Equipping Robot Control Programs with First-Order Probabilistic Reasoning
Capabilities

Dominik Jain, Lorenz Mdsenlechner and Michael Beetz
Intelligent Autonomous Systems, Technische Universitdt Miinchen

{jain, moesenle,

Abstract— An autonomous robot system that is to act in a
real-world environment is faced with the problem of having
to deal with a high degree of both complexity as well as
uncertainty. Therefore, robots should be equipped with a
knowledge representation system that is able to soundly handle
both aspects. In this paper, we thus introduce an architecture
that provides a coupling between plan-based robot controllers
and a probabilistic knowledge representation system based on
recent developments in statistical relational learning, which
possesses the required level of expressiveness and generality.
We outline possible applications of the corresponding models
in the context of robot control, discussing suitable represen-
tation formalisms, inference and learning methods as well as
transparent extensions of a robot planning language that allow
robot control programs to soundly integrate the results of
probabilistic inference into their plan generation process.

I. INTRODUCTION

Autonomous robots that are to act in human environments,
which lack determinism by definition, must be equipped
with powerful probabilistic reasoning mechanisms in order
to make reasonable assumptions about the (future) state of
their inherently dynamic and stochastic environment. Not
only is probabilistic reasoning essential in solving high-
dimensional state estimation problems as well as in achieving
robust control programs by allowing the anticipation of likely
failures and enabling a choice of actions that will most
probably succeed; it is also the only way to enable an
autonomous robot to draw meaningful conclusions about the
complex interactions between entities (in particular, humans)
in its environment, which are indispensable in human-robot
interaction scenarios. Therefore, probabilistic reasoning is
required not only at a subsymbolic level, but also at the
symbolic level, which we advocate in this paper.

Consider, for example, an autonomous household robot
that is to assist in tasks such as setting the table, preparing
food or cleaning up after a meal. One of the most impressive
aspects of the way in which humans deal with such problems
is the way in which they handle uncertain information. When
given, for instance, the task of setting the table for breakfast,
people will infer who will participate in the meal, where the
participants will sit, what they will eat and what utensils
they will consequently require as well as where to put
them. Moreover, people will adequately adjust the way in
which they set the table upon receiving new information,
such as that Dominik will eat cereals rather than bacon
and eggs. People also have excellent heuristics on where to
look for things to be put on the table, and these heuristics
typically take vast amounts of context information such as
recent activity in the kitchen and spatial relationships into

beetz}@cs.tum.edu

account so as to determine a suitable order in which places
should be searched. All the control decisions related to such
tasks require reasoning in the light of uncertainty, and for
autonomous household robots to achieve a similar level of
competence in dealing with such tasks, it is vital that they be
equipped with knowledge representation systems that fully
support reasoning at appropriate levels of abstraction.

In particular, we want our models to be as general as possi-
ble — not specific to a particular instance of an environment,
such as a certain kitchen or household. For instance, we
might want to state that anybody who intends to eat cereals
is likely to use a bowl and a tablespoon (but might also
use a cup or a teaspoon). Therefore, first-order languages,
which allow universal quantification and thus abstract away
from concrete objects, are a suitable basis for our models.
They essentially provide us with the much-needed expres-
sive power of natural language. In recent years, numerous
approaches that seek to combine first-order representations
with the semantics of probabilistic graphical models have
been proposed in the subdiscipline of artificial intelligence
that has emerged as statistical relational learning [1]. This
combination precisely addresses the two main issues in real-
world environments: complexity and uncertainty. First-order
representations are well-suited to dealing with high degrees
of complexity by supporting universal rules that generalize
across objects having similar properties; and probabilistic
models allow for the representation of varying degrees of
uncertainty.

A statistical relational template model typically contains a
set of general first-order sentences that describe dependencies
among atomic sentences pertaining to objects belonging to
particular classes, the strength of which is quantified by
probabilistic parameters. For any concrete set of objects
belonging to these classes, the model can be compiled (via
a template mechanism) into a ground model that represents
a full-joint probability distribution over all the ground atoms
that can be constructed from the model’s set of logical pred-
icates and the set of objects it was combined with. Suppose
the template model contains only a single (weighted) rule Vp.
eats(p, Cereals) — uses(p, Bowl), which applies to all people
p. If this model is combined with a set of concrete people,
e.g. {Dominik, Michael}, the ground model will represent
the full-joint distribution over the set of possible worlds
implied by the ground atoms (boolean random variables)
eats(Dominik, Cereals), uses(Dominik, Bowl), eats(Michael,
Cereals) and uses(Michael, Bowl), i.e. a distribution over
24 = 16 possible worlds. Note that the representation of
the full-joint gives an autonomous robot the flexibility of

inferring arbitrary conditional probabilities, be they causal
or diagnostic in nature.

