IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993 633

Formal Verification of Sequential Hardware:
A Tutorial

Michael C. McFarland, Member, IEEE

Abstract—Formal verification involves the use of analytical
techniques to prove that the implementation of a system con-
forms to the specification. The specification could be a set of
properties that the system must have, or it could be an alter-
native representation of the system behavior. Recently, there
has been increased interest in the role of formal verification in
hardware development. Partly, this is because the hardware
being designed now is so complex that exhaustive simulation is
no longer possible, so that other techniques are needed to com-
plement simulation. Another reason for the renewed interest is
that, as formal verification techniques have become more so-
phisticated, they have been shown to be usable on sizable pieces
of hardware, not just on toy examples.

In this paper, we will look at various formal verification tech-
niques and how they can be applied to sequential hardware,
especially at the register-transfer level. We will begin with the
basic elements of a verification system, as illustrated on the rel-
atively simple problem of verifying combinational circuits.
Then we will consider the more complex problems involved in
analyzing sequential systems and the techniques that have been
developed to solve them. Throughout, we will focus on those
techniques whose utility has been demonstrated on real sys-
tems, including higher order logic, temporal logic, predicate
transformers, state-machine models, and model checkers.

I. INTRODUCTION
1.1. Motivation

ORRECTNESS is a major consideration in the design

of computers and other digital systems. As we be-
come more and more dependent on computers and digital
controllers—in transportation systems, in medical appli-
cations, in defense systems, in banking, and so on—the
cost of a failure is becoming unacceptably high. It may
mean the loss of life or serious impairment for many hu-
man beings or the disruption of vital economic and com-
mercial activities.

Designers normally try to ensure correctness through
simulation and testing. Essential as they are, these tech-
niques do have their limitations. For a large, complex sys-
tem, it is impossible to test or simulate all possible inputs
or sequences of inputs. Furthermore, simulation and test
inputs are usually designed to detect only certain well-
defined types of faults. They could miss a subtle design

Manuscript received July 18, 1990; revised June 12, 1992. This paper
was recommended by Associate Editor A. Parker.

The author is with the Computer Science Department, Boston College,
Chestnut Hill, MA 02167.

1IEEE Log Number 9205510.

error that might cause unexpected trouble under a partic-
ular set of conditions.

Formal verification, on the other hand, attempts to es-
tablish universal properties about the design, independent
of any particular set of inputs. Typically a formal verifi-
cation system uses rigorous, formalized reasoning to prove
statements of the form:

For all feasible inputs, the behavior of this design is
consistent with the behavior required by the specifica-
tion.

or
For all feasible inputs, the design has property X, which
is required by the specification.

Formal verification techniques thus promise to comple-
ment simulation and test because the formal techniques
can generalize and abstract the behavior of the design,
whereas the others cannot. It is analogous to the differ-
ence between deriving laws in physics from first princi-
ples and doing experiments. One can search for patterns
in experiments and surmise that these are indicative of
general physical laws, but one can never be sure that one
has seen the whole picture. On the other hand, laws de-
rived from first principles can be assumed to hold univer-
sally, as long as the initial assumptions are true.

1.2. Organization

In this paper, we will look at the underlying theory and
basic techniques being used for the formal verification of
digital hardware. Section II is an introduction to the for-
mal verification of hardware. It develops the basic defi-
nitions and concepts underlying formal proofs of correct-
ness. It also lists some of the complex problems involved
in extending formal verification to real systems. The next
three sections describe some of the tools and techniques
used in present-day verification systems and gives exam-
ples of systems that use them. Section III is on higher
order logic, while Section IV considers temporal logic.
Section V describes how different techniques for model-
ing computational structures have been applied to hard-
ware. Finally, Section VI discusses some of the limita-
tions of formal verification and what part it is likely to
play in hardware verification.

Throughout the paper, the emphasis will be on basic
concepts and methodology and their application to real
systems. There is no attempt to give an adequate survey

0278-0070/93$03.00 © 1993 IEEE

634

of all the work that has been done in the field. The sys-
tems used as examples have been selected because they
are good illustrations of the principles involved and be-
cause they have been applied with some success to the
verification of relatively large designs.

1.3. Notation

We will frequently use the standard operators for math-
ematical logic. Let P and Q be any two predicates, that
is, expressions that can evaluate to either true or false.
Then P A Q, meaning P and Q, is true whenever both P
and Q are; PV Q, P or Q, is true whenever either P or Q
is; and ~ P, read not P, is true whenever P is false and
vice versa. Furthermore, P D Q is used for P implies Q,
which is equivalent to ~P V Q; and P = Q means P is
logically equivalent to Q, in other words P O Q and Q
D P. Among the logic operators, ~ has the highest prec-
edence, meaning that it binds most tightly; then, in de-
creasing order, A, V, D, and =.

Some forms of logic also use the two quantification op-
erators: V, for all, and 3, there exists. Vx P means that P
is true for all possible values of x (in some domain implied
by the context or explicitly given). 3x P, on the other
hand, means that P holds for at least one value of x. A
quantifier applies to as much of the expression to the right
as possible.

More specialized notation will be introduced as needed.

II. Basic CoNCEPTS IN HARDWARE VERIFICATION

In this section, we will develop the requirements for a
formal verification system. First we will look at the basic
elements of a verification system for simple combina-
tional logic. Then we will explore the additional issues
that must be addressed in the formal verification of se-
quential systems. Finally, we will list the basic ap-
proaches that have been developed to address these prob-
lems. Each of these approaches will be described in detail
in a later section.

2.1. An Example

The following example shows how formal verification
techniques can be applied to a simple combinational cir-

fi= ~(~(~aVvbVvoV ~d)

(~avbVveond
((~av@Ab)Vveond
(~aV(~aAN ~b)Vanbvond
{(cV ~a)V ~aN ~bVanb)nd

1]

((cV ~aAN~c)V ~anhN ~bVaAnb Ad

(cVvanbV ~aN ~bV ~aN ~c)Ad

=5

cndVaANbAdVY ~aN ~bAdV ~aN ~cAd)

[EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5. MAY 1993

wl

w2

o oo »

w3

Fig. 1. Circuit to be verified.

cuit. Although the example is presented rather informally,
it could easily be made more rigorous.

Suppoe that, in a digital system we are building, we
require a combinational logic circuit with four inputs a,
b, ¢, and d and one output x, where x = fs(a, b, c, d)
and f; is defined as follows:

x=cANdVanhnbAndV ~a
A~bANdV ~anN ~cAd.

We are given the circuit in Fig. 1, which, it is claimed,
implements the specified behavior. We can verify that the
circuit does in fact have the required behavior by writing
a logic expression for the circuit’s behavior, showing how
x depends on a, b, c, and d, and proving that that expres-
sion is equivalent to the specified behavior.

One way to extract an expression for the behavior of
the actual circuit is to label the internal nodes as shown
in Fig. 1 and to write an expression for the output of each
of the gates as a function of its inputs:

w = ~a
wy = ~(w, VbV
wy = ~d

x = ~(w, V ws).

We assume that the logical behavior of each of the gates
is given as a primitive.

Substituting the expressions for the w’s into the expres-
sion for x in order to eliminate the w’s gives the behavior
of the proposed implementation: x = f(a, b, c, d), where

fila,b,c,d) = ~(~(~aVbV)Vv ~d).

Showing that the implementation is equivalent to the
specification thus becomes a matter of proving f; = f;,
which we can do using equivalence rules that are familiar
from Boolean algebra:

By DeMorgan’s Law; ~(~AV ~B) = AAB
XVy=xV ~xAywithx = ~gandy = b
X=xVxAy

Commutativity of v

xXVy=xV ~xAyand Commutativity of A
Commutativity of v

Distributing A over v

MCFARLAND: FORMAL VERIFICATION OF SEQUENTIAL HARDWARE

This shows that the design and the specification are logi-
cally equivalent, meaning that for any set of inputs, the
two give the same output.

2.2. The Structure of a Verification System

The above example illustrates, in a simplified form, the
basic steps involved in formal verification. We began with
a specification of the behavior required of the circuit and
a description of the structure of the circuit itself. The
structural description had to be translated into a formal
logic so that we could apply formal proof techniques to
it. This could easily be done because at the level at which
we are modeling the circuit, wires can only take on two
values, which can be identified with the logical values
true and false, and the and, or, and not gates perform the
same functions as the corresponding logical operators.
The behavioral specification was already written as a log-
ical formula, so no translation was necessary there. Often,
however, the behavior is given in another language, such
as a high-level programming language or hardware de-
scription language, and this must also be translated into
the logic. Finally, we used proof techniques for the logic
to show that the function implemented by the circuit was
the same as that required by the specification. For a purely
combinational circuit, this was sufficient to establish that
the design met the specification.

This process is summarized in Fig. 2. The process be-
gins with a behavioral specification and a description of
the design, which is usually a structural description of
some sort, augmented with information about how the in-
dividual components work. In general, both descriptions
must be translated into formulas in some formal logic.
These formulas are then compared using the rules for rea-
soning in that logic to check whether the implemented be-
havior corresponds to the specified behavior. In some
cases, exact equivalence may be required. In others, the
specification may be partial, requiring only that certain
properties hold in the design. In such cases it is sufficient
to prove that the behavior of the design is consistent with
the properties required in the specification. Unfortu-
nately, because the underlying logic may not be decid-
able, it is not always possible to guarantee that the cor-
respondence checker will give either a yes or no answer
in every case. That is why the third output, ‘‘Don’t
know,”’ is shown for the correspondence checker in Fig.
2.

