
The Tractability of Subsumption in
Frame-Based Description Languages

Ronald J. Brachman
Hector J. Levesque

Fairchild Laboratory for Artificial Intelligence Research
4001 Miranda Avenue

Palo Alto, California 94304

ABSTRACT

A knowledge representation system provides an important ser-
vice to the rest of a knowledge-based system: it computes au-
tomatically a set of inferences over the beliefs encoded within
it. Given that the knowledge-based system relies on these infer-
ences in the midst of its operation (i.e., its diagnosis, planning,
or whatever), their computational tractability is an important
concern. Here we present evidence as to how the cost of comput-
ing one kind of inference is directly related to the expressiveness
of the representation language. As it turns out, this cost is per-
ilously sensitive to small changes in the representation language.
Even a seemingly simple frame-based description language can
pose intractable computational obstacles.

1. Introduction

There are many different styles of knowledge representation system
in use in Artificial Intelligence programs, but they all have at least this
in common: the representation system is supposed to provide both a
repository for the beliefs of the knowledge-based system in which it
is embedded, as well as automatic inferences over those beliefs. Typ
ical inferences automatically computed by AI representation systems
include inheritance of properties, set membership and set inclusion,
part/subpart inferences, type subsumption, and resolution.

Here we address a fundamental problem in the nature of the service
to be provided by knowledge representation systems: the greater the
expressiveness of the language for representing knowledge, the harder
it becomes to compute the needed inferences (see [7] for an overview
of this tradeoff). In this brief paper, we present a formal analysis
of the computational cost of expressiveness in a simple frame-based
description language. We illustrate how great care needs to be taken
in the design of a representational facility, even when our intuitions
about the language tell us that it is a simple one. As it turns out, even
an apparently modest representation language can prove intractable.

2. Subsumption in Frame Languages

Among the more popular representation languages in use today are
those based on the notion of frames (see, for example, [l], (31, and 191).
Frames give us the ability to define structured types; typically a frame
comprises a set of more general frames (its super/rames) as well as a
set of descriptions of the attributes (slots) of instances of the frame.
The most common type of slot description specifies a restriction on
the value of the filler of the slot for all instances of the frame. The
restriction can be as specific as a particular value that all instances of
the frame must exhibit (alternatively, the value may be just a de/auf&
in which case an individual inherits the value provided he does not
override it). or it mav be a more neneral constraint on attribute values,

in which case this value restriction is usually a pointer to another
frame. Less commonly, the number of required fillers is also specified
in a slot restriction (often in terms of a minimum and a maximum
number of attribute values). 1 The generalization relation between
frame and superframe, or between two frames where one is simply a
more restricted version of another, implicitly forms a tozonomy, or
inheritance Aierorchy.

Notationally, a frame might be defined by a list of superframes
(with either an explicit or implicit “isa” relation [Z]), followed by a
set of slot restrictions expressed by attribute/value-description pairs
(with attribute and value-description usually separated by a colon).
For example, the simple frame

[PERSON
child (2 1):
son : LAYYER
daughter: DOCTOR]

is intended to be a struct,ured type representing the concept of a person
that has at least one child, and all of whose sons (i.e., male children)
are lawyers and all of whose daughters are doctors. Similarly, the more
complicated frame,

[STUDENT, FEMALE
department: COMPUTER-SCIENCE
enrolled-course (2 3) :

[GRADUATE-COURSE
department: ENGINEERING-DEPARTMENT]]

is intended to be a structured type that describes female Computer
Science students taking at least three graduate courses in a department

within a school of Engineering.’

There is a natural correspondence between this frame form of de-
scription and noun phrases in natural language. For example, the
above frame might just as well have been written as “student and

a female whose department is computer-science, and who has at
least 3 enrolled-courses, each of which is a graduate-course whose
department is an engineering-department.” A simple set of trans-
lation rules would allow us to move easily from frame form to (almost)
readable English.’

‘While the use of number restrictions is not widespread, they have been used
extensively in KL-ONE (S] and Ianguages Iike it 141. They seem to be a useful
generalization of the existential reading of slots (see below), so we include them
here.

