2 7 24** 13,015 5.226
22. EX5 14 1+17 414,692,795  287,077.380
24. EX6-T1 8 4+14 9,170,188 3,244.129
25. EX6-T2 8 5+14 144,144 41.747
26. WOS1 17 1+9 139,068 57.629
27. WOS2 16 1+9 20,443 6.542
28. WOS3 20 14+ 2 12 0.004
29. WOS4 23 1412 9,061,115 4,152.200
30. WOShH 16 1+ 6 795 0.237
31. WOS6 20 1+ 8 12,707 4.236
32. WOST 19 1+ 6 574 0.172
33. WOS8 18 1+5 200 0.053
34. WOS9 20 1+ 6 863 0.277
35. WOS10 20 1+ 9 78,689 29.416
36. WOS11 22 1+ 7 9,135 3.576
37. WOS12 21 1+ 3 6 0.002
38. WOS13 22 3+ 3 51 0.013
39. WOS14 21 1+ 6 118 0.027
40. WOS15 23 1+15 91,884,537 39,560.500
41. WOS16 27 1+ 6 1,165 0.404
42. WOS17 30 1+7 21,534 8.871
43. WOS18 25 1+ 4 46 0.011
44. WOS19 33 1+7 9,997 3.701
45. WOS20 33
46. WOS21 30 1411 2,396,485 965.747
47. WOS22 34 1+13 73,528,154 36,694.406
48. WOS23 31 1+ 4 108 0.038
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Problem Number of Depth of Number of Run Time
Clauses Proof Inferences (sec)
49. WOS24 29 1+ 5 224 0.073
50. WOS25 36 1+ 5 181 0.077
51. WOS26 24
52. WOS27 30 1+ 5 157 0.045
53. WOS28 75
54. WOS29 40 1+ 7 16,956 5.942
55. WOS30 42 1+ 3 34 0.011
56. WOS31 23
57. WOS32 26 1+ 7 1,711 0.670
58. WOS33 26
59. LS5 4 24 4 31 0.005
60. LS17 12 3+ 6 175 0.030
61. LS23 6 1+ 6 268 0.067
62. LS26 10 1+ 6 34 0.007
63. LS28 13 1+ 6 1,322 0.843
64. LS29 13 1+ 6 975 0.622
65. LS35 6 1+12 8,224 2.846
66. LS36 20 1+11 1,399,752 547.850
67. LS37 18
68. LS41 11 1+ 2 9 0.003
69. LS55 13 1+ 3 57 0.017
70. LS65 20 1+ 8 16,674 6.160
71. LS68 15 1+ 1 2 0.001
72. LS75 16 1+ 6 3,364 1.280
73. LS76-T1 17 1+ 2 8 0.002
74. LS76-T2 18
75. LS87 22 1+ 8 59,222 23.344
76. LS100 9 1+ 3 7 0.002
77. LS103 14 1+11 1,826 0.443
78. LS105 14 1+ 4 34 0.006
79. LS106 14 1+ 4 34 0.007
80. LS108 16 14** 78,660 27.444
81. LS111 14 1+ 4 35 0.007
82. LS112 23 14** 73,415 31.293
83. LS115 21 1+ 6 109 0.032
84. LS116 16 1+11 7,897 2.343
85. LS118 29 14%* 132,903 48.614
86. LS121 21 14** 6,713 2.476
Changé&Lee 1 5 1+ 3 5 0.002
Changé&Lee 2 7 1+ 9 1,589 0.373
Changé&Lee 3 5 1+ 9 206 0.046
Changé&Lee 4 5 1+ 6 26 0.005
Changd&Lee 5 9 1+ 3 4 0.001
Changé&:Lee 6 9 1+ 6 26 0.005
Changd&sLee 7 7 1+5 24 0.004
Changd&Lee 8 9 2411 3,104 0.652
Changé&Lee 9 8 3+ 7 163 0.027
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