Since we as system designers or knowledge engineers
cannot generally quantify the degree of uncertainty that
applies to a particular aspect of the domain in question,
the probabilistic parameters of our models should be learnt
from data. In the context of modelling the environment of an
autonomous robot, the observations that have been made by
the robot itself or have been gathered by a sensor-enabled
environment and made accessible to the robot can be used
as training data for parameter learning. We assume that
the structure of the model, however, i.e. the specification
of possible dependencies in the domain, is given by expert
knowledge.

In this paper, we show how the powerful representational
paradigm of statistical relational models can be integrated
into robot control programs in such a way that they can
be applied by a robot system to perform its tasks more
adaptively, by parameterizing its plans and individual actions
with the available context information. We thus describe
an implementation of a coupling of robot control programs
with statistical relational reasoners, which encompasses the
selection of suitable representation languages, the collection
of training data, the implementation of learning mechanisms
and inference methods that meet the requirements of au-
tonomous robot systems, and extensions of a robot planning
language that support the interaction with the reasoning
system as well as the interpretation of probabilistic results.
As a running example, we consider the aforementioned
application scenario, which we extensively investigate within
the context of our research demonstrator, the Intelligent
Kitchen of the CoTeSys (Cognition for Technical Systems)
cluster of excellence: a household service robot (see Fig. 1)
that is to take on common household tasks.

Fig. 1. A B2I service robot with PowerCube arms in the Intelligent
Kitchen: (a) Schematic view; (b) RFID sensors, laser range scanners and
magnetic proximity sensors in the real environment

II. APPLICATIONS OF STATISTICAL RELATIONAL
MODELS

There are many situations in which an autonomous robot
can potentially benefit from probabilistic reasoning capabil-
ities. For example, many of the tasks of a service robot
are usually under-specified in the sense that not all the
information that is potentially relevant to successful handling

of the task is provided when the command is given. In
such situations, a robot can fill in the missing parts of task
specifications by inferring, in a nutshell, the most likely
specification and adjusting its control program appropriately.
The task of setting the table is a good example of such
a case: How the table is to be set depends on a number
of factors, such as the type of the meal and, in particular,
the participants and their individual requirements and habits.
Setting the table for an unknown group of four people
is an entirely different task than is setting the table for
four known members of the family, about whom we know
quite a bit from experience. In the former case, we should
probably be conservative and provide all the things that
could potentially be needed, while in the latter case, we
should probably take any knowledge we may have about
the seating order, consumption habits of the individuals and
perhaps even preferred utensils into account. If we do not
know who the people participating in the meal are going to
be, it could make sense to infer who is most likely to take
part given the type of the meal (e.g. breakfast), the day of
the week and the current time. Moreover, social structures
that may affect the participation of certain individuals can
be accurately captured in a relational model: If we know, for
instance, that Steve will take part and that Pete is Steve’s
friend, the model could indicate an increased probability for
Pete’s participation. Parameterizing a plan for table setting
with the knowledge represented by and retrieved from a
statistical relational model can thus be highly desirable, for it
allows us to adapt our default plans to the concrete situation
at hand, achieving highly individualized behaviour that is
inspired by past experience.

Another possible application is the process of context-
specific decision-making and plan selection. A robot that is
observing humans as they take actions or is given initial
commands to carry out certain actions can conclude from
context information what the most likely intentions of the
people it interacts with are, allowing it to anticipate necessary
future actions, which can subsequently be carried out without
the need for further instructions — provided that the robot
has a statistical relational model that captures precisely the
connection between sequences of actions and the respective
context. Furthermore, the plan to select for a particular task
may depend on certain facts that are not known to the robot.
Inferring the most likely truth value of the corresponding
facts can thus help to select appropriate plans. For instance,
a robot that is supposed to deliver an object to somebody
whose location or even whose presence in the household is
not known can use a model of people’s habits to infer the
most likely location given the information that we have (e.g.
time, day of the week, known facts about others) in order to
select a plan that is appropriate for delivery. If the person is
likely to be absent, a robot can first ascertain that the person
is really absent and then take measures to ensure delivery at
a later point in time or by different means.