2Typically, frames are given nomu as well; for example, we might have labeled our
first example frame, “PROUD-PARENT”. We have explicitIy chosen to avoid these
here so as to eliminate confusion about their meanings. For this paper, we are
interested in relations among frames implied by their rlrcrctwe only (see below),
and will assume that atoms are all independent.

aFor example, the list of superframes would translate into a conjunction of nouns
(“otudent and a female”). A slot that had only one filler might translate into
a simple “whose” clause (‘whose deDutmmt is computer rciencr”). And a slot

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

One interesting property of these structured types is that we do a male, and a person (i.e., a man). In general, z is an (AHD cl c2 . . .
not have to state explicitly when one of them is below another in the
taxonomy. The descriptions themselves implicitly define a taxonomy
of subsumption, where type A subsumes type B if, by virtue of the form
of A and B, every instance of B must be an instance of A. In other
words, it can be determined that being an A is implicit in being a B,
based only on the structure of the two terms (no “user” needs to make
an explicit statement of this relationship). For example, without any
world knowledge, we can determine that the type “person” subsumes
the type

Yperson each of whose male friends is a doctor”,

which in turn subsumes

is a doctor Uperson each of whose friends
specialty is surgery.”

Similarly, “person who has at least 2 children” subsumes “person
who has at least 3 male children”.

The computation of analytic relations like subsumption (and others,
such as difijointnesesee 141) is arguably the most important service
to be provided by a frame description system (see [4] for evidence of
this). If this service is to be provided in a reasonable fashion to the
rest of a knowledge-based system, then these relations must be de
termined in a timely way. Thus, while expressive power is typically
the most immediate concern of representation language designers, it
cannot be &dressed without simultaneous consideration of its compu-

cn) iff z is a cl and a c2 and . . . and a cm. This allows us to put sev-
era1 properties (i.e., superconcepts or slot restrictions) together in the
definition of a concept. The ALL construct provides a value- or type
restriction on the fillers of a role (z is an (ALL r c) iff each r of z is a c).
Thus (ALL child doctor) corresponds to the concept of something
all of whose children are doctors. It is a way to restrict the value of
a slot at a frame. The SOME operator guarantees that there will be
a least one filler of the role named (z is a (SOME t) iff z has at least
one r). For instance, (AND person (SOME child)) would represent
the concept of a parent. This is a way to introduce a slot at a frame.
Note that in the more common frame languages, the ALL and SOME are
not broken out as separate operators, but instead, either every slot re-
striction is considered to have both universal and existential import, or
exclusively one or the other (or it may even be left unspecified).’ Our
language allows for arbitrary numbers 01 role fillers, and allows the
SOME and ALL restrictions to be specified independently. Finally, the
RESTR construct accounts for roles constrained by the types of their
fillers, e.g., (RESTB child male) for a child who is a male, that is, a
son (in general, y is a @SIR r c) of z iff y is an r of z and y is a c).

tational implications.

It is simple to map more standard notations into our frame lan-
guage. One reading of the the frame used aa the first example in this
paper is “person with at least one child, and each of whose sons
is a lawyer and each of whose daughters is a doctor”. In 3L1, that
reading would bc represented this way:

(AND person

Computational cost concomitant with expressive power has been
treated in depth in the arena of formal languages like that of first-
order logic. However, while frames have been used extensively in AI
systems, and have been found expressively adequate for some tasks,
their instrinsic computational properties have not been accounted for.
We have explored the complexity of determining subsumption in a
family of frame-based description languages, and have found that it is
in fact remarkably sensitive to what seem to be small changes in the
representational vocabulary. In order to illustrate this surprisingly
touchy tradeoff, we here examine in detail a representative frame lan-
guage and a simple variant.

3. A Formal Frame Description Language

Let us consider a simple description language, 3X!, with two major
syntactic types-concepts and roles. These will correspond to the typ
ically less well-defined notions of “frame” and “slot”. Intuitively, we
think of concepts as representing individuals, and roles as representing
relations between individuals. 3C has the following grammar:

(concept) ::= (atom)
] (AHD (conceptl). . . (concept,))
1 (ALL (role) (concept))
] (SOMEI (role))

(role) ::=(atom)
] (RETR (role) (concept))

While the linear syntax is a bit unorthodox, Z is actually a dis-

(SOME child)
(ALL (RESTR child male) lawyer)
(ALL (RESTR child female) doctor))

4. Formal Semantics

tillation of the operators in typical frame languages. Atoms are the
names of primitive (undefined) concepts. AND constructions represent
conjoined concepts, so for example, (AND adult male person) would
represent the concept of something that was at the same time an adult,

We now briefly define a straightforward extensional semantics for
3Z, the intent of which is to provide a precise definition of subsump
tion. This will be done as follows: imagine that associated with each
description is the set of individuals (individuals for concepts, pairs of
individuals for roles) it describes. Call that set the ezlension of the de-
scription. Notice that by virtue of the structure of descriptions, their
extensions are not independent (for example, the extension of (AND cl

~2) should be the intersection of those of cl and ~2). In general, the
structures of two descriptions can imply that the extension of one is
always a superset of the extension of the other. In that case, we will
say that t!le first subsumes the second (so, in the caSe just mentioned,
cl would be said to subsume (AND cl c2)).

