
Directional Resolution:

The Davis-Putnam Procedure, Revisited �

Rina Dechter
Information and Computer Science
University of California, Irvine

dechter@ics.uci.edu

Irina Rish
Information and Computer Science
University of California, Irvine

irinar@ics.uci.edu

Abstract

The paper presents algorithm directional res-
olution, a variation on the original Davis-
Putnam algorithm, and analyzes its worst-
case behavior as a function of the topological
structure of the theories. The notions of in-
duced width and diversity are shown to play
a key role in bounding the complexity of the
procedure. The importance of our analysis
lies in highlighting structure-based tractable
classes of satis�ability and in providing theo-
retical guarantees on the time and space com-
plexity of the algorithm. Contrary to previ-
ous assessments, we show that for many the-
ories directional resolution could be an e�ec-
tive procedure. Our empirical tests con�rm
theoretical prediction, showing that on prob-
lems with special structures, like chains, di-
rectional resolution greatly outperforms one
of the most e�ective satis�ability algorithm
known to date, namely the popular Davis-
Putnam procedure.

1 Introduction

In 1960, Davis and Putnam [Davis and Putnam, 1960]
presented their resolution algorithm. They proved
that a restricted amount of resolution, if performed
systematically along some order of the atomic formu-
las, is su�cient for deciding satis�ability. This algo-
rithm, in its original form, has received limited at-
tention, and analyses of its performance have empha-
sized its worst-case exponential behavior [Galil, 1977,
Goerdt, 1992], while neglecting its virtues. This hap-
pened, in our view, because the algorithm was im-
mediately overshadowed by a competitor with nearly
the same name: The Davis-Putnam Procedure. This

�This work was partially supported by NSF grant IRI-
9157636, by Air Force O�ce of Scienti�c Research grant
AFOSR 900136, by Toshiba of America, and by a Xerox
grant.

competing algorithm, proposed in 1962 by Davis, Lo-
gemann, and Loveland [Davis et al., 1962], searches
through the space of possible truth assignments while
performing unit resolution until quiesience at each
step. We will refer to the �rst algorithm as DP �

elimination and to the second as DP � backtracking.
The latter was presented in [Davis et al., 1962] as a
minor syntactic change to the �rst: the elimination
rule (rule III in [Davis and Putnam, 1960]) in DP-
eliminationwas replaced by the splitting rule (rule III0

in [Davis et al., 1962]) in order to avoid the memory
explosion encountered when empirically testing DP-
elimination. By refraining from an explicit analy-
sis of this exchange (beyond the short comment on
memory explosion), the authors of [Davis et al., 1962]
may have left the impression that the two algorithms
are basically identical. Indeed, from then on, most
work on the Davis-Putnam procedure quotes the back-
tracking version [Goldberg et al., 1982, Selman, 1992],
wrongly suggesting that this is the algorithmpresented
in [Davis and Putnam, 1960].

In this paper, we wish to \revive" the DP-elimination
algorithm by studying its virtues theoretically and
by subjecting it to a more extensive empirical test-
ing. First, we show that, in addition to determin-
ing satis�ability, the algorithm generates an equiv-
alent theory that facilitates model generation and
query processing. Consequently, it may be better
viewed as a knowledge compilation algorithm. Sec-
ond, we o�set the known worst-case exponential com-
plexities [Galil, 1977, Goerdt, 1992] by showing that
the algorithm is tractable for many of the known
tractable classes for satis�ability (e.g., 2-cnfs and
Horn clauses) and for constraint satisfaction problems
[Dechter and Pearl, 1987, Dechter and Pearl, 1991]
(e.g., causal theories and theories having a bounded
induced width). Third, we present a new parameter,
called diversity, that gives rise to new tractable classes.

On the empirical side, we qualify prior empirical
tests in [Davis et al., 1962] by showing that for uni-
form random propositional theories DP-backtracking
outperforms DP-elimination by far. However, for a

class of instances having a chain-like structure DP-
elimination outperforms DP-backtracking by several
orders of magnitude.

2 De�nition and preliminaries

We denote propositional symbols, also called variables,
by uppercase letters P;Q;R; :::, propositional literals
(i.e., P;:P) by lowercase letters p; q; r; :::, and disjunc-
tions of literals, or clauses, by �; �; :::. For instance,
� = (P _Q_R) is a clause. We will sometime denote
by fP;Q;Rg the clause (P _Q _R). A unit clause is
a clause of size 1. The notation (�_T) will be used as
shorthand for the disjunction (P_Q_R_T), and �_�
denotes the clause whose literal appears in either � or
�. The resolution operation over two clauses (� _ Q)
and (� _ :Q) results in a clause (� _ �), thus elim-
inating Q. Unit resolution is a resolution operation
when one of the clauses is a unit clause. A formula
' in conjunctive normal form (cnf) is a set of clauses
' = f�1; :::; �tg that denotes their conjunction. The
set of models of a formula ' is the set of all satisfy-
ing truth assignments to all its symbols. A clause �
is entailed by ', ' j= �, i� � is true in all models of
'. A Horn formula is a cnf formula whose clauses all
have at most one positive literal. A de�nite formula
is a cnf formula that has exactly one positive literal.
A clause is positive if it contains only positive literals
and is negative if it contains negative literals only. A
k-cnf formula is one whose clauses are all of length k

or less.

3 DP-elimination { Directional

Resolution

The DP-elimination [Davis and Putnam, 1960] is an
ordering-based restricted resolution that can be de-
scribed as follows. Given an arbitrary ordering of the
propositional variables, we assign to each clause the in-
dex of the highest ordered literal in that clause. Then
we resolve only clauses having the same index, and
only on their highest literal. The result of this re-
striction is a systematic elimination of literals from
the set of clauses that are candidates for future reso-
lution. DP-elimination also includes additional steps,
one forcing unit resolution whenever possible and an-
other preferring resolution over literals that appear
only negatively (called all-negative) or only positively
(called all-positive). There are many other interme-
diate steps that can be introduced between the basic
steps of eliminating the highest indexed variable (i.e.,
subsumption elimination). However, in this paper, we
will focus on the ordered elimination step and will in-
voke auxiliary steps whenever necessary. Additionally,
we will be interested not merely in achieving refuta-
tion, but also in the sum total of the clauses accu-
mulated by this process, which constitutes an equiv-

directional-resolution

Input: A cnf theory ', an ordering d = Q1; :::;Qn of its
variables.
Output: A decision of whether ' is satis�able. If it is,
a theory Ed('), equivalent to ', else an empty directional
extension.
1. Initialize: generate an ordered partition of the clauses,
bucket1; :::; bucketn, where bucketi contains all the clauses
whose highest literal is Qi.
2. For i = n to 1 do:
3. Resolve each pair f(� _ Qi); (� _ :Qi)g � bucketi. If
 = � _ � is empty, return Ed(') = ;, the theory is not
satis�able; else, determine the index of and add it to the
appropriate bucket.
4. End-for.
5. Return Ed(')(=

S
i
bucketi.