Similarly, we can use probabilistic models to select heuris-
tics, e.g. search heuristics. A robot that initially takes on its
role as a household assistant can use models about common
layouts of kitchen environments to direct its search for
utensils whose locations are yet unknown by inferring the
most likely locations. For instance, it might be likely for

a wooden spoon to be in a drawer next to the stove if
there is such a drawer. Even a robot that is already familiar
with the environment may not know at all times where the
objects it may require are going to be located. Given a model
of how family members generally move objects around the
household as events take place, the robot can, however, infer
the most likely positions in order to determine a suitable
search order.

III. ARCHITECTURAL OVERVIEW

We will now briefly describe the architecture that we
implemented to support applications such as the ones de-
scribed above. For the sake of modularity, the probabilistic
reasoning engine and the robot controller that makes use
of it are realized as separate processes that interact via
remote procedure calls (RPCs). In particular, we use an RPC
implementation based on the YARP platform [2], which we
modified to work asynchronously.

: Observa&ions\‘ }—}‘ E:::’:i::

A Remote Procedure Calls >

Evidence, Queri
| l
Networks ~ <€———

ProbCog

Plan-Based
Inference

Control

Cogito

Bayesian Logic

Networks ~<€———

1 e

Fig. 2. Coupling of the plan-based control module (Cogito) and the
probabilistic reasoning module (ProbCog)

The basic architecture is shown in Figure 2. The plan-
based controller is implemented on top of an extended
version of the Lisp dialect that is the reactive plan lan-
guage, RPL [3]. It stores known facts about entities in the
environment in a knowledge base which can be used to
provide evidence to the probabilistic reasoner. Whenever
the control program is faced with a situation in which
probabilistic inference is necessary, e.g. an under-specified
task, it queries the probabilistic reasoning system by issuing
a request consisting of the name of the model to use as well
as a list of evidence variables (taken from its knowledge
base) and a list of query variables, where the variables are
simply logical ground atoms. The ProbCog reasoner, which
manages a pool of probabilistic models, then processes the
request by instantiating the selected model for the given
set of objects, running the inference method, and finally
returning the inference results in a reply. The robot controller
then processes the returned probabilities by applying suitable
operators (e.g. thresholding or argmax) and uses the pro-
cessed result to parameterize its plans or modify its control
program in general. Section VII will describe how this is
realized in more detail.

As a simple example, consider again the problem of
setting the table for breakfast. Assume that in the controller’s
knowledge base, we have been told that exactly three people
will participate, namely Anna, Bert and Dorothy — members
of the family that are known to our model. To set the table,
we need to know what utensils will be required at which
seat; therefore if we know what utensils people will probably

use and where they will sit, we have the information that
we need. Our problem translates to a probabilistic query as
follows,

P(sitsAtIn(?p, ?pl, M), usesAnyIn(?p, ?u, M) | (1)
mealT(M, Breakfast) A\ day(M, Thursday) N\
takesPartIn(P1, M) N\ name(P1, Anna) A
takesPartIn(P2, M) N\ name(P2, Bert) A
takesPartIn(P3, M) N\ name(P3, Dorothy))

i.e. there is a breakfast meal M, in which the three
people take part, and we are interested in the probability of
sitsAtln atoms telling us who will sit where and usesAnyln
atoms telling us who will use which utensils. The query
will return, for each person and place, the probability of
the corresponding sitsAtln atom, and, for each person and
utensil type, the probability of the corresponding usesAnyln
atom.

IV. REPRESENTATION FORMALISMS

In recent years, many representation formalisms that com-
bine first-order logic or a subset thereof with probabilis-
tic graphical models have been proposed, some based on
undirected probabilistic graphical models, others on directed
models. Markov logic networks (MLNs) [4] are based on
the former and are among the most expressive, for they
indeed support the full power of first-order logic. An MLN is
essentially a first-order logic knowledge base, where the for-
mulas correspond to soft constraints, the hardness of which
is represented in probabilistic parameters attached to the
formulas. Combined with a concrete set of objects/constants,
an MLN defines a ground Markov random field [5] that
has one boolean variable for every logical ground atom and
whose features are given by ground instances of the formulas,
the weights of these features being the parameters attached
to the formulas. For any concrete set of constants, an MLN
thus models the full-joint probability distribution over a set of
possible worlds (induced by the logical ground atoms), which
supports the inference of arbitrary conditional probabilities.