There have been a number of systems that have used
this basic approach to verify combinational logic. They
differ principally in the method they use for checking log-
ical equivalence or consistency. A number of systems
have used rewrite rules, similar to our example, to prove
equivalence between Boolean expressions, either by re-
ducing one expression to the other or by showing that the
negation of their equivalence reduces to a contradiction.
Examples are the early work by Wagner on hardware ver-
ification [74] and subsequent systems created by Hanes
[32] and Chandrasekhar [10], among others. Roth [69]

635

Behavior Design
Specification Structure
Translate Translate

(Correspondence|
Checker

P\

yes 777 no

Fig. 2. The verification process.

used a variation of the D-algorithm for Boolean compar-
ison. His algorithm started with corresponding outputs of
the two expressions to be compared and worked back to
the inputs, trying to find substitutions that would give the
outputs different values. If no such substitutions could be
found, the expressions were proved equivalent. Other
systems, such as the one by Wojcik [75], have used the
resolution method [68). This is an algorithm, often used
in automated theorem provers, that seeks to prove a for-
mula by first negating it and transforming it to a canonical
product-of-sums form, then reducing it by eliminating
common literals until one of the clauses in the product
reduces to false. A detailed explanation of the algorithm
can be found in Manna [46] and Nilsson [64]. More re-
cently, several verifiers for combinational logic have been
based on Binary Decision Diagrams or BDD’s [25], [45].
BDD’s provide a compact representation for Boolean
expressions. Furthermore, Bryant has shown that the BDD
for a Boolean function can be reduced to a canonical form,
which means that any two equivalent expressions will
have the same reduced form [5]. Therefore, comparison
of Boolean expressions represented as BDD’s is straight-
forward. The major disadvantage of BDD’s is that, like
any canonical form, the size of the representation can be
exponential in the number of variables.

Yoeli, in a recent book, has given an excellent tutorial R
on formal verification techniques, especially those appli-
cable to combinational circuits [76].

Another way in which formal verification can be used
is to verify the design process itself. If the design is not
produced by hand, but is produced directly from the spec-
ification by a series of well-defined steps, and if we can
show that each step preserves the behavior given in the
specification, then we have a proof, within the limits of
the model, that the final design has the same behavior as
the specification.

Given our specification for the logic example, for in-
stance, the circuit in Fig. 1 might be produced by trans-
lating the specification directly into gates and then apply-
ing various optimizing transformations to minimize the
number of gates. If we could prove that the original trans-
lation process always preserves the functionality of the
logic specification and that each transformation leaves the

636 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

behavior unaffected, that would be sufficient to establish
that any design produced by the system had the same be-
havior as its specification.

This alternative approach is attractive for a number of
reasons. First of all, synthesis, especially at the logic
level, is coming into general use in industry. In fact, one
of the advantages claimed for synthesis is that it is guar-
anteed to produce correct designs. But this cannot be taken
for granted. The synthesis algorithms must be subjected
to the same rigorous analysis that we would apply to the
design themselves if we were to establish their correct-
ness. Another important advantage is that the verification
only has to be done once for the system, rather than for
every design produced. Producing a formal proof of cor-
rectness is a laborious process under the best of circum-
stances. If the labor can be amortized over the many de-
signs produced by a synthesis system, it is easier to justify
the investment.

2.3. Further Issues in Formal Verification

For the example given in Section 2.1, the verification
was straightforward. It was a small, purely combinational
circuit, where the specification and design were already
at the logic level. The simple propositional calculus pro-
vided an adequate formal system for proving equivalence,
and translating both the specification and the design into
that logic was trivial.

Sequential digital systems are far more complex, of
course, and require more powerful verification tools. In
what follows, we will look at some of the difficulties that
must be dealt with in the formal verification of sequential
circuits.

2.3.1) Sequential Behavior

The typical digital system does more than just map a
set of inputs to a set of outputs in a time-independent
manner. It has memory, or state, and its behavior at any
point depends on the state, which in turn depends on the
past history of inputs. Furthermore, most digital systems
cannot be described as simply taking some inputs, doing
a computation, and giving some outputs. Rather they run
continuously, mapping sequences of inputs to sequences
of outputs. Formal logic, on the other hand, at least in its
simplest forms, does not contain in any fundamental way
the notions of time, history, or memory. It simply ex-
presses static relationships.

Consider, for example, a simple serial-to-parallel con-
verter. The specification might be that the circuit waits
for the stzart line to be raised, reads 8 bits of input syn-
chronized to an external clock and finally raises the ready
line and outputs an 8-bit byte, where the leftmost bit of
the output is the first bit that was read. There is no
straightforward way to translate that specification into
simple Boolean equations. Moreover, the implementation
requires memory in the form of a shift register or its
equivalent to store the bits as they are read in. The con-
cept of reading and holding data so that it is available at

a later time is also not easily expressible in the simple
logic used in Section 2.1. Even more difficult would be
the task of proving the equivalence between the specifi-
cation and the implementation, since they are built around
different concepts. The specification speaks of the dy-
namic relationship between sequences of inputs and out-
puts, while the implementation involves a static structure.

2.3.2) Modeling Time

Modeling time is a problem that is related to, yet dis-
tinct from, modeling sequential behavior. In real gates,
the output does not change as an immediate function of
the input, as the simple logical model implies. Rather
there is a delay from inputs to outputs, and that delay is
often significant. This is not just important for doing the
timing analysis of a circuit, which could be done sepa-
rately by using algorithms created specifically for that
problem. In some cases, even the logic-level behavior
does not make sense unless the delay is taken into ac-
count. For example, one would not be able to prove that
two cross-connected nor gates form an R-S flip-flop with-
out being able to model some delay in the gates. Without
that delay, the circuit has no stable solution. Yet simple
logic has no straightforward way of expressing time-de-
pendent behavior. There is no obvious way, for example,
of expressing the fact that the output y of an inverter is
the complement of what the input x was some time At
previously.

2.3.3) Levels of Abstraction

For a complex system, it is often desirable to specify
the required behavior at a higher level of abstraction than
the logic level. For example, the specification for a com-
puter is usually fixed at the instruction set level. That
means that the effect of each instruction on the memory
and certain key processor registers is determined; but it is
not necessary, or even desirable, to specify what happens
to each flip-flop on each microcycle.

The structure also may be described at different levels.
The implementation might be given at the register-trans-
fer level, as a set of interconnected registers, memories,
ALU’s, shifters, and multiplexers, along with a PLA or
microcoded controller. Or it might be a gate-level struc-
ture, or even a network of transistors, that is to be verified
against the specification.

The need to deal with different levels of abstraction cre-
ates a number of difficulties. First of all, the verification
system must be able to handle a richer set of data types
than just Booleans. A high-level specification of behavior
involves at least bit vectors, and usually integers. In some
cases, signal processing for instance, it might even use
floating point numbers. Either these data types must all
be translated into Booleans, so that a simple logic can
handle them, or the formal system must be powerful
enough to reason about the high-level data types directly.
The former often leads to unwieldy expressions, while the
latter requires a much more elaborate proof system.

MCFARLAND: FORMAL VERIFICATION OF SEQUENTIAL HARDWARE

The second problem is that the specification and the
implementation are likely to be represented at different
levels of abstraction. In that case, the correspondence be-
tween the two is not as obvious as it would be if both were
given at the logic level. The implementation usually con-
tains a great deal more detail than the specification, and
‘there must be some way of abstracting from all that detail
so that the two can be compared. For example, the spec-
ification for a CPU, as noted earlier, would probably only
make reference to certain key registers and to major cycles
of the machine. On the other hand, the implementation
would be described at a level no higher than the microar-
chitecture, which would include many internal registers
not mentioned in the specification, and would execute
several microcycles for each major cycle. Worst yet, in a
high-performance design, such as a pipelined machine,
there might not be a single register in the microarchitec-
ture that corresponds to what is described as a single reg-
ister in the specification. For example, there might be sev-
eral instances of the instruction register alive at once.
Furthermore, although the specification might be written
as if the major cycles executed sequentially, in the actual
design they might overlap. When verifying a design
against a higher level specification, either the user must
designate the points in time when the descriptions should
be compared, or the verification system must somehow
discover them. Similarly, the correspondence between
registers must also be given.

Finally, at higher levels of abstraction, the translation
from static structure to function is not as obvious as it is
at the logic level. In the example in Fig. 1, one could
simply compose the functions for the individual gates to
get the function for the whole circuit. But when there are
a number of complex blocks interconnected by shared
buses, with all of the parts driven by externally supplied
control signals, extracting the behavior is not so straight-
forward. Intuitively we may be able to describe how to
do it, but formalizing the process of translating a netlist
into dynamic behavior is not a simple task.

2.4. Extensions to the Basic Method

As the above discussion indicates, verifying real de-
signs makes many demands on the underlying formal sys-
tem. It must be able to handle data types, such as the
integers, and complex objects, such as arrays and time-
dependent sequences; and it must be capable of describing
hierarchy and structure and relating these to behavior.
There are three basic ways to extend the formal system to
meet these demands. First, we can use a higher order logic
that is powerful enough to allow us to define and reason
about the complex objects involved in verification. Sec-
ond, we can extend the logic by adding new operators and
rules specially adapted to reasoning about sequences and
structure. And third, we can imbed the logic in another
system that is designed specifically to handle some of the
issues that are difficult to represent in logic. In the next
three sections we will look at each of these approaches,

637

presenting both the underlying ideas and examples of how
they have been used in practice.

III. HicHER ORDER LoGiC

There is a hierarchy of logics for formal reasoning, ar-
ranged according to the generality of their data types and
operators [46]. For the example in Fig. 1, a simple prop-
ositional logic was adequate. In propositional or zeroth-
order logic, only propositional variables are allowed, that
is, variables over {true, false}; and the only operators or
functions allowed are the logical operators A, V, ~, and
other operators derived from these. Propositional logic can
be extended in a small way by adding the quantification
operators V and 3.

First-order logic is much more general than proposi-
tional logic in that it allows variables over one or more
other types. It also allows constant operators, functions,
and predicates over the added types. An example of a first-
order formula is

x<y—-DD@G+0

where x and y are nonnegative integers.

First-order logic can be extended by adding axioms de-
fining certain types and the operators over them. One very
useful extension is to add rules for equality, including a
rule that substitution of equal expressions preserves
equivalence. Another is to add axioms defining the natural
numbers (zero and the positive integers). One of the ax-
ioms for the natural numbers that will prove to be impor-
tant in many contexts is the so-called ‘‘principle of math-
ematical induction:”’

For any predicate P over the natural numbers, if P(0)
is true and if P(x) D P(x + 1) for all x, then P (x) holds
for all x.

According to the principle of induction, we can prove any
proposition P over the natural numbers by proving (1)
P(0) is true, and (2) if P(x) is true, it follows that P(x +
1) is also true. This principle generalizes to any countable
set with a least element.

Second-order logic is more general than first-order, in
that it allows variables and operators over functions and
predicates. Therefore, functions and predicates can be de-
fined and manipulated as objects in themselves, not just
used to define and manipulate simpler objects. One ad-
vantage of second-order logic is that it does not have to
be extended with special theories for certain types and
operators. The logic is general enough so that these the-
ories can be developed within the logic itself. For exam-
ple, the statement of the principle of induction in second-
order logic is

VvP((P(0) A (Vx P(x) D P(x + 1))) D (vx P(x))).