Figure 1: Algorithm directional resolution

alent theory with useful computational features. Al-
gorithm directional resolution (DR) (the core of DP-
elimination) is described in Figure 1. We call its out-
put theory, Ed('), the directional extension of '.

The algorithm can be conveniently described using a
partitioning of the set of clauses of a theory into buck-
ets. Given an ordering d = Q1; :::Qn, the bucket for Qi

bucketi, contains all the clauses containing Qi that do
not contain any symbol higher in the ordering. Given
the theory ', algorithm directional resolution process
the buckets in a reverse order of d. When processing
bucketi, it resolves over Qi all possible pairs of clauses
in the bucket and insert the resolvents into the appro-
priate lower buckets.

Theorem 1: (model generation)
Let ' be a cnf formula, d = Q1; :::; Qn an ordering,
and Ed(') its directional extension. Then, if the ex-
tension is not empty, any model of ' can be generated
in time O(jEd(')j) in a backtrack-free manner, con-
sulting Ed('), as follows: Step 1. Assign to Q1 a truth
value that is consistent with clauses in bucket1 (if the
bucket is empty, assign Q1 an arbitrary value); Step
i. After assigning a value to Q1; :::; Qi�1, assign to Qi

a value that, together with the previous assignments,
will satisfy all the clauses in bucketi. 2

Proof: Suppose, to the contrary that during the
process of model generation there exists a partial
model of truth assignments, q1; :::; qi for the �rst i� 1
symbols that satisfy all the clauses in the buckets of
Q1; :::; Qi�1, and assume that there is no truth value
for Qi that satisfy all the clauses in the bucket of
Qi. Let � and � be two clauses in the bucket of Qi

that clash. Clearly, � and � contain opposite signs
of atom Qi; in one Qi appears negatively and in the
other positively. Consequently, while being processed
by directional-resolution, � and � could have been re-
solved upon, thus resulting in a resolvent that must
appear in earlier buckets. Such a clause, if existed,

would not have allowed the partial model q1; :::; qi, thus
leading to a contradiction. 2

Corollary 1: [Davis and Putnam, 1960] A theory
has a non-empty directional extension i� it is satis�-
able. 2

Clearly, the e�ectiveness of directional resolution both
for satis�ability and for subsequent query processing
depends on the the size of its output theory Ed(').

Theorem 2: (complexity)
Given a theory ' and an ordering d of its propositional
symbols, the time complexity of algorithm directional
resolution is O(n � jEd(')j

2), where n is the number of
propositional letters in the language.

Proof: There are at most n buckets, each contain-
ing no more clauses than the �nal theory, and resolving
pairs of clauses in each bucket is a quadratic operation.
2

The bound above, although could be loose, demon-
strates the dependence of the algorithm's complexity
on the size of its resulting output.

Once Ed(') is compiled, determining the entailment
of a single literal involves checking the bucket of that
literal �rst. If the literal appears there as a unit
clause, it is entailed; if not, the negation of that lit-
eral should be inserted and the algorithm should be
restarted from that bucket. If the empty clause is gen-
erated in that process, the literal is entailed. To deter-
mine the entailment of an arbitrary clause, each literal
of the negated clause must be added to its appropri-
ate bucket and processing restarted from the highest
such bucket. This suggests that in knowledge bases,
whose queries involve a restricted subset of the alpha-
bet, that subset should be processed last by directional
resolution. Namely, the symbols of that subset should
appear early in the ordering. In summary,

Theorem 3: (entailment)
Given a directional extension Ed(') and a constant
c, the entailment of clauses involving only the �rst c
symbols in d is polynomial in the size of Ed('). 2

4 Tractable classes

Consider the following two examples demonstrating
the e�ect of ordering on Ed(').

Example 1 : Let '1 = f(B;A) ,(C;:A); (D;A);
(E;:A)g: For the ordering d1 = (E;B;C;D;A), all
clauses are initially contained in bucket(A) (highest
in the ordering). All other buckets are empty. Fol-
lowing the application of algorithm directional resolu-
tion along d1, we get (note that processing is in the
reverse order of d): bucket(D) = f(C;D); (D;E)g,
bucket(C) = f(B;C)g, bucket(B) = f(B;E)g.

The directional extension along the ordering d2 =
(A;B;C;D;E) is identical to the input theory, how-
ever, and each bucket contains at most one clause.

Example 2: Consider the theory '2 = f(:A;B);
(A;:C); (:B;D);(C;D;E)g: The directional exten-
sions of ' along the ordering d1 = (A;B;C;D;E) and
d2 = (D;E;C;B;A) are Ed1(') = ' and Ed2(') =
' [f(B;:C) ; (:C;D); (E;D)g, respectively.

In Example 1, A appears in all clauses; hence, it po-
tentially can generate new clauses when resolved upon,
unless it is processed last (i.e., put �rst in the order), as
in d2. This shows that the interactions among clauses
play an important role in the e�ectiveness of the al-
gorithm and may suggest orderings that yield smaller
extensions. In Example 2, on the other hand, all atoms
have the same type of interaction, each (except E) ap-
pearing in two clauses. Nevertheless, D appears pos-
itive in both clauses and consequently will not be re-
solved upon; hence, it can be processed �rst. Sub-
sequently, B and C appear only negatively in the re-
maining theory and can, likewise, be processed without
generating new clauses. In the following, we will pro-
vide a connection between the algorithm's complexity
and two parameters: a topological parameter, called
induced width, and a syntactic parameter, called di-
versity.

Note that directional resolution is tractable for 2-cnf
theories in all orderings, since 2-cnf are closed un-
der resolution (the resolvents are of size 2 or less)
and because the overall number of clauses of size 2
is bounded by O(n2). (In this case, unrestricted res-
olution is also tractable). Clearly, this algorithm is
not the most e�ective one for satis�ability of 2-cnfs.
Satis�ability for these theories can be decided in lin-
ear time [Even et al., 1976]. However, as noted earlier,
DR achieves more than satis�ability, it compiles a the-
ory that allows model generation in linear time. We
summarize:

Theorem 4: If ' is a 2-cnf theory, then algorithm
directional resolution will produce a directional exten-
sion of size O(n2), in time O(n3). 2

Corollary 2: Given a directional extension Ed(') of
a 2-cnf theory ', the entailment of any clause involv-
ing the �rst c symbols in d is O(c3). 2

4.1 Induced width

Let ' = '(Q1; :::; Qn) be a cnf formula de�ned over
the variables Q1; :::; Qn. The interaction graph of ',
denoted G('), is an undirected graph that contains
one node for each propositional variable and an arc
connecting any two nodes whose associated variables
appear in the same clause. The interaction graph of
'2 is given in Figure 2a. We can bound the size of all

A

B

C

D

E

A

B

C

D

E

AB

D C

E

(b) (c)(a)

Figure 2: The interaction graph of '2

theories having the same interaction graph using some
properties of the graph.