Let D be any set and & be any function from concepts to subsets
of D and roles to subsets of the Cartesian product, D x D. So

E [c] E D for any concept c, and

&[r] C D x D foranyroler.

We will say that & is an eztension function over D if and only if

1. l[(AND cl . . . cn)] = n, E[c,]

2. l[(ALL r c)] = { z E D 1 if (2, y) E E (r] then y E &[c]}

3. E[(SOME r)] = { = E D I 3~ [(2, Y) E E[rl] }

4. &((RESTR r c)] = ((z, y) E D x D I (z, y) E E[r] and y E &[c]}.

Finally, for any two concepts cl and cp, we can say that cl is sub-
sumed by c2 if and only if for any set D and any extension function E

with multiple fillers might translate into a “who (or that) has n” construct (“who
has at least 3 enrolled-courrtr”), possibly followed by an “each of which” qual-
iEcation (“each of which is a gradu&tr-eourrr"). Finally, a slot with multiple
filters, but with no number restriction specified, would translate simply into an
“each (or all) of whose” qualification (“all of whose daulhtrr6 are doctorr").

‘See [s] for some further discussion of the import of languages like KRL. As it
turns out, the unversal/existential distinction is most often moot, because most
frame languages allow only single-valued slots. Thus the slot’s meaning is re-
duced to a simple predication on a single-valued function (e.g., the slot/value pair
6nr:iBt666r means inteoerfaaelzl)).

35

over D, E[cl] C C[cz]. Th a is, one concept is subsumed by a second t
concept when all instances of the first-in all extensions-are also in-
stances of the second. From a semantic point of view, subsumption
dictates a kind of necessary set inclusion.

For an illustration of how this is an appropriate view of subsumg
tion, let us consider two descriptions in 3l, dl and dz, where dl sub-
sumes d2:

dl = (AND person
(ALL child doctor))

dz = (AND
(AND person

(ALL child rich))
(AND male

(ALL (RE!XE child rich)
(AND doctor

(SOHE (BESIB specialty surgery) 1) 1) 1

dl corresponds to Yperson each of whose children is a doctor,” and
dz corresponds to “person each of whose children is rich, and a
lnale each of whose rich children is a doctor who has a surgery
specialty.”

A proof that dl subsumes dz, based on our formal definition
of subsumpt,ion, might go as follows. Let D be any set, E any
extension function over D, and z any element of f[dz]. By ap-
plying (1) above to d2 twice, we know that z E E[person] and
that by (2), if (z,y) E E[child], then y E &[rich], and so by
(4), (z,y) E l[(RE!XR child rich)]. Also, by (2), if (z, y) E
E[(RESIR child rich)], then, by (1) and the definition of dz, y E
C[doctor]. Putting these two together, we have that if (z,y) E
flchild], then y E f [doctor]. Since z E f [person], then by (2)
and (l), z E f[d;]. To summarize, because all of the children of a d2
are rich, and each of a dz’s rich children is a certain kind of doctor,
then all of d2’s children are doctors. Because any d2 is also a person,
the description dz is subsumed by the description dl.

5. Determining Subsumption

Given a precise definition of subsumption, we can now consider algo-
rithms for calculating subsumption between descriptions. Intuitively,
this seems to present no real problems. To determine if a subsumes b,
what we have to do is make sure that each component of a is “implied”
by some component (or components) of b, exactly the way we just de-
termined that dl subsumed dp. Moreover, the type of “implication”
we need should be fairly simple since 3L has neither a negation nor a
disjunction operator.

Unfortunately, such intuitions can be nastily out of line. In partic-
ular, let us consider a slight variant of 3L-call it 3L3-. 3L%- include9
all of 31 except for the RESTR operator. On the surface, the difference
between 3l- and 3f seems expressively minor. But it turns out that
it is computationally very significant. In particular, we have found
an O(n*) algorithm for determining subsumption in 3l-, but have
proven that the same problem for 3C is intractable, In the rest of this
section, we sketch the form of our algorithm for 3f- and the proof that
subsumption for 3l is as hard as testing for propositional tautologies,
and therefore most likely unsolvable in polynomial time.

Subsumption Algorithm for 3f -: SUBS?[a,bj

1. Flatten both o and b by removing all nested AND operators. So,
for example,

(AND z (AND y Z) w) becomes (AND z y z w).

2. Collect all arguments to an ALL for a given role. For example,

(AND (ALL r fAND u b ~1) (ALL r IAND . X\\l becomes

(AND (ALL r (AND a b c . X))).