Because second-order logic allows function variables, and
therefore can reason directly about functional objects, it

638

is powerful enough in itself to handle the key issues re-
lated to hardware verification. As we have seen, we can
build up theories of types such as the natural numbers in
a second-order logic. Arrays, which can be used to rep-
resent bit vectors, for example, can be expressed as func-
tions mapping some index set into the set of possible val-
ues. And time sequences can be expressed as functions
from a time variable into the set of possible values. Sup-
pose, for example, that the output port oport for a partic-
ular piece of hardware is eight bits wide and produces a
continuous sequence of outputs. Then the action of that
port can be modeled as a function oport(t, i), that maps
t, an integer representing time, and i, an index from 1 to
8 representing a particular bit of oport, into the set {T,
F} or {1, 0}, depending on how we wish to represent
bits. Thus oport (ty, 1) represents the first bit of oporr at
time to.

When second-order logic is used for hardware verifi-
cation, a circuit at any level in the hierarchy is represented
as a relation between one or more input functions and one
or more output functions, where the relation is expressed
as a formula in the logic. For example, a simple inverter
with a delay of #, time units could be represented by the
predicate:

inverter (in, out) =g Vt out(t + t;) = ~in(p).

This says that the behavior of the inverter is properly de-
scribed by an input function in(f) and output function
out (7) such that the output at each ¢ + 1, is the comple-
ment of what the input was at ¢. The functions in and our
are listed as parameters to inverter because they represent
the external connections to the circuit. If 7, were consid-
ered variable, it would also be a parameter.

Circuits are put together to form larger circuits by AND-
ing together the expresions for them. Connections be-
tween the component circuits are shown by substituting a
common variable name for each of the parameters that are
connected together. For instance, if we have circuit
Cl(in“, in,z, Out") and circuit Cz(in;;,, iﬂzz, outzl), and
we want to connect outy; of C, to in,, of C,, we can write
Ci(inyy, iny, x) A Cyliny,, x, outy;). This means that the
circuit operation is only properly described by sets of val-
ues such that out;; of C| and iny, of C, have the same
value. We can hide an internal connection such as x by
existentially quantifying it. This requires that some com-
mon value exist, but that value is not part of the input or
output. For example, suppose we have definitions of a
delayless nor gate and a delayless inverter:

nor(a, b, ¢c) =4rc = ~(a Vv b)

invx, y) =gy = ~x.

We can form an ‘‘or’’ circuit by connecting the output of
a nor gate to an inverter:)

or(a, b, ¢) =4 Ix nor(a, b, x) A inv(x, c).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

The following proof shows that this does indeed have
the behavior of an or gate:

ix nor(a, b, x) A inv(x, ¢)

=Ix(x=~@VDbAc= ~Xx)
=Ixx=~@VDHAN~c=1x)
=W (~c=~@VhAN~c=2x)
=x(c=@VDbAN~c=2x
=c=@VbhAIx ~c =1x)
=c=(aVvb

The next-to-the-last step is valid because a quantifier
can be moved past an expression that does not contain the
quantified variable. The last step can be taken because 3x
x = t for some term ¢ is always true. In general this means
that 3x (P (x) (x = 7)) is equivalent to P(7), which is often
useful for simplifying the expressions for circuits created
by composing other circuits and hiding the connections.

To illustrate how a higher order logic is used, we ana-
lyze a simple version of the series-to-parallel converter
example mentioned earlier, proving that the implementa-
tion behaves as specified. Our version of the converter has
a primitive asynchronous interface. When the start line is
raised, the converter reads 8 bits, then raises the ready
line and outputs the 8 bits on parallel output lines. We
assume that the inputs are synchronized to an external
clock, which is represented by a time variable ¢, ranging
over the positive integers. Each unit of ¢ represents one
clock tick.

To simplify the specification and the proof, we intro-
duce some additional notation. The conditional operator
(b = 1, t,) selects between two terms ¢, and 1, depending
on the value of the boolean b. It can be read as *‘if b then
1, else 1,.”” We also define the predicate range by

range(i,m,n) =4 (i = mAi < n).
Thus for example range (i, 1, 10) means that i is between
1 and 10, inclusive. Finally we represent individual bits
as boolean variables, that is, they are variables over {7,
F} so that boolean operators can be applied to them di-
rectly.

With these assumptions, we can specify the required
behavior of the series-parallel converter:

(S1) spconvert(start, in, out, ready, t)
=ger Start(t) D (Vi (range(i, 1, 8)
D (~start(t + i) D (~ready(t + i)
A ready(t + 9) A out(i,t + 9)
=in(t + 9 — i)))).
This says that if start is asserted at time ¢ and not for the

next eight clocks, then ready will be asserted at the +
9)th clock and not before, and the 8 bits of the output at

MCFARLAND: FORMAL VERIFICATION OF SEQUENTIAL HARDWARE

t + 9 are the bits read at the input from ¢ + 1 through ¢
+ 8.

The converter is implemented with a counter and a shift
register, as shown in Fig. 3. The counter loads a value
cin when the start line is asserted and counts down one
for each ¢ until it reaches 0, at which time it asserts ready.
The shift register always shifts a bit in from its input, so
that the output is always the last eight input bits. These
are defined by the following expressions:

(D1) counter (start, cin, count, ready, t)
=gt (count (t + 1)
= (start(t) — cin(t), count(t) — 1))
A (ready(t) = (count(t) = 0 = T, F))
(D2) shifreg(srin, srout, t)
=gessrout(1,t + 1)

= srin(t) A\ Vi range (i, 2, 8) D srout(i,t + 1)

= srout(i — 1,1).

Proving the correctness of the implementation means
proving that the implemented behavior implies the spec-
ified behavior: :

counter (start, 8, count, ready, t) N\ shifreg (in, out, 1)
D spconvert (start, in, out, ready, t).

Note that by substituting in for srin in the shift-register
predicate, we implicitly identify in with the shift-register
input. Other inputs and outputs are handled similarly. We
also input a constant 8 to the counter.

What we want to prove is that the three basic charac-
teristics of the specified behavior, ~ready(t + i) for i
from 1 to 8, ready(t + 9), and out (i, t + 9) = in(t + 9
— i) follow from the definition of the implementation and
certain initial assumptions about the inputs and internal
variables. To carry out the proof, we use the fact that we
can prove A D B by assuming A4 and deriving B from it.
We also use the fact that, if A D Band A D C, then A
D B A C. We will proceed, therefore, by assuming that
all the predicates defining the implementation in D1 and
D2 and all the initial assumptions for the specification S1
hold. This gives us the following assumptions:

(A1) count(t + 1) = (start(t) = cin(t), count(t) — 1),
from D1

ready(t) = (count(t) = 0 — T, F), from D1

srout(1,t + 1) = srin(¢), from D2

Vi range (i, 2, 8) D srout(i, t + 1)

(A2)
(A3)
(Ad)

= srout(i — 1, t), from D2
(AS)
(A6)

start(f), assumed from the initial conditions for S1
range (i, 1, 8), assumed from the initial conditions
for S1

639

cin
ey W

srin shiftreg

start ready
converter

in L e

srout

Fig. 3. Series-parallel converter.

(A7) ~start(t + i), assumed from the initial conditions

for S1

From these we derive the conditions on ready and on out
in S1.

We prove the conditions on ready by proving the fol-
lowing more general property:

an

counter(start, N, count, ready, 1)
D (start(t) D (Vk (range(k, 1, N)
D ~start(t + k)
D count(t + k) =N —k + 1)).

This is done inductively. That is, we first show that it is
true for the base case k = 1. Then, assuming it is true for
k, we show that it is true for k + 1.

1) Base Case (k = 1): From Al, start(?) implies that
count(t + 1) = N, which of course is just N — k +
1.

2) Inductive Step: Assume that count(t + k) = N —
k + 1. From the assumptions in (I1), if range (k +
1, 1, N) then ~start(t + k + 1) and from Al,
count(t + (k + 1)) = count(t + k) — 1 =N —k
+1—-1=N-—(k+ 1) + 1, which proves I1 for
k+ 1.

From property (I1) with N = 8, we have fori < 9, count (t
+ i) # 0 and count(t + 9) = 0. From A2, it
follows that ~ ready(t + k) holds for k less than 9 and
ready(t + 9) is also true.

The condition on out, out(i, t + 9) = in(t + 9 — i),
is proved in much the same way. We first prove the prop-
erty:

12
This is also done inductively.

(1) Base Case (i = 1): From A3, srout(1,?) = in(t —
1).

(2) Inductive Step: Assume that srout (i, f) = in(t —
i). Then srout(i + 1, t) = srout (i, t — 1) from A4,
which is equal to srin(t — 1 — i) by the inductive
assumption, substituting r — 1 for ¢. This, of
course, is equal to srin(t — (i + 1)).

shiftreg (srin, srout, t) D srout(i, t) = in(t — i).

This establishes 12. From 12 with out = srout and in =
srin, we can substitute ¢t + 9 for # to get out (i, t + 9) =
in(t + 9 — i), which completes the proof.

To show how iterative structures can be described in
this logic, we extend the example by defining the structure

640 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

Fig. 4. Implementation of a shift register.

of a shift register as an array of D flip-flops, as shown in
Fig. 4, and proving that that implementation has the be-
havior required of the shift register. To remove unneces-
sary complications in the example, we assume no control
lines for the flip-flops except the implicit clock, so that
each flip-flop loads its input on every cycle. This gives
the definition:

(D3) dff(fin, fout, 1) =4 foutt + 1) = fin(r).

A shift register is constructed from a series of such flip-
flops, with the input to flop-flop 1 connected to the shift
register input and the input to flip-flop & tied to the output
of flip-flop k — 1 for k > 1. The kth output of the shift
register, of course, is the output of the kth flip-flop.