De�nition 1: Given a graph G and an ordering of
its nodes d, the parent set of a node A relative to d

is the set of nodes connected to A that precede A in
the ordering d. The size of this parent set is the width
of A relative to d. The width w(d) of an ordering d is
the maximum width of nodes along the ordering, and
the width w of a graph is the minimal width of all its
orderings [Freuder, 1982, Dechter and Pearl, 1987].

Lemma 1: Given the interaction graph G(') and
an ordering d: If A is an atom having k � 1 parents,
then there are at most 3k clauses in the bucket of A;
if w(d) = w, then the size of the corresponding theory
is O(n � 3w). 2

Proof: The bucket of A contains clauses de�ned on
k literals only. For the set of k�1 symbols there are at

most

�
k � 1
i

�
subsets of i symbols. Each subset can

be associated with at most 2i clauses (i.e., each symbol
can appear either positive or negative in a clause), and
A can be also positive or negative. Therefore we can
have at most

2 �

k�1X
i=0

�
k � 1
i

�
2i = 2 � 3k�1

: (1)

clauses. Clearly, if the parent set is bounded by w, the
extension is bounded by O(n � 3w). 2

When applied along d to a theory having graph G,
algorithm directional resolution adds clauses and, ac-
cordingly, the interaction graph changes.

De�nition 2: Given a graph G and an ordering d,
the graph generated by recursively connecting the par-
ents of G, in a reverse order of d, is called the induced
graph of G w.r.t. d and is denoted by Id(G). The
width of Id(G) is denoted by w � (d) and is called the
induced width of G w.r.t. d.

The graph in Figure 2a, for example, has width 2 along
the ordering A;B;C;D;E (Figure 2b). Its induced
graph is given in Figure 2c. The induced width of G
equals 2.

Lemma 2: Let ' be a theory. Then G(Ed(')), the
interaction graph of its directional extension along d,
is a subgraph of Id(G(')).

Proof: The proof is by induction on the sym-
bols along the ordering d. The induction hypothesis is
that all the arcs incident to Qn; :::; Qi in the G(Ed('))
appear also in Id(G(')). The claim is true for Qn,
since its connectivity is the same in both graphs. As-
sume that the claim is true for Qn; :::; Qi and we will
show that it holds also for Qi�1, namely, if (Qi�1; Qj)
j < i � 1 is an arc in G(Ed(')), then it is included
in Id(G(')). There are two cases: either Qi�1 and Qj

appeared in the same clause of the initial theory, ',
in which case they are connected in G(') and there-
fore also in Id(G(')), or else a clause containing both
symbols was introduced during directional resolution.
Assume that the clause was introduced while process-
ing bucket Qt; t > i � 1. Since Qi�1 and Qj appeared
in the bucket of Qt, each must be connected to Qt

in G(Ed(')) and, by the induction hypothesis, they
will also be connected in Id(G(')). Therefore, Qi�1

and Qj would become connected in Id(G(')), when
connecting the parents of Qt. 2

Theorem 5: Let ' = '(Q1; :::; Qn) be a cnf , G(')
its interaction graph, and w � (d) its induced width

along d; then, the size of Ed(') is O(n � 3
w�(d)).

Proof: Since the interaction graph of Ed(') is a
subgraph of Id(G), and since from lemma 1 the size
of theories having Id(G) as their interaction graph is

bounded by O(n �3w�(d)), the result follows. Note that
this deduction implicitly assumes that the algorithm
eliminates duplicate clauses. 2

It is known that if a graph is embedded in a k-tree its
induced width is bounded by k [Arnborg et al., 1987].
The de�nition is recursive.

De�nition 3: (k-trees)
Step 1: A clique of size k is a k-tree.
Step i: given a k-tree de�ned over Q1; :::; Qi�1, a k-tree
over Q1; :::; Qi can be generated by selecting a clique of
size k and connecting Qi to every node in that clique.

Corollary 3: If ' is a formula whose interaction
graph can be embedded in a k-tree then there is an or-
dering d such that the time complexity of directional
resolution on that ordering is O(n � 2k+1). 2

Finding an ordering yielding the smallest induced
width of a graph is NP-hard [Arnborg et al., 1987].
However, any ordering d yields a simple bound, w�(d),
of w�. Consequently, when given a theory and its in-
teraction graph, we will try to �nd an ordering that
yields the smallest width possible. Several heuristic or-
derings are available (see [Bertele and Brioshi, 1972]).
Important special tractable classes are those having
w� = 1 (namely, the interaction graph is a tree) and

A A

AA A A1

8A A

3 5 7

2 4 6

Figure 3: The interaction graph of '8 in example
3: '8 = f(A1; A2;:A3), (:A2; A4), (:A2; A3;:A4),
(A3; A4;:A5), (:A4; A6), (:A4; A5;:A6),
(A5; A6;:A7), (:A6; A8), (:A6; A7;:A8)g

those having w� = 2, called series parallel networks.
These classes can be recognized in linear time. As a
matter of fact, given any k, graphs having induced
width of k or less can be recognized in O(exp(k)).

Example 3: Consider a theory 'n over the alphabet
fA1; A2; ; :::; Ang. The theory 'n has a set of clauses
indexed by i, where a clause for i odd is given by
(Ai; Ai+1;:Ai+2) and two clauses for i even are given
by (:Ai; Ai+2) and (:Ai; Ai+1; :Ai+2). The reader
could check that the induced width of such theories
along the natural order is 2 and thus the size of the
directional extension will not exceed 18 � n. For this
graph, and for the natural ordering the induced graph
is identical to the original graph (see �gure 3).

4.2 Diversity

The concept of induced width frequently leads to a
loose upper bound on the number of clauses recorded
by directional resolution. In example 3 for instance,
only 8 clauses were generated by directional-resolution
when processed in the natural order, even with-
out eliminating subsumption and tautologies in each
bucket, while the computed bound is 18 � 8 = 144.
One source for inaccuracy could be that the induced
graph is not a tight bound for the interaction graph
of Ed('). Consider, for instance, the two clauses
(:A;B); (:C;B) and the order d = A;C;B. When
bucket B is processed, no clause is added because B is
positive in both clauses, nevertheless, nodes A and C

will be connected in the induced graph. In this sub-
section, we introduce a more re�ned parameter, called
diversity, based on the observation that a propositional
letter can be resolved upon only when it appears both
positively and negatively in di�erent clauses.