The expressiveness of MLNs does come at a price, how-
ever, for not only is learning generally more problematic [6],
inference also becomes more expensive and is therefore less
well-suited to near-real-time applications. Nevertheless, we
use them in cases where the added expressiveness is key.
In cases where we do not require the added expressiveness,
we use a representation that is based on directed graphical
models. Our representation, named Bayesian logic networks
(BLNs), can more or less be regarded as a dialect of multi-
entity Bayesian networks (MEBNSs) [7], in which one speci-
fies individual conditional probability distributions, MEBN
fragments (MFrags), which are applicable to a random
variable under certain circumstances and which collectively
define a template for the construction of a Bayesian network
for any given set of objects/constants. As a special feature,
our language specifically supports global logical constraints
on the distribution, which are realized as parameterized
logical MFrags that are always part of the evidence, i.e. all
instances of such constraints are required to be satisfied in
all ground networks.

For added convenience, the ProbCog framework supports
the conversion of BLNs to MLNs, such that learning al-

gorithms applicable to BLNs can be used to learn MLNs
and inference algorithms for MLNs can be used for BLNs.
The support for such conversions also allows us to extend
models with constraints unsupported by BLNs as needed,
transforming them to MLNs and continuing the modelling
process in the richer representation language.

V. LEARNING

For our models to be grounded in observations made in the
real world, we support learning methods. As outlined above,
we assume that the structure of the model, i.e. a specification
of possible dependencies, is given by a knowledge engineer.
For the table setting model, a simplified causal structure of a
stochastic process that might apply to the domain is shown
in Figure 3. We can adequately translate such a structure into
either conditional dependencies (MFrags) or logical formulas
(features of MLNS).

meal(m)

L» takesPartin(p,m)

person(p)

usedByAllin(u,m)

consumesAnyIn(p,f,m)

usesAnyIn(p,u,m) S type.

|
I food(f)

utensilu) ‘L— type

Fig. 3. Simplified structure of a stochastic process that applies to the table
setting model (not all variables shown), where the arrows indicate direct
(causal) influence.

The actual ProbCog learning stage then uses a training
database containing a list of ground atoms (atomic sentences
that directly correspond to sensory observations) in order
to learn the model parameters that most appropriately ex-
plain the observations that were made. To obtain a training
database, we collect data from various sources and translate
it into the logical format we require. For the purpose of
data acquisition, our Intelligent Kitchen is equipped with a
multitude of sensors (see Figure 1), including RFID sensors
in cupboards, on tables and in gloves worn by kitchen users;
laser range scanners; cameras; etc.

For the table setting model, the configurations in which
the table has been set can, for instance, be observed by an
overhead camera, and the point in time at which the data
should be stored can be identified by defining the time-
span in which a meal takes place as the time between
setting the table and cleaning up. The actual generation
of logical ground atoms for a set of observations is then
straightforward. Consider, for example, another scenario, in
which we want to record training data for a model that
is concerned with pick and place actions. The following
atoms representing a sequence of actions and situations
can, for example, be added to a training database based on
observations of RFID sensors alone:

Sensor Time Generated atoms
RFID:Cupboard; t

RFID:Glove p t+X

Data
ID_Cups
ID_Cups

performed(P1, A1, S1)
actionT(A1, Pickup)
place(A1, Cupboard;)
involves(A1, Cups)
succ(S1, S2)
performed(P1, Az, S2)
actionT(A2, Putdown)
place(Ag, Table)
involves(Az, Cups)

ID_Cups RFID:Table tHXx+y

From first recognizing the RFID of Cupjs in the cupboard and
then recognizing it in Person;’s glove, we can deduce that
there was some situation .S; in which the person performed a
pick up action at the containing cupboard that involved Cups,
and this information can be written using appropriate logical
atoms that match the representation in our model. In the
future, we plan to use more elaborate monitoring techniques
for actions, such as markerless tracking of human motion
based on multiple camera views [8], with added classifiers
for action recognition.