3. Assuming a is now (AND al . . . a,) and b is (AND bl . . . b,), then
return true off for each ai,

(a) if a, is an atom or a SOME, then one of the b, is a,.

(b) if a, is (ALL r z), then one of the bj is (ALL r y), where
SUBS?lz,y].

The property of SUBS? that we are interested in is the following:

Theorem 1: SUBS? calculates subsumption for 3L]- in O(n*) time.

Before considering a proof of the correctness of this algorithm, notice
that it operates in O(n2) time (where n is the length of the longest
argument, say). Step 1 can be done in linear time. Step 2 might
require a traversal of the expression for each of its elements, and step
3 might require a traversal of b for each element of a, but both of these
can be done in O(n*) time.

Now, on to the proof that this algorithm indeed calculates sub-
sumption: first we must show that if SUBS?[a,b] is true then u indeed
subsume9 b (soundness); then we must show the converse (complete-
ness). Before beginning, note that the fint two steps of the algorithm
do not change the extensions of a and b for any extension function,
and so do not affect the correctness of the algorithm.

To see why the algorithm is sound, suppose that SUBS?[u,b] is true
and consider one of the conjuncts of a-call it 0.i. Either ui is among
the bj or it is of the form (ALL r 2). In the latter case, there is a
(ALL r y) among the b,, where SUBS?[z,y]. Then, by induction, any
extension of y must be a subset of x’s and so any extension of bj must
be a subset of a,‘9. So no matter what ai is, the extension of b (which
is the conjunction of all the bj’s) must be a subset of ui. Since this
is true for every a,, the extension of b must also be a subset of the
extension of a. So, whenever SUBS?[a,b] is true, a subsumes b.

The proof of the completeness of the algorithm is a bit trickier.
Here we have to be able to show that anytime SUBS?[a,b] is false,
there is an extension function that does not assign a to a supenet of
what it assigns b (i.e., in some possible situation, a b is not an a).
There are three cases to consider, and for each of them we will define
an extension function f over the set (0, l} that has the property that
1 is in the extension of every description, but 0 is in the extension of
b but not that of a.

1. Assume that some atomic ai does not appear among the bj, Let
f assign the ordered pairs ((0, l), (1,l)) to every role and (0, I}
to every atom except ai to which it assigns (1).

2. Assume that ai is (SOME r), which does not appear among the
bj. Let f assign (0, 1) to every atom and ((0, l), (1,l)) to every
role except r, to which it assigns only ((1,l)).

3. Assume that a, is (ALL r z), where if (ALL r y) appears among
the bj, then, by induction, z does not subsume y. Let f * be an
extension function not using 0 or 1 but such that some object
* is in the extension of y but not of 2. Then, let f contain f l
and assign (0, 1) to every atom and ((0, l), (1, 1)) to every role
except r, to which it assigns ((1, l), (0, *)}.

In all three cases it can be shown that f [u] is not a superset of f [b],
and so, that a does not subsume b when SUBS?[u,b] is false. So, in
the end, SUBS? is correct, and calculates subsumption in O(n2) time.

We now turn our attention to the subsumption problem for full
3L. The proof that subsumption of descriptions in 3T% is intractable
is baaed on a correspondence between this problem and the problem
of deciding whether a sentence of propositional logic is implied by an-
other. Specifically, we define a mapping n from propositional sentences
in conjunctive normal form to descriptions in 3Z that has the property
that for any two sentences (Y and /?, a logically implies ,9 iIf ~[a] is
subsumed bv 1rl/31.

36

T[Pl

Surv=e PI, ~2, . . ., pm are propositional letters
distinct from A, B, R, and S.

VP2 v... VP,V-Pn+l V-rP”+:!V...V-Pm] =
(AND (ALL (RESTR R pl) A)

. . .
(ALL (RESTR R p,,) A)
(SOE (mm R P,+I))

. . .

(som (== R ~4)

Assume that al, CT*, . . ., a* are disjunctions of
literals not using A, B, R, and S.

n[al hazh...hak] =
(AND (ALL (RESIR S (SOME (RESTR R A))) B)

(ALL (RESTR S +q]) B)
. . .

(ALL (RESTR S +k]) B))

A proof that this mapping has the desired property is given in [S].
What this means is that an algorithm for subsumption can be used
to answer questions of implication by first mapping the two sentences
into descriptions in 3L and then seeing if one is subsumed by the other.
Moreover, because r can be calculated efficiently, any good algorithm
for subsumption becomes a good one for implication.