De�nition 4: (diversity of a theory)

Given a theory ' and an ordering d, let Q+
i (or Q�

i)
denote the number of times Qi appears positively (or
negatively) in bucketi relative to d. The diversity of

Qi relative to d, div(Qi), is Q
+
i � Q

�

i . The diversity
of an ordering d, div(d), is the maximum diversity
of its literals w.r.t. the ordering d and the diversity
of a theory, div, is the minimal diversity over all its
orderings.

min-diversity (')
1. For i = n to 1 do
2. Step i (after selecting Qi+1; :::; Qn): choose symbol
Q having the smallest diversity in '�

Sn

j=i+1 bucketj,

and put it in the i-th position.
3. End.

Figure 4: Algorithm min-diversity

Theorem 6 : Algorithm min-diversity (Figure 4)
generates a minimal diversity ordering of a theory.

Proof: Let d be an ordering generated by the al-
gorithm and let Qi be a literal whose diversity equals
the diversity of the ordering. If Qi is pushed up, its
diversity can only increase and if pushed down, it must
be replaced by a literal whose diversity is either equal
to or higher than the diversity of Qi. 2

The concept of diversity yields new tractable classes.
If d is an ordering having a zero diversity, algorithm
directional resolution will add no clauses to ' along d.
Namely,

Theorem 7 : Theories having zero diversity are
tractable and can be recognized in linear time. 2

Example 4: Let ' = f(G;E; :F);(G; :E;D); (:A;
F); (A;:E) (:B;C;:E) (B;C;D)g. The reader can
verify that the ordering d = A;B;C;D;E; F;G is a
zero-diversity ordering of '. Note that the diversity of
theories in example 3 along the natural ordering, is 1.

Zero-diversity theories generalize the notion of causal
theories de�ned for general networks of multivalued
relations [Dechter and Pearl, 1991]. According to the
de�nition, theories speci�ed in the form of cnfs would
correspond to causal if there is an ordering of the sym-
bols such that each bucket contains only one clause.
Therefore, a causal cnf theory has zero-diversity. Note
that even when a general theory is not zero-diversity
it is better to put zero-diversity literals last in the or-
dering (namely they will be processed �rst). Then,
the size of the directional-extension is exponentially
bounded in the number of literals having only strictly-
positive diversities. In general, however, the parameter
of interest is the diversity of the directional extension
Ed(') rather than the diversity of '.

De�nition 5: (induced diversity)
The induced diversity of an ordering d, div�(d), is the
diversity of Ed(') along d, and the induced diversity
of a theory, div�, is the minimal induced diversity over
all its orderings.

Since div�(d) bounds the added clauses generated from
each bucket, we can trivially bound the size of Ed(')
using div�: for every d, jEd(')j � j'j+n�div�(d). The
problem is that even for a given ordering d, div � (d) is

not polynomially computable, and, moreover, we did
not �nd an e�ective upper bound. Still it can be used
for some special cases. Clearly, for most theories and
most orderings
div � (d) > div(d). A special counter example we
observed are the zero diversity theories for which
div � (d) = div(d) = 0. We next identify a subclass
of diversity-1 theories whose div* remains 1.

Theorem 8: A theory ' = '(Q1; :::; Qn), has div� �
1 and is therefore tractable, if each symbol Qi satis�es
one of the following conditions: a. it appears only
negatively; b. it appears only positively; c. it appears
in exactly two clauses. 2

The set of theories in example 3 has div� = 2. Note
though, that we can easily create examples with high
w� having div� � 1.

4.3 A diversity graph for Horn theories

It is known that general Horn satis�ability can be
determined by unit resolution. Note that when DR
is processed in a dynamic ordering (as suggested in
the original DP-elimination), namely, when proposi-
tional letters that appear in a unit clause are pro-
cessed �rst (last in the ordering) and when new unit
clauses generated, their buckets are pushed up, we
have the essence of unit propagation. When incorpo-
rating this dynamic-ordering variation to directional
resolution, satis�ability will be determined polynomi-
ally (for Horn theories) if the algorithm terminates
once no unit clauses are available. However, execut-
ing the algorithm to full completion may result in long
output theories [McAllester]. We now show that def-
inite Horn theories of zero diversity can be given a
simple graph interpretation, yielding a more accurate
estimate of the extension's size for de�nite and Horn
theories.

One may question the usefulness of this exercise since
satis�ability is not a problem for Horn theories. Still,
directional resolution achieves more than satis�ability,
it compiles the Horn theory into a backtrack-free one
which might prove useful in some applications, espe-
cially those requiring multiple queries on a small subset
of the alphabet. For example, in the context of rule-
based programs where the rules represent actions to be
taken in real time, preprocessing by directional resolu-
tion posts constraints that will not allow the execution
of rules leading to future deadends. Also, analysis of
Horn theories may guide future extensions to general
cnfs which are near Horn.

De�nition 6: (diversity graph)
A Horn theory ' can be associated with a directed
graph called the diversity graph and denoted D(').
D(') contains a node for each propositional letter and
an arc is directed from A to B if there is a Horn clause
having B in its head (i.e., B is positive) and A in its

F

BA

C

E

D

B

A

F

C

D

E

B

C

F

A

(c)(b)(a)

Figure 5: Diversity graphs of Horn theories: a. D('1),
b. D('2), c. the induced diversity graph of '2

antecedent (i.e., A is negative). Two special nodes,
labeled \true" and \false" are introduced. There is an
arc from \true" to A if A is a positive unit clause, and
there is an arc from B to \false" if B is included in
any negative clause.

Example 5: Consider the following two Horn the-
ories: '1 = fA ^ B ! C; F ! A; F ! Bg, '2 =
fA^B ! C; F ! A; F ! B; C^D! E; E ! Fg.
The diversity graphs of '1 and '2 are presented in Fig-
ure 5. We see that '1 is an acyclic theory (it has an
acyclic diversity graph) while '2 is cyclic.

Theorem 9: A de�nite Horn theory has an acyclic
diversity graph i� it has a zero diversity.