Just as a sequence of actions over time can be defined
recursively, so can a sequence of similar structures. Thus
the most straightforward definition of the shift-register
structure has a recursive form. We define a 1-bit shift reg-
ister as a single flip-flop and an n + 1-bit shift register as
an n-bit shift register with a flip-flop appended to it. The
predicate for the n-bit shift-register structure, called srf (n,
srfin, srfout, t) is then defined by the following:

(D4) srf (1, srin, srout, t)

=gt Aff (srin, srout (1), £)
srf(n + 1, srin, srout, t)

=4t 81f (n, srin, srout, t)

A dff (srout(n), srout(n + 1),).
Here we use srout(i) to mean the ith ‘‘bit’’ of srout,
where in fact each “‘bit”’ of srout is a time sequence. In
other words, srout (i) () = srout (i, f). Note that the flip-
flops are connected together by making the input to the (n
+ 1)th flip-flop the same variable as the output of the nth,
srout (n).

Proving the correctness of the implementation involves

proving that the high-level description of the shift regis-
ter, given in D2 above, follows from the definition of the

lower level implementation given in D4. In other words,
we must prove that

srf (8, srin, srout, t) D shiftreg (srin, srout, t).

One simple way to do this is to prove the following
somewhat more general inductive property:

(3) srf(n, srin, srout, ©) D srout(1,t + 1)
=srin(®) (3a)
AVirange(i,2,n) D srout(i,t + 1)
=srout(i— 1,1 (I3b).

Not only is this property easier to prove, but it is more
general, because it applies to any size shift register.
Property /3 is proved by induction on n.

(1) Base Case (n = 1): srf(1, srin, srout, 1) =
dff (srin, srout(1), t) = srout(1,t + 1) = srin()
by definition D4, which establishes 13a. 13b is triv-
ially true, since the range 2 to n is empty.

(2) Inductive Step: Assume that I3 holds for n. srf(n
+ 1, srin, srout, t) implies srf (n, srin, srout, t) by
definition D4, from which I3a and I3b for i from 2
to n both follow by the inductive assumption. We
only need to prove srout (i, t + 1) = srout(i — 1,
t) fori = n + 1. Now srf(n + 1, srin, srout, t)
implies dff (srout(n), srout(n + 1),) by D4. By
D3 this is srout(n + 1, t + 1) = srout(n, t), which
isI3bwithi =n + 1.

The specification shiftreg (srin, srout, t) follows easily
from I3 with n = 8.

This example illustrates how second-order logic can
handle many of the complex issues involved in hardware
verification. It can describe and verify sequential behavior
and relate it to structure, and it can work across different
levels of the structural hierarchy. Of course, the example
is much simplified. It did not show the fine details of tim-
ing, for one thing. The implementation of the shift reg-
ister as a series of flip-flops chained together has possible
race problems. These do not show up in the proof because
the model of time, with a clock cycle chosen as the small-
est unit, is too coarse. This is a fault of the way we mod-
eled the circuit, not a fundamental limitation of second-
order logic. We could have made the time unit much
smaller and added assumptions about the earliest and lat-
est time the clock could reach each flip-flop, about max-
imum and minimum delays through the flip-flops, and so
on. All of this is expressible in the logic, although the
descriptions of the hardware and the proofs would be far
more complex.

A fine-grained model of time would also allow the de-
scription of signal transitions as well as signal levels. This
was not possible in the unit-cycle model used in the ex-
ample. Since the signals are, in effect, sampled just once
per clock cycle, it is only possible to describe their levels
during each cycle. Using a smaller unit of time, however,
it is possible to assert that a signal changes at a certain
time. We could, for example, formulate a predicate
posedge (x, t;), which means that a signal x goes from F
to T at time f;:

posedge (x, 1) =gt ~Xx(f) A x(ty + 1).

We could then use this to give a more precise definition
of a positive edge-triggered D flip-flop with a fixed delay

t
DFF (din, dout, clk)
=gt VIt dout(t + 1)

= (posedge(clk, t) = din (1), dout(t + t; — 1)).

MCFARLAND: FORMAL VERIFICATION OF SEQUENTIAL HARDWARE

See Melham [51] for a good explanation of how timing is
described in higher order logic.

Another limitation of the example is that, while it did
show the use of natural numbers in the definition of the
counter, it did not show how a specification formulated in
terms of natural numbers can be related to an implemen-
tation formulated in terms of bits. If we had gone on to
describe and verify a logic-level implementation of the
counter, we would have seen how this could be done.

One thing the example illustrates quite well is the prev-
alence of repetitive structures in both the temporal and
spatial descriptions of hardware. Behavior is best de-
scribed as sequences of actions in time, and many hard-
ware structures consist primarily of arrays of similar ele-
ments tied together in very regular ways. The example
also shows the importance of recursive definitions for
specifying these regular structures and of induction for
verifying them. In fact, induction has turned out to be the
primary proof technique in this and many other ap-
proaches to verification, precisely because it is so well
adapted to proving properties of sequences. Often the most
important step in a proof is finding the right inductive
property, also called an invariant because it holds for all
elements of the sequence. Once the right invariant is
found, the proof becomes much simpler; but finding it
often requires considerable insight into why the property
being verified is true. It is the one step in the proof pro-
cess that, more than any other, has defied mechanization.

The proofs in our example seem quite simple, and in
the end they are. Yet even these proofs embody several
important insights about the hardware being verified. For
example, the proof that ready (¢t + 9) is asserted does not
work unless we can assume ~ start (¢t + i) for i from 1 to
8. This shows that in using the circuit as designed, we
would have to ensure that start was asserted once at the
beginning of the conversion cycle and locked out the rest
of the time. If this could not be guaranteed, we would
have to redesign the circuit to insulate it from the start
line after the initial signal was detected. The verification
also helps to establish the correct boundary conditions for
the shift-and-count loop. It shows that, given the timing
model used, eight must be loaded into the counter initially
rather than seven or nine, and the parallel output is avail-
able on the ninth cycle rather than the eighth. The reason
the proofs seem so simple is that we got the specification
and design right. Often the greatest value of verification
is in showing where the implementation and specification
are not consistent and suggesting how they need to be cor-
rected.

There are several working systems that use second-or-
der logic or its equivalent for hardware verification. The
Higher Order Logic (HOL) system of Gordon et al. [7],
[29] uses second-order logic to model and verify hardware
in a way that is similar to what we have shown in our
examples. In fact, the examples and explanations given
above owe much to Gordon’s system. HOL is based on
type theory. That is, every variable must be defined to
have a certain type, and it can only take on values of that

641

type. Thus a boolean variable cannot take on the values 1
or 17, nor can an integer be true. The typing extends to
higher order objects, such as functions. If a function is
defined as mapping an integer to a Boolean, it cannot take
another function as an argument. This minimizes ambi-
guity, errors, and confusion in specifications and proofs,
much like typing in a programming language. It also
avoids the worst decidability problems, because it does
not allow a predicate to take itself as an argument.

HOL has a very general theorem prover that allows the
user to add new types and build up theories about them
by proving theorems and adding them to the rules avail-
able for use in further proofs. The theorem prover sup-
ports induction also. One problem is that it requires a great
deal of guidance from the user. The user must formulate
the theorems to be proved and provide most of the steps
along the way [71]. Thus using the system is very time-
consuming and requires a great deal of expertise, as the

developers themselves have noted. Nevertheless, the HOL

system has been used to verify several substantial circuits,
including two microprocessors [2], [12], [13]. Normaily,
the specifications and implementations are written di-
rectly in the logic, but it is also possible to write them in
a hardware description language and translate them au-
tomatically into the logic.

Other examples of verification systems based on sec- -

ond-order logic are LCF_LSM [36], [30], the precursor
of HOL, and the VERITAS system [33].

A somewhat different approach to the use of logic in
verification has been taken by Hunt [39]. He used the
Boyer-Moore theorem prover to verify the FM8501, a
microprocessor with a large instruction set. Hunt proved
that a register—transfer level design of the FM8501, de-
scribed in terms of what happens during each microcycle,
correctly implemented an instruction-set level specifica-
tion of the microprocessor. He did this by showing that
after each macroinstruction execution, which corre-
sponded to several microinstructions, both descriptions
had the same effect on that part of the machine state that
was visible to the user, such as the register file and the
flags.

The Boyer-Moore logic is the first-order predicate cal-
culus with equality. The theorem prover provides some of
the power of second-order logic, in that the user can de-
fine new data types and add axioms about them. It also
has built into it knowledge about how to do general in-
duction. Nevertheless, the fact that functions cannot be
manipulated and passed as arguments limits the system
somewhat. For example, the system cannot deal directly
with time sequences; they must be simulated. What Hunt
does is to build lists of values for inputs and outputs, then
pull values off the input lists when needed and add output
values to the output lists as they are generated. Moreover,
instead of proving that the specification and implementa-
tion represent the same mapping of inputs to outputs for
all time, Hunt assumes that one macroinstruction cycle
corresponds to a certain number N of microcycles, and
proves that for any inputs and any state of memory, one

642 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

macroinstruction cycle has the same effect as N microcy-
cles. There is an implicit inductive argument that if both
descriptions have the same effect after one macroinstruc-
tion cycle, they will have the same effect after any number
of them.

The advantage of the Boyer~-Moore theorem prover is
its efficiency and ease of use. The user must break down
the problem into a series of small theorems that lead to
the desired result, but once a theorem is posed, the theo-
rem prover proceeds on its own, using a powerful set of
heuristics to guide the proof. Thus while the user must
still know a great deal about theorem proving and about
the system being verified in order to choose what theo-
rems to prove, the Boyer-Moore system requires less
guidance than HOL, at least for those problems that can
be formulated inductively. According to one study, the
Boyer-Moore system required considerably less user time
than HOL to generate a comparable proof [71].

German has also used the Boyer-Moore theorem prover
to verify hardware [26].

IV. TEmPoORAL Locic

Another approach to reasoning about sequential behav-
ior is to extend the logic so that it can directly describe
temporal behavior. This removes the need to make every-
thing an explicit function of time, in some cases leading
to simpler specifications of sequential behavior. It also
makes it unnecessary to use second-order logic, which can
result in a simpler, more efficient proof system.

One way of extending the logic that is often used in
hardware verification is temporal logic (41], [67]. Tem-
poral logic is derived from modal logic, which is a way
of reasoning about a situation where there are many pos-
sible states, or ‘“worlds,’’ and predicates can be true in
some states and not in others. The two modal operators
are [J, read ‘‘always’’ and V, read ‘‘sometimes.’’ For a
predicate P, [1P means that P is true in every possible
state, and VP means that P is true in at least one state. It
is possible to give this a temporal interpretation that is
useful for proving properties about programs or hardware.
Given a designated present state, other states are possible
future states. In this view, [JP means that P will always
be true in the future, and VP means that P will eventually
become true. If the states are linearly ordered, then each
state has a unique next state, which allows the O or
‘‘next’’ operator to be defined. OP means that P will be
true in the next state to the present one. Other operators
can also be defined. For example, P Until Q means that
Q will eventually become true, and P holds in all states
up to the one in which Q becomes true.