The actual learning algorithms that yield parameters from
the gathered training data are based on either maximum
likelihood or MAP estimation. In MLNs, even learning
needs to be done approximately, since an optimization of
the likelihood of the parameters given the possible world
embodied by the training data requires exact inference over
the model, so one usually resorts to approximations. Even
so, the learning problem as a whole is, unfortunately, ill-
posed in the sense that there is not a single optimal solution,
and different solutions generally imply different probability
distributions depending on the size of the domain for which
the MLN template is instantiated [6]. To solve this problem,
our implementations of learning algorithms for MLNs allow
the use of constrained optimization to impose necessary in-
tegrity conditions on the distributions. The problem can also
be circumvented by learning instead in the BLN framework
and then translating the model to an MLN — provided that
the dependency structure can be captured by a BLN. In
BLNSs, which make the causal structure of the model explicit,
maximum likelihood learning is particularly simple, as it
essentially reduces to counting occurrences of parent-child
configurations in the data. Figure 4 shows an exemplary part
of an MFrag of the table setting model indicating the con-
ditional distribution of the predicate consumesAnylIn(person,
food, meal).

/e
%
-

consumesAnyIn(p,g,m).
- 9
name(p) Frank

Bread

mealT(m) Dinner Lunch Breakfast Dinner

takesPartin(p,m) | True | Faise | True [Faise | True | Faise | True | Faise

True 16.7% | 0.0% | 0.0% | 0.0% | 96.7% | 0.0% | 87.5% | 0.0%

False 83.3% | 100.0% [100.0% | 100.0% | 3.3% |100.0% | 12.5% | 100.0%

Fig. 4. Parameters of a BLN

VI. INFERENCE

We have high demands on the reasoning capabilities of
our system, because if the probabilistic knowledge base is
to be queried by a robot controller, it needs to produce

results within short periods of time. Yet the results should
be approximately correct nonetheless. Given the NP-hardness
of probabilistic inference, exact inference is, unfortunately,
infeasible in all but the smallest of domains. We therefore
resort to approximate inference techniques, which are either
based on independent sampling, Markov chain Monte-Carlo
(MCMCO) or loopy belief propagation.

For BLNSs, the ProbCog inference module support various
sampling algorithms. As long as domains lack deterministic
dependencies and queries involve few evidence variables,
standard methods such as likelihood weighting [9] or Gibbs
sampling [10] will perform well. In the presence of unlikely
evidence, it becomes increasingly important for algorithms
to explicitly incorporate the evidence into the sampling
procedure if acceptable convergence rates are to be reached
— by, for instance, sampling backward from the evidence
(e.g. backward simulation [11]) or propagating the effect of
evidence variables before proceeding with forward sampling
(e.g. importance sampling based on evidence-prepropagation,
EPIS-BN [12]). In particular, we implemented backward
simulation and variants thereof that take more context infor-
mation as well as prior probabilities into account, achieving
improved convergence rates. We furthermore support EPIS-
BN and other state-of-the-art inference algorithms through
the inclusion of the SMILE library [13].

For MLNs, the only inference algorithm that has proved
to produce accurate results in real-world situations is MC-
SAT [14], which, unlike other algorithms, can soundly handle
deterministic dependencies. Our implementation of MC-SAT
supports additional constraints that are of particular impor-
tance in real-world domains, such as cardinality constraints
limiting the number of objects that a given object or group
of objects can be related to. (In the purely logical form,
cardinality restrictions cannot be used owing to exponential
blowup as a result of the normal form conversion required
by the algorithm.) Moreover, we achieve improved accu-
racy by fully maintaining model structure, i.e. we do not
decompose complex formulas into clauses. Nevertheless, the
ProbCog reasoner also includes an interface to the open-
source Alchemy system [15] for inference in MLNs.

Given the fact that real-world domains can be quite large,
it becomes increasingly important to consider alternatives to
performing inference in the ground model, i.e. the ground
Markov random field or Bayesian network. Lifted inference
methods, i.e. methods that explicitly exploit the repeated
structure of the ground models, essentially lifting the infer-
ence problem to the first-order level, are certainly worthwhile
exploring in the future [16], [17], [18].

As an example, consider the query (1). In our model,
it produced results that imply the configuration shown in
Figure 5(a) when assuming for each person the most likely
seating location and assuming that usesAnyIn atoms with a
probability over 0.05 should be considered to hold:

usesAnyIn(P1, Plate, M) 0.9981
usesAnyIn(P1, Fork, M) 0.0000
usesAnyIn(P1, Cup, M) 0.9136
usesAnyIn(P1, Platter, M) 0.0000
usesAnyIn(P1, Bowl, M) 0.0347
usesAnyIn(P1, Glass, M) 0.0000
usesAnyIn(P1, Knife, M) 0.9981

usesAnyIn(P1, Spoon, M) 0.0347
usesAnyIn(P1, Pitcher, M) 0.0000
usesAnyIn(P2, Plate, M) 0.9967
usesAnyIn(P2, Fork, M) 0.0000
usesAnyIn(P2, Cup, M) 0.8546
sitsAtIn(P1, Seatl, M) 1.0000

0.7815

sitsAtIn(P2, Seat2, M)

Notice that the results change considerably if we remove
from the evidence the identities of the three people (Figure
5(b)). The video accompanying this paper shows the (simu-
lated) robot performing specifically adapted plans based on
the inference results for these two cases.