Corollary 4: If ' is an acyclic de�nite Horn theory
w.r.t. ordering d, then Ed(') = '. 2

Note that the theorem cannot be extended to full Horn
theories. For example, the theory

' = f(A! B); (:A;:B); Ag

is a Horn theory whose diversity graph is acyclic. Yet
it has a non-zero diversity. Note also that de�nite the-
ories are always satis�able and they are closed under
resolution. We will now show that the notion of a
diversity graph will allow a more re�ned approxima-
tion of the directional extension of de�nite and Horn
theories.

De�nition 7: diversity width (div-width)
Let D be a directed graph and let d be an ordering of
the nodes. The positive width of a node Q, denoted
u+(Q), is the number of arcs emanating from prior
nodes, called its positive parents, towards Q. The neg-
ative width of Q relative to d, denoted u�(Q), is the
number of arcs emanating from Q towards nodes pre-
ceding it in the ordering d, called its negative parents.
The diversity-width (div-width) of Q, u(Q), relative to
d is maxfu+(Q); u�(Q)g. The div-width, u(d), of an
ordering, d, is the maximum div-width of each of its
nodes along the ordering, and the div-width of a Horn
theory is the minimum of u(d) over all orderings that
starts with nodes \ true" and \false".

Lemma 3: Given a diversity graph of Horn theory
D('), and an ordering d, if A is an atom having k
positive parents and j negative parents, then there are
at most O(2k+j �2j) non-negative clauses in the bucket
of A. 2

A minimumdiv-width of a graph can be computed by
a greedy algorithm like the min-diversity algorithm in
�gure 4, using div-width criteria for node selection.

As in the case of interaction graph, the diversity graph
changes when processed by directional resolution and
its diversity graph can be approximated by graph ma-
nipulation as follows:

De�nition 8: (induced diversity graph and width)
Given a digraphD and an ordering d, such that \true"
and \false" appear �rst, the induced diversity graph
of D relative to d, denoted IDd(D), is generated as
follows. Nodes are processed from last to �rst. When
processing node Qi, a directed arc from Qj to Qk is
added if both nodes precede Qi in the ordering and
if there is a directed arc from Qj to Qi and from Qi

to Qk. The div-width of IDd(D), denoted by u � (d),
is called the induced diversity width of D w.r.t. d or
div-width*.

Note that constructing the induced diversity graph is
at most O(n3) when n is the number of vertices.

Example 6: The induced diversity graph of D('2)
along the ordering d = F;A;B;C;D;E is given in
Figure 5. (This is a de�nite theory, so nodes \true"
and \false" are omitted). The added arcs are dotted.
The div-width of node E is 2 (its positive div-width
is 2 and its negative div-width is 1). In this case,
u(d) = u � (d) = 2.

We can show:

Lemma 4: Let ' be a Horn theory and d an order-
ing of its symbols; then the diversity graph of Ed('),
D(Ed(')), is contained in IDd(D(')) when d is an
ordering which starts with \true" and \false". 2

We can now bound the size of Ed(') for a Horn theory
':

Theorem 10: Let ' be a Horn theory and let d be
an ordering of its symbols that starts by \true" and
\false", having induced div-width, u� (d) along d; then
the size Ed(') restricted to the non-negative clauses is

O(n �u� (d) �2u�(d)) and the size of Ed(') restricted to

the negative clauses is O(2jfalsej), where jfalsej is the
degree of node \false" in the induced diversity graph.

Proof: Follows immediately from Lemma 3 and
Lemma 4. 2

Note that the bound on the number of negative clauses
may be very loose. Sometimes it will be worse than

the bound suggested by the width of the undirected
interaction graph. The bound on the number of non-
negative clauses though is always more accurate. It
is easy to see that for any de�nite theory, ', and any
ordering d, w � (d) � u � (d).

Our earlier observation that acyclic diversity graphs of
de�nite theories do not change when processed by di-
rectional resolution (using an ordering imposed by the
graph), suggests that new arcs are added only within
strongly connected components of the diversity graph.
We may, therefore, get a tighter bound on the size
of the non-negative clauses added to the directional
extension (beyond those in the original theory ') by
consulting each strongly connected component sepa-
rately.

De�nition 9: (Strongly connected components)
A strongly connected component of a directed graph is
a maximal set of nodes U such that for every pair A
and B in U there is a directed path from A to B and
a directed path from B to A. The component graph of
G = (V;E), denoted G

SCC = (V C
; E

C), contains one
vertex for each strongly connected component of G,
and there is an edge from component Ac to component
B
c if there is a directed edge from a node in A

c to a
node in B

c in the graph G.

It is well known that the component graph is acyclic
and that the strongly connected components can be
computed in time linear in the number of vertices and
edges of the graph. The connection between the size
of the directional extension of a de�nite theory and
its component-based induced div-width is presented
in the following theorem. The bound can be extended
to Horn theories using the \false" node.

Theorem 11: Let ' be a de�nite theory having a
diversity graph D. Let S1; :::; St be the strongly con-
nected components of G, let d1; d2; :::; dt be orderings
of the nodes in each of the strongly connected com-
ponents, and let d be a concatenation of the order-
ings d = di1 ; :::; dij; :::; dit that agrees with the par-
tial acyclic ordering of the components' graph. Let
u � (dj) be the largest induced div-width of any com-

ponent. Then, the size of Ed(') � ' is O(n2u�(dj)).
2

Consequently, we can restrict ourselves to admissible
orderings only: those that agree with the acyclic struc-
ture of the component graph. Hence, we can modify
the de�nition of induced div-width of a digraph along
such orderings to coincide with the largest induced div-
width among its strongly connected components.

Example 7: Consider again the theory '1 in Ex-
ample 5. Since the graph is acyclic, the strongly con-
nected components contain only one node, and there-
fore for any admissible ordering d, u � (d) = 0. In-
deed no clause will be added. For theory '2 there are

DP-backtracking(')
Input: A cnf theory '.
Output: A decision of whether ' is satis�able.
1. Unit propagate(');
2. If the empty clause generated return(false);
3. else if all variables are assigned return(true);
4. else
5. Q = some unassigned variable;
6. return(DP-backtracking(' ^Q) _
7. DP-backtracking(' ^ :Q))

Figure 6: DP-backtracking algorithm

two components, one including D only and another
including the rest of the variables. For the ordering
d = F;A;B;C;E on that component, only the arcs
(C;F); (B;F)(A;F) will be added, resulting in an in-
duced div-width of 2 (see Figure 5c).

To conclude, the main purpose of the analysis in this
section is to determine ahead of time the usefulness
of algorithm directional resolution for a given theory
and, more importantly, to suggest a good heuristic
ordering that may result in a small induced width,
small diversity, or small induced div-width for Horn
theories. We know that �nding an optimal width is
NP-hard, and we conjecture that �nding an optimal
induced div-width is also hard, nevertheless good or-
derings can be generated using various heuristics (like
min-width, min-diversity and min-div-width).