To see how these operators work, consider the follow-
ing example:

s:= false, c := il, b := ~i2;
s 1= true;
a:=bAc.

The three lines are executed in sequence, while the three
statements on the first line are done in parallel. Each as-
signment represents a Boolean transfer. The variables s,
a, b, and c represent flip-flops, while i1 and i2 represent
input lines. These are three temporal states to be consid-
ered, one at the end of each statement, if we ignore the
initial state in which everything is undefined. Each state
is characterized by the values of the variables at that point
in the execution. a is set to b A ¢ at the end, so we can
validly state that V (a = b A ¢). On the other hand, [J (a
= b A ¢) is not valid, since there are some states for which
that is not necessarily true. We can be a little more precise
about when a is set with the statement (~s A Os) D OO
(@ = b A ¢). This states that if s is false in the current
state but true in the next, then a will equal » A ¢ in the
state after the next. Note that the condition (~s A Os)
precisely defines one possible present state, so that the
consequence OO (a = b A c¢) need only be true in terms
of that one state. The overall behavior of the system can
be expressed as follows:

(~s A(@inl =x) A (in2 =y))
DVEA@=xA~y).

It is necessary to use the variables x and y in order to
capture the values of inl and in2 in the initial state. It
would not be valid to assert that a = inl A in2, since inl
and in2 might have changed their values by the time the
final state is reached.

The temporal operators and the axioms defining them
can be added to the first-order predicate calculus to give
first-order temporal logic. Rules of inference are also
added for the construction of temporal logic proofs. One
such rule is a general principle of induction over states:

IfAD Band A D OA thend D OB.

This says that if A4 implies B and A is invariant, in the
sense that if 4 holds in one state it also holds in the next,
it follows that if A holds in the present state, B holds in
that state and all subsequent states. Thus a strategy for
proving that some property B always holds is to find an
inductive invariant A4 that implies B. We prove that 4 holds
in some initial state. Then we assume that A4 holds in a
state S and, based on that, prove that A also holds in the
next state. This proves that A is true everywhere from the
initial state on, and, therefore, so is B. This is similar to
the proof by induction on the time variable that we did in
higher order logic.

The temporal operators make it easy to express behav-
ior across time. For example, we could define a nor gate
with a unit delay by the expression:

nor(inl, in2, out)
= def (ml = a) N (ln2 = b)
D Of(out = ~(a Vv b)).

If the delay was n ‘‘states,”’ we could replace the one O
by n O’s in a row, abbreviated by O". If we did not want

MCFARLAND: FORMAL VERIFICATION OF SEQUENTIAL HARDWARE

to specify the delay precisely, we could write
nor(inl, in2, out)
=4 (inl = a) A (in2 = b)
D V(out = ~(a V b)).

The behavior of a D flip-flop with a single data input and
a level-sensitive clock input could be defined by the fol-
lowing:

dff (Din, Clk, out)
= 4ot ((Din = x) A Clk) D V(out = x))
A (((out = y) N ~Clk) D O (out = y))).

Here the delay through the flip-flop is left indefinite. As
with the nor example, we could specify it more precisely
by substituting O" for the V.

By defining the time between states to be a small enough
unit, we can talk about much finer temporal behavior. For
_ instance, we could define the ‘rising edge’” operator T by

TX = def ~XA OX

(This puts the rising edge between the present state and
the next.) Using this definition, we could define an edge-
triggered flip-flop by substituting 1Clk for Clk in the def-
inition for dff.

Temporal logic is especially well adapted to stating and
proving so-called liveness properties. These properties
have to do with the reachability of certain states in a hard-
ware description (or program). For example, one might
want to prove that if a certain predicate P is true, the ma-
chine will eventually reach a state where Q becomes true.
The statement of that in temporal logic is quite simple:

P> VQ

or it might be required that a certain state characterized
by P must occur infinitely often. The specification for this
is:

ave.

Because first-order temporal logic does not have func-
tional variables, it is more difficult to formulate state-
ments relating sequences of outputs to sequences of in-
puts, especially if there is a complex temporal relation
between them. The example of the serial-to-parallel con-
verter discussed previously is a good illustration of that.
It is simple enough to state the liveness property that once
the start signal is given and then held off, the ready signal
will eventually be asserted:

(start A O (~ start until ready)) D Vready.

The requirement that when ready is asserted, out contains
the bits read at in over the previous eight cycles is not as
straightforward to express. One way to do it is to define
out as a bit vector and to create an index i that can be used
to label each input bit as it is read. This leads to one pos-

sible expression for the behavior:

converter (start, in, out, ready) =4 3i ((start D (i = 0))
Ai=kDO@G=k+1))
A ((range (i, 1, 8) A ~start A (y = in)) D V (ready
A (out]9 — i} = y))).

Here i is not part of the hardware, but is rather a construct
to facilitate the description. As we did with second-order
logic, we could go on and define the individual compo-
nents of the implementation and prove that they implied
the same behavior as the behavioral specification. This
would be done as before, using inductive invariants.

Temporal logic is most often used for proving proper-
ties about asynchronous circuits, that is, circuits in which
some or all of the signals are not tied to a regular clock.
The ability to express properties about the occurrence and
temporal ordering of events without exactly expressing
their dependence on time is especially useful in such
cases. Bochmann, for example, has used temporal logic
to specify the behavior of an arbiter circuit and to prove
that an implementation of that circuit is correct with re-
spect to the specification [3].

A variation of temporal logic, called Interval Temporal
Logic (ITL), has been used by Moszkowski for hardware
verification [62], [31]. In ITL, predicates are evaluated
over intervals rather than in single states. An interval ¢ is
a series of instants {t,, - * * , #,>. A predicate P is true
over an interval ¢ if P is true for each of the instants in
the interval. From this basic definition, Moszkowski has
built up a rich set of operators, in addition to the usual
O, Vv, and O. These operators can be used to describe in
detail the temporal behavior of hardware. For example, a
clocked D flip-flop with a setup time s and propagate time
p can be described by

DFF (Din, Clk, Dout)
= 4ot (1°PClk A (Clk blk Din)) D Din — Dout.

1 %PClk states that there is a rising edge of the clock dur-
ing the interval, with the clock initially low for at least s
units before the transition and then remaining high for at
least p units after it. Clk blk Din means that Din must
remain stable during the interval until Clk changes. To-
gether these conditions require that Din must be stable for
s, the setup time, while Clk stays low; then Clk must rise
and stay high for at least the propagation time. If these
conditions are met, then the value at Din is transferred to
the output Dout.

More complex hardware components and abstract be-
haviors can also be expressed in ITL, and the logic can
be used to verify the designs of circuits against their spec-
ifications. Moszkowski, for example, has verified a
clocked multiplier and an AM2901 bit-slice chip using
this formalism [61]. More recently, Leeser has used ITL
to prove the correctness of a number of CMOS circuits

644 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

[43]. The proofs depended on the proper modeling and
analysis of complex timing behavior.

Other verification systems have used temporal logic for
specifying the behavior of a system, but have used differ-
ent methods for verifying the design against that behav-
ior. Some of these will be considered in the next section.

V. COMPUTATIONAL STRUCTURES

The last type of verification method we will consider
combines logic with another analysis method. Logic is
used to analyze and compare the static states of the sys-
tem, a task for which it is well-adapted, but a different
technique is used to trace the dynamic flow from state to
state. We will consider four different approaches here. The
first uses techniques borrowed from program verification;
the second is based on state machine analysis; the third is
a hybrid approach that combines state-machine analysis
with temporal logic. The fourth approach uses an algebra
of recursive expressions to represent the behavior of com-
municating processes.

5.1. Predicate Transformers

This approach is very similar to program verification
techniques [24], [37], from which it was originally
adapted. It therefore assumes that the hardware is repre-
sented in a form similar to that of a program in a proce-
dural programming language such as Pascal. This means,
specifically, that the behavior of the hardware is repre-
sented as a set of statements. The primitive statements are
assignments to variables and perhaps procedure calls and
‘‘goto’’ statements. These are put together into larger,
composite statements using the standard structures of se-
quential and, in some cases, parallel composition, con-
ditionals, and loops. The basic idea is that a predicate
called the precondition is attached to the beginning of éach
statement, and another predicate called the postcondition
is attached to the end. The precondition describes the state
of the system before the statement is executed, and the
postcondition describes the state after. For each type of
statement in the language, there are rules about how the
precondition is related to the postcondition. Thus each
statement can be viewed as a predicate transformer that
maps a precondition into a postcondition or, vice versa, a
postcondition to a precondition.

There are two basic approaches that can be taken to
analyzing programs or hardware descriptions within this
framework. One starts with the known state at the begin-
ning of the description and pushes predicates forward from
preconditions to postconditions, finally producing a de-
scription of the final state or the state at key points. This
can then be compared with the specification to see if the
behavior satisfies the specification. The other approach
begins with the desired state at the end of the description
or at key points. This is then pushed back from postcon-
ditions to preconditions, giving the initial conditions that
are necessary to produce the required behavior. If these
initial conditions are consistent with the actual initial state

of the hardware, then it can be inferred that the hardware
meets the specification.

For the purposes of explanation, we will focus here on
the first method, forward propagation. This is the method
that seems to be used most often in hardware verification.
The opposite approach is similar, though more elegant in
its formulation and at the same time less intuitive. One
form of the latter approach that is often used in program
verification is the axiomatic program logic of Hoare [11],
[371, 138].

We first need to give the rules relating preconditions
and postconditions for each of the statements in the lan-
guage. For the sake of simplicity, we assume that the
hardware is described in a Pascal-like language that has
assignments, noops, conditionals, sequential composi-
tion, and while loops. The method can easily be extended
to include other constructs commonly found in procedural
languages.