* Glass.
* Spoon
« Bowl

—
(@ (b)
Fig. 5. Interpreted inference results.

VII. INTEGRATION WITH THE CONTROL PROGRAM

In this section, we will describe how the probabilistic
reasoning mechanism is integrated into the plan language
RPL (reactive plan language) [3], which is used for con-
trolling our kitchen robot. Plans written in RPL are the
basis of a transformational planning system [19] which
optimizes robot activities in a complex environment such
as a human household, based on the plan source code and
observations of the robot’s behaviour. We therefore require
our plan language to make use of highly declarative language
constructs such as with-failure-handling (indicating failure
handling and failure recovery code) or at-location (execution
of plan steps at a specific location). RPL, like every Lisp-
like language, provides a powerful mechanism to extend the
language with new commands but also, in contrast to most
other languages, with new special forms, e.g. for establishing
variable bindings.

To integrate probabilistic inference into the planning
framework, RPL is extended with a new (declarative) lan-
guage construct, likely-let. In analogy to the Lisp special
form let, it establishes a binding of variables to tuples of
atoms and the corresponding probabilities within the current
lexical context, based on a set of queries and a set of
evidences. Several applications of the resulting probability
distributions are conceivable. For instance, decisions may
be based directly on probabilities or we may be interested
in a list of the most likely atoms to parameterize a plan.
Therefore, likely-let also provides support for post-processing
returned probability distributions. When querying seating
locations, we require, for each person, a single location
at which to place the person’s objects, which is achieved
by the application of an argmax operator over the location
probabilities for every person. The result of a query for
utensils on the other hand should be post-processed by a

1 (likely—let

2 ((places

3 i query

4 ‘(sitsAtln ?person ?seating—location M)

5 rargmax ?person)

6 (utensils

7 :query ’(usesAnyIn ?person ?utensil M)

8 :threshold 0.05)

9 revidence

10 ((takesPartln Pl M) (name Pl ”Anna”)

11 (takesPartIn P2 M) (name P2 ”Bert”)

12 (takesPartIn P3 M) (name P3 ”Dorothy”)

13 (mealT M ”Breakfast™)))

14 (with—designators

15 ((table ’(the entity (name kitchen—table))))
16 (for—all —matching

17 (lambda ((?person ?place m)

18 (?person ?entity—type ?m))

19 (with—designators

20 ((obj (an entity (type ,entity—type)
21 (status unused)))
22 (seat (a location (on ,table)

23 (place ,place))))
24 (achieve (entity—on—entity

25 obj table

26 seat))))

27 (cross—product places utensil))))

Fig. 6. A table setting plan that uses probabilistic inference.

threshold operator, as we want to place all the objects on
the table where the usage probability is above a specific
threshold.

As an example, let us consider the plan for setting the table
as described in section III, where the three people named
Anna, Bert and Dorothy will participate and the type of
the meal is breakfast. This information is given as evidence.
We query the seating locations and the objects used by the
participants. The operators argmax and threshold are applied
in a post processing step. In the example code shown in
Figure 6, the variables places and utensils are bound to the
post-processed probability distributions. The variable places
is bound to a list containing the seating location with the
highest probability for every person:

((P1 Seatl M) (P2 Seat2 M) (P3 Seat0 M))

The variable utensils contains a similar but much longer list
owing to the application of the threshold operator.

Iteration is performed by iterating over the matching
elements of the cross product set generated by combining
the elements of places and utensils. The command for-all-
matching executes the lambda body (lines 19 — 26) only for
pairs matching the pattern ((?person ?place ?m) (?person
Zentity-type ?m)) (line 17).

As the example shows, probabilistic inference can pro-
vide a sound way of parameterizing under-specified plans.
Moreover, as previously sketched, it can help in supporting
the perception system in order to find objects more reliably
in new and even unknown environments, and it can support
decision-making and plan selection in general.