5 Bounded directional resolution

Since algorithm directional resolution is time and
space exponential in the worst case, we propose an
approximate algorithm called bounded directional res-
olution (BDR). The algorithm records clauses of size
k or less when k is a constant. Consequently, its
complexity is polynomial in k. Algorithm bounded
directional resolution parallels algorithms for direc-
tional k-consistency in constraint satisfaction prob-
lems [Dechter and Pearl, 1987].

6 Experimental evaluation

DP-backtracking has been implemented in C language
as a variant of the Davis-Putnam procedure (see Fig-
ure 6).

It has been augmented with the 2-literal clause heuris-
tic proposed in [Crawford and Auton, 1993] which
prefers a variable that would cause the largest num-
ber of unit propagations. The number of pos-
sible unit propagations is approximated by the
number of 2-literal clauses in which the vari-
ables appear. The modi�ed version signi�cantly
outperforms DP-backtracking without this heuristic

[Crawford and Auton, 1993]. In order to �nd a solu-
tion following DR we ran DP-backtracking using the
reverse ordering of variables used by DR, but without
the 2-literal clause heuristic. The reason is that we
wanted to �x the order of variables. As theory dic-
tates, no deadends occur when DP-backtracking is ap-
plied after DR on the same ordering. In this case DP-
backtracking takes linear time in the extension size.

AlgorithmBDR, since it is incomplete for satis�ability,
was followed by DP-backtracking augmented with the
2-literal clause heuristic.

Di�erent orderings of variables were used by the al-
gorithms: input ordering as used by the generator of
problems, min-width ordering and min-diversity order-
ing. Given an interaction graph, min-width ordering
selects a variable with the smallest degree, and puts it
last in the ordering; the node is eliminated from the
graph and the ordering continues recursively. Min-
diversity ordering have been described above.

In conjunction with DR we have experimented with
both static and dynamic orderings. Static orderings
were computed prior to search while dynamic order-
ings were computed at each step of the search. We
report the results on static orderings only since we
did not observe any signi�cant di�erence in DR's e�-
ciency when running the algorithms on both dynamic
and static orderings.

Several random generators were used in order to test
the algorithms over problems with di�erent structure.
To generate uniform k-cnfs we used the generator pro-
posed by [Mitchell et al., 1992] taking as input the
number of variables n, the number of clauses m, and
the number of literals per clause k. We generate each
clause randomly choosing k variables from the set of
n variables and by determining the polarity of each
literal with probability 0.5. Our second generator,
called mixed cnf generator, generates theories con-
taining clauses of length k1 and clauses of length k2.
The third generator, called chains, �rst used the uni-
form k-cnf generator to obtain a sequence of n inde-
pendent random subtheories, and then connected all
the subtheories in a chain by generating 2-cnf clauses
using one variable from the i-th subtheory and one
from the (i + 1)-th subtheory. Similarly we also con-
nected the n independent subtheories into a tree struc-
ture. The obtained results were similar to those on
chains, so we report only the result on chains. We
experimented also with random embeddings in k-trees
[Arnborg et al., 1987]. However, we were unable to
generate hard instances with more than few deadends.
Consequently, the performance of both DR and DP-
backtracking was similarly e�cient.

We measured CPU time for all algorithms, and the
number of deadends for DP-backtracking as charac-
teristics of problems' di�culty. We measured also the
number of new clauses generated by DR, the maximal

12010080604020
.01

.1

1

10

100

1000
DP-backtracking
DR

 DR vs. DP-backtracking
 Uniform 3-CNF, 20 variables
 20 experiments per each point

Number of clauses

C
P

U
 t

im
e

(l
og

 s
ca

le
)

Figure 7: DR and DP-backtracking on 3-cnfs

size of generated clauses, and the induced width. The
number of experiments shown in the �gures is usually
per each point unless stated otherwise.

6.1 Results for Problems with Uniform
Structure

We compared DP-backtracking with DR on randomly
generated k-cnfs for k=3,4,5 and on mixed theories. In
all these cases DP-backtracking signi�cantly outper-
forms DR. It is observed that the complexity of DR
indeed grows exponentially with the size of problems
(see Figure 7). We show the results for 3-cnfs with 20
variables only. On larger problems DR often ran out
of memory because of the large number of generated
clauses.

Since DR was so ine�cient for solving uniform k-cnfs
we next experimented with Bounded Directional Res-
olution (BDR) using di�erent bounds. Our experi-
ments show that when the input theory is a uniform
k-cnf and BDR uses a bound less than k, almost no
new clauses are added. On the other hand, when
the bound is strictly greater than k, the preprocessing
phase of BDR by itself is considerably worse than DP-
backtracking. The only promising case occurs when
the bound equals k. We observed that in this case rel-
atively few clauses were added by BDR which there-
for ran much faster. Also, DP-backtracking often ran
a little bit faster on the generated theory and there-
fore the combined algorithmwas slightly more e�cient
than DP-backtracking alone (see Figure 8).

6.2 Results for Chains

The behaviour of the algorithms on chains di�ers dra-
matically from that on uniform instances. We found
extremely hard instances for DP-backtracking, orders
of magnitude harder than those generated by the uni-
form model. In the Table 1 we compare performance

950900850800750700650600550500
0

100

200

300
DP-backtracking
BDR: bound = 3

 BDR vs. DP-backtracking
 Uniform 3-CNF, 150 variables
 10 experiments per each point

Number of clauses

C
P

U
 t

im
e

Figure 8: BDR with bound=3 and DP-backtracking
on 3-cnfs

of DP-backtracking on uniform 3-cnf problems and on
3-cnf chain problems of the same size. Chain prob-
lems contain 25 subtheories with 5 variables and 9 to
23 3-cnf clauses per subtheory, together with 24 2-cnf
clauses connecting subtheories in the chain. The cor-
responding uniform 3-cnf problems have 125 variables
and 249 to 599 clauses. We tested DP-backtracking on
both classes of problems. The table shows mean values
on 20 experiments where the number of experiments
is per a constant problem size. We used min-diversity
ordering for each instance.

First, we observed extremely hard chain problems with
many deadends around the cross-over point for chains,
orders of magnitude harder than uniform 3-cnf prob-
lems of the same size. Second, we note that the
crossover point for chain problems is shifted towards a
smaller number of clauses per number of variables.