The assignment statement is the statement that actually
changes the internal state of the system by changing the
values of some of the variables, and the postcondition
must reflect this. For an assignment statement “‘x := e’
with x a variable and e an expression, and a precondition
P, the postcondition Q is

(AS) Q=W P{x+<x")Ax=e{x+x")

where F(x < y) means F with y substituted for every
occurrence of x. Essentially we create a new variable x’
to stand for the old value of x, carry forward the precon-
dition, with x’ substituted for x and append the new fact
that x = e, again with x’ substituted for x in e. If x is not
present in P or e, then this reduces to P A (x = €). For
example, if the precondition is y = 2 and the assignment
statement is “‘x := 1,”” the postconditionisy =2 A x =
1. Using the same precondition and the assigment “‘x : =
y — 1, the postcondition wouldbey =2 Ax =y — 1,
which of course reducestoy = 2 Ax = 1.

If P and/or e is dependent on x, the situation is more
complicated. However, if we can find a function that
computes the inverse of e, the expression can still be sim-
plified. To see this, we write P and e¢ with an explicit
dependence on x, i.e., P(x) and e(x). Let g be the func-
tion such that if y = e(x) then x = g(y). Then 3x’' P(x’)
A x = e(x') is equivalent to 3x’' P(g(x)) A x' = g(x),
which reduces to P (g (x)). For example, if the assignment
statement ‘‘x := x + 1’” has a precondition P equal to (x
= 1), then g(x) = x — 1 and the postcondition P (g (x))
is(x — 1) =1, orx = 2, as we would expect.

For a ‘“‘noop’’ statement, the postcondition is just the
precondition, since the state does not change.

For a conditional statement S of the form ‘if B then §,
else S,,”’ the precondition for S has to be translated into
the preconditions for §; and S,; then, after the postcon-
ditions for §; and S, have been found, they have to be
combined to form the postcondition of S. Let P be the
precondition of S and P; be the precondition of S;. Simi-
larly, let Q be the postcondition of S, and Q;, the postcon-

MCFARLAND: FORMAL VERIFICATION OF SEQUENTIAL HARDWARE

dition of S;. Then
P,=PABP,=PA ~B

=0,V Q.

The precondition for S, is the same as the precondition
for S, with the additional fact that B is known to be true.
In the same way, when S, is executed, B must be false.
The outcome of S is either the outcome of S; or the out-
come of S,.

For a sequential statement S of the form ‘‘S;; S,,”’ the
precondition of S, is of course the precondition of S; the
precondition of S, is the postcondition of §;; and the
postcondition of S is the postcondition of S,.

A loop statement S of the form ‘‘while B do §;’’ pre-
sents some problems because there are circular depen-
dencies between the predicates. The precondition of the
loop body S; depends on the postcondition of §;, since
control can return to the beginning of the loop from the
end. But of course the postcondition of S; depends on the
precondition. Therefore, while we can write relations de-
fining the precondition of the loop, it is not usually pos-
sible to solve for the precondition. In practice the user
must supply a so-called loop invariant or inductive asser-
tion Py that satisfies the following conditions:

(L1) PABD P,
(L2) Q. ABDP,

where P is the precondition of S, Q is the postcondition
of S, and Q, is the postcondition of S; when P, is the
precondition. Notice that the loop invariant functions like
the inductive invariant in the inductive proofs we did ear-
lier. In fact the conditions (L1-L2) in effect describe an
inductive proof of the loop’s behavior, with L1 the base
step and L2 the inductive step. The postcondition of the
loop body, combined with the fact that the loop condition
is false, becomes the postcondition of the while loop:

) Q. A~B>Q

To see how this system works, we will first verify a
very simple multiplication algorithm that multiplies A by
B using successive addition and leaves the result in prod-
uct.

) product := 0;
2) if A <> 0 then
3) while 8 < 0 do
begin
4) product := product + A;
(5) B := B -1
end
6) else noop

Statements are numbered on the left for purposes of
identification. We use Ay and By for the initial values of
the input variables 4 and B, so the precondition to the
entire description, which is the precondition to the as-
signment statement (1), is A = Ay A B = B, Call this P,.

645

The postcondition of the assignment is Py A product = 0.
This becomes the precondition to the conditional (2),
which follows it in sequence. The precondition to the
while loop (3) is Py A product = 0 A A # 0, since it is
in the then part of the conditional. For the loop invariant,
we choose product = (B, — B) * Ag A A = A,. To check
that this is a valid invariant, we have to verify conditions
L1 and L2. L1 is easily seen to be true, since product =
0 A B = B, implies that product = (By — B) * Ay, with
both sides equal to 0. The other part of the invariant, 4
= Ay, is part of the precondition. Using the loop invariant
as the precondition to the loop body, and thus to the as-

‘signment (4), gives product = (By — B) * Ay + ANA =

Ay, which is equivalent to product = (By — B + 1) * 4y
A A = Ag. Pushing this through the next assignment (5)
and using the rule (4S), we replace Bby B + 1, giving

product = By — B+ 1) +) * Ay AN A = 4
= product = (By — B) * Ag N A = Ay.

This is just the loop invariant, proving condition (L2). We
use condition (L3) to get the postcondition for the while
loop: product = (By — B) * Ag A B = 0, which of course
reduces to product = B, * Ay. Now on the else side of
the conditional, the precondition to the noop (6) is Py A
product = 0 A A = 0, which is also its postcondition.
This reduces to product = 0 A Ay = 0. Finally the
postcondition of the conditional, which is the postcondi-
tion for the description, is (product = 0) A (4g = 0) V
(product = By * Ay), which implies product = By * Ay.
Therefore, the description meets the specification of a
multiplier.

As simple as it is, this example illustrates the basic
method used for proving that a hardware description meets
a behavioral specification. A precondition is constructed,
giving symbolic initial values to the input variables, and
the behavioral specification is formulated as a postcondi-
tion on the output variables, relating them to the initial
input values. An invariant must be chosen for each loop.
Then the preconditions are propagated through the de-
scription, the loop invariants are verified and propagated,
and the resulting postcondition is checked to see that it
implies the specified postcondition. This is often called
symbolic simulation, because it amounts to ‘‘executing’’
the description while using symbolic values such as 4, for
the inputs instead of actual numbers or bit patterns.

This basic method works when the system simply takes
in its inputs, computes, and gives its outputs. As we have
already observed, however, hardware typically takes a
continuous stream of inputs and maps it into a stream of
outputs. It is, therefore, necessary to extend the predicate
transformer method to handle that kind of situation. One
way to do this, which was originally used for programs
by Owicki and Gries [65], is to annotate the description
with extra variables that function like time variables,
keeping track of where the system is in its sequences of
inputs and outputs.

To illustrate this method, we return to our example of

646 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

a series-to-parallel converter. First we give a description
of the converter in the simple hardware description lan-
guage we have been using:

(G D] while not startlil do

(2) noop;

3) ready := false;

(4) count := 8;

(s) {i = 0}

(6) while (count <> 0) and not startl(il do
begin

7) {i 1= i + 12

(8) shiftreg := shiftreg * 2 + inl[il;

9 count := count - 1;
end;

10) out := shiftreg;

11) ready := true

Here we model the input port ‘‘in’’ as a sequence or
array of bits. We also add the variable i as a sequence
counter. Since i is a construct used only for the verifica-
tion, the statements manipulating i are in curly brackets.
start is also modeled as a sequence. To show that the cycle
only begins when start is set, we begin with a wait loop
on start. We also show that setting start during the main
loop will abort the computation. The verification only
works if start is true on the first cycle (i = 0) and false
for the remaining cycles (1 through 8). Therefore, we in-
clude in the initial conditions the predicate S:

So = start[0] A Vj range(j, 1, 8) D (~start[j]).

By going through the initial loop and assignments, we get
the precondition for the main loop (6), which is S, A
~ready N (count = 8) A (i = 0). For the loop invariant,
we use

P, SoA ~ready N\ (count = 8 — i)
i-1

A (i < 8) A shiftreg[1:i] = Eo inli — k] * 2~

Checking that this follows from the precondition, we
observe that the first two conditions are present in the pre-
condition in exactly the same form, the third and fourth
follow from the fact that count = 8 and i = 0, and the
last is trivially true, since it involves an empty range. Next
we propagate P; through the loop body. The effect of line
(7) is to substitute i — 1 for i, giving

P;) SoA ~ready Ncount =8 — (i — DA(GE - 1)
< 8 A shifireg[1:i — 1]

i-2

= 2 ini — 1 - k] * 2~
k=0

To find the effect of the next assignment (8), we replace
shiftreg by shifireg /2 — inli], or, equivalently, we sub-
stitute 2 * X + in[i] for X in the expression shiftireg =

X. This gives
(Pg) SoA ~readyAcount =8 — (i— DAGE—1)

i-2

< 8 A shifireg[1:i] =2*k§:0in[i -1-4k

* 2% +in[i].

The last term is equivalent to shiftreg[1:i] = Ei;% inli
— 1 — k) *2**" 4 in(i] = L2 in[i — k) * 2% + in[i]
by changing the summation variable k. Since in[i] = in{i
— k] * 2% with k = 0, we can combine this with the sum
to give shiftreg[1:i] = LiZ} in[i — k] * 2*. For the last
assignment in the loop body (9), we substitute count + 1
for count to give

(Py) So AN ~ready A (count = 8 —i)A({ — 1)

i—1

< 8 A shiftreg[1:i] = Eo inli — k] * 2%

This is the postcondition for the loop body. It is the same
as the loop invariant P; except it has the condition (i —
1) < 8 instead of i < 8. But the condition count = 8 —
i combined with the fact that i < 8 and the loop condition
count # 0 implies that i < 8. Thus Py and the loop con-
dition imply P, satisfying condition (L2) for the invari-
ant.

From S, and the fact that i < 8, start[i] is false, so the
negation of the loop condition implies count = 0. Com-
bining this with Q; gives the postcondition for the loop:

Ps) So A ~ready N\ (i = 8) A shifireg|[1:8]
7
= 2 in[i — k] * 2%
k=0
When we substitute in the effects of the last two assign-
ments, we get the final postcondition for the description:

Pyy) So A ready A (i = 8) A out[1:8]

7
= 2 in[8 — k] * 2~.
k=0

This implies that at the completion of the execution, ready
is 1, and for k from 1 to 8 out[k] = in[9 — k], which is
the original specification.

Of course, to be more precise in this example, we
should have modeled ready as a sequence also. It then
would have been possible to show that ready remains at 0
until after the eighth cycle, at which time it is set. We
should also have been more careful about the distinction
between Booleans and integers. For example, we treated
in as an integer when it really is just 1 bit. The translation
between bits and integers always has to be handled very
carefully because there is great potential for confusion and
error there. Nevertheless, what we have done is sufficient
to show how these techniques can be extended to handle
sequential inputs and outputs, and also some of the diffi-
culties involved.

