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Exercise 52 Find forrmlas of predicate logic with identity (df. Exerds
4§) which contain & hinary predicate symbol P (or a unary function symbe

f) and which express:

(a) Pis a anti-symmetric relation
(b} f is & one-one function

(¢) fis afunction which is onto.
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Exercise 53: Formmulate a satisfiable formula F in predicate logic with
identity (cf. Exercise 48) in which a binary fumction symbol f occurs such
that for every model A of F it holds:
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Exercise 54: A sitack is a well known abstract data structure in Computer
Science. Certain predicates and functions (better: operations) are defined
to test the status of the stack or to manipulate the stack. E.g., [saEmpiy is
a unary predicate expressing the fact that the stack is empty, and null stack
is a constant that stands for the empty stack. Further, top (giving the top
element of the stack) and pop are unary functions, and push s a binary
function (which gives the new stack after pushing a new element on top of
the given stack).

“Axiomatize” these operations which are allowed on a stack by a formula

in predicate logic in such a way that every model of this formula can be
understood as an (abstract) stack.

Hint: A posesible part of such a formula might be the formula
VzV¥y(top(push(z, y)) = z)
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It iz even more interesting to observe which pairs of very similar looking
formulas are not equivalent:

q (VzFVVzG) Z Vz(FVG)
(2 (IzFAJzG) £ B(FAG)
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Exercise 55: Confirm this by exhibiting counterexamples (i.e. structures
which are models for one of the formulas, but not for the other).
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