Table 1: DP on uniform 3-cnfs and on chain problems
of the same size: 125 variables

Mean values on 20 experiments
Num Uniform 3-cnfs 3-cnf chains
of % Time Dead % Time Dead
clau Sat 1st ends Sat 1st ends
ses solu solu

tion tion
249 100 0.2 0 100 0.3 0
299 100 0.2 0 100 0.4 1
349 100 0.2 3 70 9945.7 908861
399 100 0.2 2 25 2551.1 207896
449 100 0.4 17 15 185.2 13248
499 95 3.7 244 0 2.4 160
549 35 8.5 535 0 0.9 9
599 0 6.6 382 0 0.1 6

On the other hand, DR behaved in a tamed way on
the chain problems and was sometimes more than 1000

Table 2: DR and DP on 3-cnf chains: 25 subtheories, 5 variables in each

Min-diversity ordering (static)

Mean values on 20 experiments

Num Num % Time: 1st Number Time: Time: Dead Time: Number Size Iduced

of of Sat solution, of SAT 1st ends SAT+1st of new of width

varia clau prob DP-back dead only, solution, after solution, clauses Max

bles ses lems tracking ends DR DP after DR DR clause

DR

125 249 100 0.34 0.2 0.64 0.30 0.0 1.10 61.4 4.1 5.1

125 299 100 0.41 1.4 1.42 0.32 0.0 1.92 105.2 4.1 5.3

125 349 70 9945.69 908861.2 2.23 0.33 0.0 2.72 130.8 4.0 5.3

125 399 25 2551.09 207896.3 2.79 0.19 0.0 3.08 131.1 4.0 5.3

125 449 15 185.19 13248.1 3.67 0.27 0.0 4.12 135.4 4.0 5.5

125 499 0 2.43 159.6 3.84 0.00 0.0 3.84 116.2 3.9 5.4

125 549 0 0.18 9.4 4.03 0.00 0.0 4.03 99.0 3.9 5.2

125 599 0 0.14 6.1 4.59 0.00 0.0 4.59 93.2 3.6 5.2

times faster than DP-backtracking. In Table 2 we
compare DP-backtracking with DR on the same chain
problems as in Table 1 for �nding one solution and
for deciding satis�ability only. A more detailed illus-
tration in Table 3 lists the results on selected hard
instances from Table 2 (number of deadend exceeds
4000).

Table 3: DR and DP on hard instances (number of
deadends > 4000): 3-cnf chains with 125 variables

Num SAT: DP-backtracking DR
of 0 or 1 Time: Dead Time: 1st
cls 1st solution ends solution
349 0 41163.8 3779913 1.5
349 0 102615.3 9285160 2.4
349 0 55058.5 5105541 1.9
349 0 21.2 2050 2.4
399 0 74.8 6053 3.6
399 0 87.7 7433 3.1
399 0 149.3 12301 3.1
399 0 37903.3 3079997 3.0
399 0 11877.6 975170 2.2
399 0 52.0 4215 3.3
399 0 841.8 70057 2.9
449 1 655.5 47113 5.2
449 0 60.5 4359 4.7
449 0 2549.2 181504 3.0
449 0 289.7 21246 3.5

As expected, DR signi�cantly outperforms DP-
backtracking for instances in which DP-backtracking
encountered many deadends. Figure 9a shows that the
CPU time of DP-backtracking grows linearly with the
numbers of deadends (note, that we use logarithmic
scale for CPU time) while in case of DR it remains al-
most constant. We have displayed CPU time on prob-
lem instances hard for DP-backtracking (the number
of deadends is greater than 1000).

All the experiments before used min-diversity order-
ing. When experimenting with di�erent orderings (in-
put and min-width) we observed similar results (Fig-
ure 9b,c).

We also experimented a little with the actual code
of tableau [Crawford and Auton, 1993], Crawford and
Auton's implementation of Davis-Putnam procedure
with various heuristics. We observed a similar be-
haviour on chain problems. Although some problem
instances hard for our version of DP-backtracking were
easy for tableau, others were extremely di�cult for
both algorithms.

We see that almost all the hard chain problems for
DP-backtracking were unsatis�able. Here is a possible
explanation. Suppose there is an unsatis�able subthe-
ory U in a chain problem whose variables are put at
the end of an ordering. If all the other subtheories
are satis�able, then DP-backtracking will try to re-
instantiate variables from the satis�able subtheories
each time it encounters a deadend. Not knowing the
structure hurts DP-backtracking.

Choosing the right ordering would help but this may
be hard to recognize without some preprocessing.
Other variants of backtracking that are capable of ex-
ploiting the structure like backjumping [Dechter, 1990]
would avoid useless re-instantiation of variables some-
times performed by DP-backtracking . Experiments
with backjumping on the same chain instances as used
in Table 2 showed that all the problems that were hard
for DP-backtracking were quite easy for backjumping
(see Figure 10). Backjumping also outperforms DR.

7 Related work and conclusions

Directional resolution belongs to a family of elimina-
tion algorithms �rst analyzed for optimization tasks
in dynamic programming [Bertele and Brioshi, 1972]
and later used in constraint satisfaction [Seidel, 1981,
Dechter and Pearl, 1987] and in belief networks
[Lauritzen and Spigelholter, 1988]. The complexity of
all these elimination algorithms can be bounded as a
function of the induced width w� of the undirected
graph characteristic of each problem instance. Al-
though it is known that determining the w� of an arbi-
trary graph is NP-hard, useful heuristics for bounding
w� are available.

7000060000500004000030000200001000000
1

10

100

1000

DP-backtracking

DR

 3-CNF CHAINS
25 subtheories, 5 variables in each
 10% of 180 experiments

Number of Deadends

C
P

U
 t

im
e

(l
og

 s
ca

le
)

(a) hard instances: more than 1000 deadends

191715131197533
.1

1

10

100

DP-backtracking
DR

 3-CNF CHAINS
 15 subtheories, 4 variables in each
 500 experiments per each point

Clauses per subtheory

C
P

U
-t

im
e

(l
og

-s
ca

le
)

(b) input ordering

181614121086420
.01

.1

1

10

100
DP-backtracking
DR

 3-CNF CHAINS
15 subtheories, 4 variables in each
 100 experiments per each point

Clauses per subtheory

C
P

U
-t

im
e

(l
og

 s
ca

le
)

(c) min-width ordering

Figure 9: DR and DP-Backtracking on chains

740690640590540490440390340290240
.1

1

10

100

1000

10000

100000
DP-backtracking
DR
Backjumping

 DP-backtracking, DR and Backjumping
 3-CNF CHAINS
 25 subtheories, 5 variables in each
 20 experiments per each point

Number of clauses

C
P

U
 t

im
e

(l
og

 s
ca

le
)

Figure 10: DP-Backtracking, DR and Backjumping on
chains: static min-diversity ordering

Since propositional satis�ability is a special case of
constraint satisfaction, the induced-width bound could
be obtained by mapping a propositional formula into
the relational framework of a constraint satisfaction
problem (see [Ben-Eliyahu and Dechter, 1991]), and
applying and applying adaptive consistency, the elim-
ination algorithm tailored for constraint satisfaction
problems [Dechter and Pearl, 1987, Seidel, 1981]. We
have recently shown, however, that this kind of pair
wise elimination operation as performed by direc-
tional resolution is more e�ective. And, while it can
be extended to any row-convex constraint problem
[Van Beek and Dechter, 1993] or to every 1-tight re-
lations [Van Beek and Dechter, 1993] it cannot decide
consistency for arbitrary multi-valued networks of re-
lations.