MCFARLAND: FORMAL VERIFICATION OF SEQUENTIAL HARDWARE

A number of hardware verification systems have been
built using these methods [17], [48], [66], [20]. They dif-
fer in the languages used to describe the hardware, the
logic used for the specifications, the techniques used for
manipulating and comparing predicates, and the types of
hardware-specific features they can handle. All of them,
however, have the same basic approach of deriving a set
of predicates to describe the behavior of a hardware de-
scription and comparing them to a specification that is ex-
pressed in formal logic.

Predicate transformers can also be used to compare
hardware descriptions at different levels of detail. This is
useful in verifying that a low-level specification, at the
microprogram or logic level, for example, correctly im-
plements a specification that is written as a hardware de-
scription at a more abstract level. For example, we might
want to verify that a circuit made up of a counter and flip-
flops tied together as a shift register correctly imple-
mented our serial-to-parallel converter. To do this, we
could write a description of the implementation in the
same language, or perhaps a lower level one. The descrip-
tion of the implementation would have a different struc-
ture from the high-level description. For example, it
would have to have an inner loop that shifted the individ-
ual bits in the array of flip-flops. There might also be extra
internal variables in the implementation that are not pres-
ent in the more abstract description. The behavior of the
two descriptions is compared by deriving the postcondi-
tion for both of them and checking that they are equivalent
with respect to the input and output variables.

One technique that is often used to simplify the verifi-
cation is to add ‘‘checkpoints’’ at corresponding places in
the two descriptions where the states can be compared.
For example, one might find the point in a microprogram
where the execution of a certain portion of the machine
language instruction has been completed and the registers
visible at the architectural level are in a well-defined state.
At this point, relations between values in corresponding
registers in the two descriptions can be compared. The
advantage of adding these checkpoints is that only the
paths between adjacent checkpoints need to be checked.
If all the paths have the same behavior as expressed by
the relation between preconditions and postconditions,
then it follows by an inductive argument that the overall
behavior is also the same. In particular, if enough check-
points are added to break all loops, then only cycle-free
paths need to be checked. The verification process can
thus be much more highly automated, since there is no
need to find loop invariants, a process that cannot be
mechanized.

This approach has often been used in hardware verifi-
cation, including the verification of microcode [18], [8],
[9], a 10 000-transistor signal-processing chip [63], the
verification of logic implementations [15], [19], and even
the verification of layout [44]. These systems and others
like them differ in input languages, the type of constructs
handled, and the way the predicates are represented and
manipulated. The basic approach is the same, however.

647

Symbolic simulation is used to derive logic expressions
describing the states in two parallel hardware descrip-
tions, and these are checked for correspondence using
some form of automatic theorem prover.

Other groups have combined temporal logic with sym-
bolic simulation. One example of this is the DDL Verifier
of Maruyama and Fujita [47]. This system takes a regis-
ter—transfer hardware description in the DDL language
and checks assertions supplied by the user for validity with
respect to that description. The logic used is based on first-
order temporal logic with equality, but it is still restricted
enough that the proofs of individual assertions can be au-
tomated and done efficiently.

A different approach to combining static logic and dy-
namic behavior has been developed by McFarland and
Parker [50]. They use a method similar to symbolic sim-
ulation to derive predicates describing the relation be-
tween input and output values for a system described in a
simple hardware description language. Then they imbed
these in expressions much like regular expressions, a for-
malism not unlike predicate path expressions [1], to show
the dynamic relationships between the sequences of input/
output events. This avoids the rather awkward practice of
adding extra variables and structures to a description in
order to be able to describe sequences of inputs and out-
puts. The formalism, called behavior expressions, has
been proved complete and consistent with respect to an
operational definition of hardware execution, and it has
been used to prove that certain optimizing transformations
used in high-level hardware synthesis are behavior-pre-
serving. More recently, behavior expressions have been
used to analyze part of an existing high-level synthesis
system, exposing several significant errors [49].

5.2. Finite-State Machines

In theory, any digital system can be modeled as a finite-
state machine, and there is a well-developed theory for
analyzing such models, including checking their equiva-
lence. It would seem, therefore, that finite-state-machine
theory would provide a good basis for verification.

A finite-state machine M is defined by a tuple (1, O, Q,
0o, 8, N), where [is a set of inputs, O a set of outputs,
and Q a set of states, with a set of one or more initial
states J,. & is the state transition function that maps the
present state and input to the next state, and A is the out-
put function that maps the present state and possibly the
input to the current output. A finite-state machine can be
viewed as a transducer, producing a sequence of outputs
for each possible sequence of inputs. In this view, two
machines are equivalent if they produce the same output
sequence for every possible input sequence.

It is sometimes useful to view a finite-state machine as
an acceptor or recognizer. This is done by ignoring the
output function and defining a set Qr of one or more final
states. A machine M is said to accept a string S, where S
is a sequence of elements from its input set I, if, when M
is started in an initial state and is given the sequence of

648 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

clements from S as inputs, it finishes in a final state f €
Or. The set of strings accepted by M is called the lan-
guage accepted by M. In this view, two machines are
equivalent if they accept the same language.

A pair of machines with the same input set, M; = (I,
01, @i, Qo,15 61, N and My, = (I, 0y, Oy, Qo2, 83, Ny)
can be composed to form a single machine M = (I, O, X
0,, @1 X 0,5, Q.1 X .2, 8, N\) which is made up of the
two machines running in parallel. The states of M are pairs
of states, one from M, and one from M,. The state-tran-
sition function & of M is defined to map pairs of states to
pairs of states by applying 8, to the first state in the pair
and &, to the second one. In other words,

5((‘11, q2)7 l) = (51(‘11’ l)v 52(q2v l))

The output function is defined in much the same way. If
M, and M, are defined to have final states Qr , and QO ,
the final states of M are all those pairs (q,, ¢,), where q,
is a final state of M, and g, is a final state of M,. M is
called the product machine of M, and M,, written M; ®
M,.

Parallel composition gives one method for finding the
equivalence of two acceptor machines M, and M,. First,
each of the machines M; is complemented to find Il_l,- , the
machine that accepts just those strings that M; does not
accept. Then M, is equivalent to M, if and only if M, ®
M, = @ and M, ® M, = . This is true because the
language accepted by the product of two machines is just
the intersection of the languages accepted by the individ-
ual machines, and the machines accept the same language
when there is no string accepted by both M, and the com-
plement of M, and vice versa.

One way of checking if the language accepted by a state
machine is empty is to do a reachability analysis. This
normally involves building a state-transition graph for the
machine. In a state-transition graph, each state is repre-
sented by a node, and each transition s; — s; as an arc
from the node for state s; to the node for state s;. The
transition graph is built by starting with the initial states
and determining all the transitions that can be made from
those states on any valid input. Those transitions are added
as edges in the graph. Any time a new state is found as
the destination of a transition, a node for that state is cre-
ated in the graph, and all the transitions from that state
are added to the graph. This continues until no new states
are found. The advantage of this procedure is that only
those states and transitions that can be reached from the
initial states by a valid sequence of inputs are recorded in
the graph. The number of reachable states and transitions
may be considerably less than the total number of possible
states and transitions. This is especially true for a com-
posite machine, where a transition (s),, 5;5) = (524, S2)
is often not valid, even though the transitions s,, = s,,
and sy, — sy, both are, because there does not exist a
single input that takes both s,, to s, and s,, to s,,. The
language accepted by a state machine is empty if and only
if no final state appears in the graph produced by this
reachability analysis.

A straightforward use of finite-state machine theory for
verification is to model both the implementation and the
specification as finite-state machines and to check them
for equivalence as transducers, or to check that the spec-
ification machine is contained in the implementation ma-
chine, meaning that they give the same outputs on all in-
puts for which the specification is defined. The latter
definition is more realistic because it recognizes that the
implementation is more detailed than the specification,
and will therefore be defined for cases not considered in
the specification.

An example of how state machine theory can support
verification is the algorithm developed by Devadas, Ma,
and Newton to check containment of finite-state machines
[21]. The algorithm takes two state-machine descriptions.
One, the specification, is described at the register-trans-
fer level, while the other, the implementation, is de-
scribed as combinational logic and latches. State-transi-
tion tables for the two machines Mg and M, are derived
from the specification and implementation descriptions,
respectively. Then a composite machine is formed by tak-
ing the product of Mg and M, . The final states of the prod-
uct machine are defined to be those states in which the
output of Mg and the output of M, are not equal. The ma-
chines are equivalent if the language accepted by the
product machine is empty, which is determined by a form
of reachability analysis.

To make the procedure more efficient, the algorithm
seeks to minimize the size of the extracted machines, es-
pecially M;. It first inspects the specification to find all
the valid output patterns, then finds the compliment of
that set, Os. Any state encoding in the implementation
that gives an output in Oy is taken to be an invalid state
and is eliminated from consideration. The specification is
also used to find all of the valid input patterns. When M,
is extracted, only the valid states and inputs are included.

This algorithm allows sequential machines at different
levels of abstraction to be checked for equivalence auto-
matically. It also shows some of the limitations of the
state-machine model for verification, however. First of
all, the whole system must be described as a state ma-
chine. This is appropriate for small to medium size con-
trollers, but it breaks down when the system has appre-
ciable memory. For example, an n-bit register or counter
has 2" states, all of which are reachable. Even a very ef-
ficient algorithm like the one described above can only
handle a few hundred states. Second, the specification can
only be expressed as a state machine, even if the descrip-
tion can be written in a register-transfer language. Some-
times that is acceptable, but other times it is desirable to
give the specification at a more general level, either as a
set of input-output relations or as a set of properties that
the implementation must satisfy. Finally, in the state-ma-
chine formulation, the specification and implementation
must correspond closely. Even if it is not necessary to
identify internal states, it is still required that the inputs,
outputs, and transitions be identical. For example, in the
methodology described above, the specification must be

MCFARLAND: FORMAL VERIFICATION OF SEQUENTIAL HARDWARE

written in terms of individual clock cycles that correspond
exactly to the state transitions of the implementation. This
precludes using a specification that describes behavior in
terms of macrocycles, where each macrocycle may cor-
respond to several clock cycles in the underlying ma-
chine.