The key observation here, however, is that there can be no good
algorithm for implication. To see this, note that a sentence implies (ph
-p) just in case it is not satisfiable. But determining the satisfiablity
of a sentence in this form is NP-complete [5]. Therefore, a special case
of the implication problem (where the second argument is (p A -p))
is the complement of an NP-complete one and so is a co-NP-complete
problem. The correspondence between implication and subsumption,
then, leads to the following:

Theorem 2: Subsumptioo for 3& is co-iVP-complete.

In other words, since a good algorithm for subsumption would lead
to a good one for implication, subsumption over descriptions in 3L3 is
intractable.’

6. Conclusion

The lesson here is clear-there seems to be a sudden and unex-
pected “computational cliff” encountered when even a slight change
of a certain sort is made to a representation language.6 We are actively
engaged in examining other dimensions of representation languages, in
an effort to understand exactly what aspect of the representation is
responsible for the computational precipice.

Besides warning us to be careful in selecting operators for a knowl-
edge representation language, the tradeo5 between expressiveness and
computational tractability serves as admonition against blind trust of
our intuitions. The change from 3l%- to 3lf seemed simple enough, yet
caused subsumption to become intractable. Other generalizations to
3lI:- that we have considered appear at least as dangerous, and yet in
the end prove no problem at all. For example, we have examined a
variant of 31- that generalizes the SOME operator to be an AI-LEAST
operator, whereby we can require any number of fillers for a certain
role. Further, we might add an operator called ROLE-CHAIN, that al-
lows us to string roles together. Given these two new operators, we

“More precisely, the cc+NP-complete problems are strongly believed to be unsolv-
able in polynomial time.

61t should be emphasized that the question of tractability is a matter of expres-
siveness, and not of the particular description language. Here we have used a
simple language to illustrate our point, but the tradeoff affects a.ny language that
allows the same distinctions to be made.

could form interesting concepts like “a person with at least two grand-
children”:

(AND person
(AT-LEAST (ROLE-CEAIB child child) 2))

Remarkably enough, even the simultaneous addition of both of these
operators to 3l- does not cause subsumption to fall off of the com-
putational cliff (81.

This line of research probably has a long way to go before the defini-
tive story is told on the complexity of computing with AI description
languages. However, we seem to have made a significant start in for-
mally analyzing an essential frame language and its variants. Further,
the methodology itself is an important factor. Crucially, the notion
of subsumption in this account is driven from the semantics, so that
there is always a measure of correctness for the algorithms we design
to compute it. Thus, we will not fall prey to one problem that has
plagued work in this area since its inception-the excuse that what
subsumption (or any other important relation) means is “what the
code does to compute it”. In fact, our approach so well defines the
problem that we can find cases where it is provable that no algorithm
of a certain sort can be designed.

Acknowledgements

This research was done in the context of the KRYPTON project,
and as a result, benefited greatly from discussions with Richard Fikes,
Peter Pate!-Schneider, and Victoria Pigman.

111

PI

PI

14

I51

161

171

I81

PI

REFERENCES

Bobrow, D. G., and T. Winograd, “An
a Knowledge Representation Language.”
Vol. 1, No. 1, January, 1977, pp. 3-46.

Brachman, R. J., “What IS-A Is and Isn’t:

Overview of KRL,
Cognitive Science,

An Analysis of Tax-
onomic Links in Semantic Networks.” IEEE Compuler, Special
Issue on Knowledge Representation, October, 1983, pp. 30-36.

Brachman, R. J., and J. G. Schmolze, “An Overview of the KL-
ONE Knowledge Representation System.” Cognitive Science,
forthcoming.

Brachman, R. J., R. E. Fikes, and H. J. Levesque, “Krypton:
A Functional Approach to Knowledge Representation.” IEEE
Computer, Special Iesue on Knowledge Repreeentation, October,
1983, pp. 67-73.

Cook, S. A., “The Complexity of Theorem-Proving Procedures.”
Proc. 3rd Ann. ACM Symposium on Theory of Computing. New
York: Association for Computing Machinery, 1971, pp. 151-158.

Hayes, P. J., “The Logic of Frames.” In Frame Conceptions
and Text Understanding. D. Metzing (ed.), Berlin: Walter de
Gruyter & Co., 1979, pp. 46-61.

Levesque, H. J., “A Fundamental Trade05 in Knowledge Repre-
sentation and Reasoning.” Proc. CSGSI-84, London, Ontario,
May, 1984, pp. 141-152.

Levesque, H. J., and R. J. Brachman, “Some Results on the
Complexity of Subsumption in Frame-Based Description Lan-
guages.” In preparation.

Minsky, M., “A Framework for Representing Knowledge.” In
Mind Design, J. Haugeland (ed.). Cambridge, MA: MIT Press,
1981, pp. 95-128.

37