Speci�cally the paper makes three main contribu-
tions. First, we revive the old Davis-Putnam algo-
rithm (herein called directional resolution). Second,
we mitigate the pessimistic analyses of DP-elimination
by showing that algorithm directional resolution ad-
mits some known tractable classes for satis�ability and
constraint satisfaction, including 2-cnfs, Horn clauses,
causal networks, and bounded-width networks. In ad-
dition, we identify new tractable classes based on the
notion of diversity , and show a tighter bound for the
size of the directional extension of Horn theories based
on induced diversity width. Finally,Our empirical tests
show that, while on uniform theories directional res-
olution is ine�ective, on problems with special struc-
tures, like chains, namely with low w�, directional res-
olution greatly outperforms DP-backtracking which is
one of the most e�ective satis�ability algorithm known
to date.

In conclusion, although directional resolution outper-
formed DP-backtracking on some classes of problems,

it is not advocated as an e�ective method for gen-
eral satis�ability problems. Even when the structure is
right, there are other structure-exploiting algorithms,
like backjumping, that may be more e�ective in �nd-
ing a satisfying solution. What we do advocate is that
structure-based components should be integrated, to-
gether with other heuristics (like unit propagation),
into any algorithm that tries to solve satis�ability ef-
fectively.

At the same time, we have shown that, for some struc-
tured domains, directional resolution is an e�ective
knowledge compilation procedure. It compiles knowl-
edge into a form that facilitates e�cient model gener-
ation and query processing.

Acknowledgements

We would like to thank Dan Frost for experimenting
with backjumping, Eddie Schwalb and Rachel Ben-
Eliyahu for comments on this paper.

References

[Arnborg et al., 1987] S. Arnborg, D.G. Corneil and
A. Proskurowski, \Complexity of �nding embed-
ding in a k-tree", SIAM Journal of Algebraic Dis-
crete Methods, 8(2), 1987, pp. 177-184.

[Bertele and Brioshi, 1972] U. Bertele and F.
Brioschi, Nonserial Dynamic Programming, Aca-
demic Press, New York, 1972.

[Ben-Eliyahu and Dechter, 1991] R. Ben-Eliyahu and
R. Dechter, \Default logic, propositional logic and
constraints", in Proceedings of the National Con-
ference on Arti�cial Intelligence (AAAI-91), July
1991, Anaheim, CA, pp. 379-385.

[Crawford and Auton, 1993] J. Crawford and L. Au-
ton, \Experimental results on the crossover point
in satis�ability problems", in Proceedings of AAAI-
93, 1993, pp 21-27.

[Davis et al., 1962] M. Davis, G. Logemann and D.
Loveland, \A machine program for theorem prov-
ing", Communications of the ACM, 5, 1962, pp.
394-397.

[Davis and Putnam, 1960] M. Davis and H. Putnam,
\A computing procedure for quanti�cation the-
ory", Journal of the ACM, 7, 1960, pp. 201-215.

[Dechter and Pearl, 1987] R. Dechter and J. Pearl,
\Network-based heuristics for constraint satisfac-
tion problems", in Arti�cial Intelligence, 34, 1987,
pp. 1-38.

[Dechter and Pearl, 1991] R. Dechter and J. Pearl,
\Directed constraint networks: A relational frame-
work for causal models", in Proceedings of the
Twelfth International Joint Conference on Arti�-
cial Intelligence (IJCAI-91), Sidney, Australia, Au-
gust 1991, pp. 1164-1170.

[Dechter, 1990] R. Dechter, \Enhancement schemes
for constraint processing: Backjumping, learning
and cutset decomposition", Arti�cial Intelligence,
41, 1990, 273-312.

[Even et al., 1976] S. Even, A. Itai, and A. Shamir,
\On the complexity of timetable and multi-
commodity ow", SIAM Journal on Computing,
5, 1976, 691-703.

[Freuder, 1982] E.C. Freuder, \A su�cient condition
for backtrack-free search", Journal of the ACM,
29, 1982, 24-32.

[Galil, 1977] Z. Galil, \On the complexity of regular
resolution and the Davis-Putnam procedure", The-
oretical Computer Science 4, 1977, 23-46.

[Goerdt, 1992] A. Goerdt, \Davis-Putnam resolution
versus unrestricted resolution", Annals of Mathe-
matics and Arti�cial Intelligence, 6, 1992, 169-184.

[Goldberg et al., 1982] A. Goldberg, P. Purdom and
C. Brown, \Average time analysis of simpli�ed
Davis-Putnam procedures", Information Process-
ing Letters, 15, 1982, 72-75.

[McAllester] D. McAllester, Private communication

[Mitchell et al., 1992] D. Mitchell, B. Selman and H.
Levesque, \Hard and Easy Distributions of SAT
Problems", in Proceedings of AAAI-92, 1992.

[Seidel, 1981] R. Seidel, \A new method for solving
constraint satisfaction problems", in Proceedings of
the Seventh international joint conference on Arti-
�cial Intelligence (IJCAI-81), Vancouver, Canada,
August 1981, pp. 338-342.

[Selman, 1992] B. Selman, H. Levesque and D.
Mitchell, \A new method for solving hard satis�-
ability problems", in Proceedings of the Tenth Na-
tional Conference on Arti�cial Intelligence (AAAI-
92), San Jose, CA, July 1992.

[Lauritzen and Spigelholter, 1988] S.L. Lauritzen and
D.J. Spigelholter, \Local computations with prob-
abilities on graphical structures and their appli-
cations to expert systems", Journal of the Royal
Statistical Society, Series, B, 50, 1988, pp. 65-74.

[Van Beek and Dechter, 1993]
P. van Beek and R. Dechter. On the minimality
and decomposability of row-convex constraint net-
works, June, 1993. Submitted manuscript.

[Van Beek and Dechter, 1993]
P. van Beek and R. Dechter. Constraint tightness
vs global consistency November, 1993. Submitted
manuscript.