VIII. CONCLUSION

In this paper, we have outlined an architecture that equips
robot control programs with first-order probabilistic reason-
ing capabilities. We mentioned possible applications in the
context of a household service robot and we described our
implementation of both the probabilistic knowledge repre-
sentation component, which integrates learning and inference
in two formalisms, and the actual robot controller, which

modularly and transparently extends a robot plan language to
include the results of probabilistic inference into the process
of plan generation.

We strongly believe that any intelligent autonomous sys-
tem that is to act competently in a real-world environment
must accurately represent knowledge about its environment,
and, given the high degree of uncertainty of real-world
domains, it is clear that at least some parts of this knowledge
must be probabilistic. The architecture we proposed can be
seen as a first step towards a cognitive system that represents
complex knowledge in a declarative, flexible way and that is
in a position to employ that knowledge in ways that support
adaptive and reliable behaviour.

IX. ACKNOWLEDGEMENTS

This work is supported by the CoTeSys (cognition for
technical systems) cluster of excellence.

REFERENCES

[1] L. Getoor and B. Taskar, Introduction to Statistical Relational Learn-
ing (Adaptive Computation and Machine Learning). The MIT Press,
2007.

[2] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot
Platform,” International Journal of Advanced Robotics Systems, spe-
cial issue on Software Development and Integration in Robotics, vol. 3,
no. 1, 2006.

[3] D. McDermott, “A Reactive Plan Language,” Yale University,” Re-

search Report YALEU/DCS/RR-864, 1991.

M. Richardson and P. Domingos, “Markov Logic Networks,” Mach.

Learn., vol. 62, no. 1-2, pp. 107-136, 2006.

J. Pearl, Markov and Bayes networks: A comparison of two graphical

representations of probabilistic knowledge (CSD. University of

California at Los Angeles. Computer Science Department). University

of California at Los Angeles, 1986.

D. Jain, B. Kirchlechner, and M. Beetz, “Extending Markov Logic to

Model Probability Distributions in Relational Domains,” in Proceed-

ings of the 30th German Conference on Artificial Intelligence (KI-

2007), 2007, pp. 129-143.

[7] K. B. Laskey, “MEBN: A language for first-order Bayesian knowledge

bases.” Artif. Intell., vol. 172, no. 2-3, pp. 140-178, 2008.

J. Bandouch, F. Engstler, and M. Beetz, “Accurate human motion

capture using an ergonomics-based anthropometric human model,”

in Proceedings of the Fifth International Conference on Articulated

Motion and Deformable Objects (AMDO), 2008.

[9] R. M. Fung and K.-C. Chang, “Weighing and Integrating Evidence
for Stochastic Simulation in Bayesian Networks,” in UAI, 1989, pp.
209-220.

[10] W. R. Gilks, Markov Chain Monte Carlo in Practice.
Hall/CRC, December 1995.

[11] R. M. Fung and B. D. Favero, “Backward Simulation in Bayesian
Networks,” in UAI, 1994, pp. 227-234.

[12] C. Yuan and M. J. Druzdzel, “An importance sampling algorithm based
on evidence pre-propagation,” in UAI, 2003, pp. 624-631.

[13] M. J. Druzdzel, “SMILE: Structural Modeling, Inference, and Learn-
ing Engine and GeNIE: A Development Environment for Graphical
Decision-Theoretic Models,” in AAAI/IAAI, 1999, pp. 902-903.

[14] H. Poon and P. Domingos, “Sound and Efficient Inference with
Probabilistic and Deterministic Dependencies.” in AAAI. AAAI
Press, 2006.

[15] S. Kok, P. Singla, M. Richardson, and P. Domingos, “The Alchemy
system for statistical relational AL” http://alchemy.cs.washington.edu/,
2004.

[16] D. Poole, “First-order probabilistic inference,” in IJCAI, 2003, pp.
985-991.

[17] R. de Salvo Braz, E. Amir, and D. Roth, “Lifted First-Order Proba-
bilistic Inference,” in IJCAI, 2005, pp. 1319-1325.

[18] P. Singla and P. Domingos, “Lifted first-order belief propagation,” in
AAAL, 2008, To appear.

[19] A. Miiller, “Transformational planning for autonomous household
robots using libraries of robust and flexible plans,” Ph.D. dissertation,
Technische Universitidt Miinchen, 2008.

[4

=

[5

=

[6

=

[8

[t

Chapman &