One way of attacking the complexity of searching large
state spaces is to treat sets of states symbolically. This is
sometimes called implicit state enumeration. In a machine
with n Boolean state variables, each possible state is des-
ignated by a unique n-bit code. Any set of states, there-
fore, can be represented by a set of n-bit Boolean vectors
or, equivalently, a characteristic function x: 2" — {0, 1},
which is 1 on those codes representing states in the set
and O on all others. Searching and analyzing state spaces,
therefore, reduces to a problem of manipulating Boolean
functions, which means that the techniques that have been
developed for dealing with Boolean functions efficiently
are now available for state-machine analysis. For exam-
ple, the characteristic function can be represented by a
BDD or similar structure, which is often much more com-
pact than an explicit list of all the states. Moreover, set
operations can be represented by Boolean operations on
the BDD’s; e.g., the union of two sets is found by ORing
their BDD’s. To see how this is used for state-space
search, suppose a finite-state machine has n state vari-
ables, so that each state is considered to be an element of
2". Let X = 2" be the set of possible inputs to the ma-
chine. Let F: 2" X 2" — 2" be the Boolean function that
represents the transition function & of the machine; and
let [fi, - - -, f,] be the component function of F. Then,
for any set A4 of states in the machine with characteristic
function x,, x, the characteristic function of the set of
states reachable from A by one transition of the machine
can be computed by:

X, "0 L, Y) = 35 W X, () A <./\] Y = fi(s, X)>-
j=

(&)

Equation Cl1 is iterated, starting with x,, the characteris-
tic function of the initial states, until it converges, with x
then equal to the characteristic function of all states reach-
able from the initial states.

The number of steps involved in the computation of C1
using BDD’s or similar representations and the size of the
BDD’s can still be exponential in the number of state vari-
ables n. The number of iterations needed to reach con-
vergence can also be exponential. Nevertheless, a number
of heuristics have been developed that seem to work rea-
sonably well on examples with 50 or more state variables
[16].

The COSPAN system [34] is a state-machine verifica-
tion system that addresses that last two of the problems
listed above. COSPAN models a system as a set of inter-
acting processes, where each process is described by
means of its state variables and state transitions. Each
process also has an output called a *‘selection.’’ At each

649

step of its execution, a process chooses a value- for its
selection and moves to the next state. The choice of se-
lection may be nondeterministic, but once it is chosen,
the state transition is deterministic. This makes analysis
of the description much more efficient. The state-transi-
tion function and the conditions for a state transition may
be expressed symbolically, rather than enumerated as in
a normal state-machine description. For example, it is
possible to express directly the fact that if the state s of a
process satisfies the condition s < 10, the next state will
bes + 1.

The specification for a system in COSPAN is also de-
scribed by means of finite-state processes, but in a differ-
ent way from the usual state-machine formulation. The
designer usually writes one or more tasks that monitor the
behavior of the implementation model, checking that it
has certain required properties. For example, a task to
check for mutual exclusion in the use of a shared buffer
might be set to go into a special error state if two pro-
cesses gain access to the buffer at the same time.

In COSPAN the implementation model and the tasks
are described by finite-state automata called L-automata.
L-automata are similar to Buechi automata and Muller au-
tomata, in that they accept infinite strings, either by cy-
cling in a set of selected states forever, or by repeating a
set of selected transitions infinitely often. For example,
the following is a task used to monitor the behavior of a
model of a series-to-parallel converter similar to the one
discussed in Section III.

monitor TASK

import shift, ctr,
stvar $: (checking,
recur checking->0kK
init checking

watch

0K, BAD)

trans

checking
=>0K :(ctr.#=1) * (shift.# = watch.#)
->BAD :(ctr.#=1) * (shift.# = watch.#)
->% telse;

0K
->checking :true;

BAD
->BAD ttrue

end

The model has two components, a shift register (shift)
and a counter (ctr). The TASK monitor imports the output
of both so that it can use them as conditions for its state
transitions. It also imports the output of watch, an auxil-
iary process that collects the data inputs and assembles
them into a parallel word. TASK has three states for its
state variable ($). The state transitions are given in the
*‘trans’’ section. For each present state, the possible state
transitions are listed in the form

— next state :condition

]

where ‘‘condition”’ is a Boolean expression giving the
conditions under which that transition takes place. TASK

650 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

remains in the ‘‘checking’’ state until the counter output
(ctr.#) becomes 1, which occurs when the counter reaches
0. When the counter output becomes 1, TASK checks the
output of shifr against the output of watch. If they are
equal, it goes into the ‘“OK’’ state and returns to the
‘‘checking’’ state on the next cycle. If they are not, it
drops into the ‘‘BAD’’ state, where it remains. The “‘re-
cur’’ statement says that the behavior of the system is ac-
ceptable as long as the ‘‘checking”’ to ‘“‘OK’’ transition
occurs infinitely often. This means that the counter al-
ways resets and counts properly, and that when each set
of 8 bits is assembled, the output of the shift register has
the proper value.

COSPAN is not a simulator. It checks a specification
by building the state-transition graph of the product of all
the processes and tasks in the specification and checking
whether there are any bad cycles, that is, cycles that do
not include either edges or sets of states that are defined
to be accepting. COSPAN has very efficient procedures
for building and analyzing the state-transition graph [42],
so that it can easily handle many thousands of states. Re-
cently, it has been made even more efficient by adding
heuristics for the implicit enumeration of the state space
[72]. This is fortunate, because it is subject to the same
problems of state-space size that face other state-machine
analyzers.

COSPAN supports hierarchical development of sys-
tems. A system is first described at a high level of abstrac-
tion, and certain global properties are verified. Then the
system, or certain components of it, are developed in
greater detail, and properties of the detailed designs are
verified. At each step it must be shown that replacing the
more abstract description by a more refined one does not
invalidate the earlier proofs. This methodology has been
used in the development of substantial systems, both
hardware [27] and software [34].

Reachability analysis and equivalence checking have
been applied to several other models that are similar to or
based on state machines, including traces [22], Petri nets
[60], [40], [28], and state charts [35].

5.3. Model Checking

One example of a practical verification system that
combines temporal logic with the idea of representing a
circuit as a computational structure and attaching predi-
cates to various points in that structure is the extended
model checker (EMC) of Clarke et al. [4], [23].

The EMC represents circuits as labeled state-transition
graphs. This is like a state-transition graph for a state ma-
chine, except that the node for each state is labeled with
propositions that are determined to be true in that state.

There are two ways of specifying a circuit and turning
the specification into a state-transition graph. In the first,
a state-machine description can be extracted from a logic
or switch-level description of a circuit. This is done by
using a simulator to trace the propagation of logic values
through the circuit in response to different combinations

of inputs. The simulator uses a unit delay model. That is,
it assumes that it takes one unit of time for the inputs to
a gate to propagate to its outputs. Each distinct assign-
ment of logic values to the nodes in the circuit is recorded
as a separate state. The number of states that need to be
recorded is minimized by simulating only those input pat-
terns that are specified as feasible by the user.

The state graph can also be compiled from a somewhat
higher level description of the circuit. This higher level
description is written in a language called SML (state-
machine language), a hardware description language with
a Pascal-like syntax. SML is oriented toward the descrip-
tion of the state machines, so its basic data type is Bool-
eans. The primitive statements of the language are
raise (x), which assigns a logical true to a Boolean vari-
able x, and lower(x), which sets x to false. These state-
ments can be embedded in higher level control structures
such as conditionals, loops, and parallel execution state-
ments. The semantics of these statements include an im-
plicit model of a clock, so the state transitions implied by
an SML description are well-defined. It is, therefore, rel-
atively straightforward to translate on SML description
into a state-transition graph.

Once the graph has been obtained by whatever means,
the user can enter formulas to be checked for validity by
the system. The formulas are written in a variation of tem-
poral logic called computation tree logic (CTL). CTL
allows each state in the logic to have several successor
states, so that in general there are many paths that ema-
nate from a given state. The temporal operators included
in the language reflect this fact. For example, EXf; means
that f is true in at least one direct successor to the current
state, and A[f,Uf,] means that on every path i from the
current state, there exists a state S; where f; is true, and
in every state on the path from the current state to S;, f;
is true. Other operators are defined in terms of the prin-
ciple operators. For example, AGf; means that on every
path from the current state, f is true in every state on that
path. It is evident that AGf is the CTL equivalent of (1.

CTL, like temporal logic in general, is particularly use-
ful for expressing properties of controllers, protocol gen-
erators, and other interactive systems. For example, the
requirement for a bus interface that a ready flag stays low
until the value a is put on the output line out, at which
time ready is asserted, can be specified as follows:

A[~ready U (out = a) A ready}.

Once the user submits a formula to the EMC, it is checked
automatically against the state graph. If the formula is not
true, the system gives a counterexample by showing one
state or path for which the formula does not hold. The
system has a very efficient algorithm for checking for-
mulas. It involves taking a proposed formula and labeling
all those states in which the formula holds. For a simple
propositional formula such as ~a or (ready A ~ out), this
can be done easily, since each state in the graph is char-
acterized by the variables that are asserted in that state.
For a complex temporal formula, the graph is first labeled

MCFARLAND: FORMAL VERIFICATION OF SEQUENTIAL HARDWARE

with the subformulas. Then a search that visits each state
at most once can be used to evaluate the formula. For
example, suppose the formula to be evaluated is A[f; U
/1. First, all those states in which f; holds are so labeled,
and similarly for f;,. Then, to check whether A[f; U f]
holds at a state S, the algorithm recursively checks
whether it holds at all the successors of S. If it does, and
/i holds in S, or if f; holds in S, then the formula is true
for state S, and S is labeled accordingly. If the search on
any path from S reaches § again without having reached
a state in which £, holds, then the formula is false for S.
Similar rules govern the search for the other temporal op-
erators.

To evaluate a formula, the algorithm must visit each
state in the graph at most once for each subformula, plus
once for the formula itself. The complexity of the algo-
rithm is therefore O (FN), where F is the number of op-
erators in the formula and N is the number of nodes in the
graph. In practice, properties of circuits with many
hundreds of states have been checked using this algorithm
in a few seconds. The system has been used to verify both
synchronous controllers and asynchronous circuits [4].

Recently, a new algorithm has been developed for the
EMC, using BDD’s to encode the state-transition graph.
This extends the size of the state space the system can
handle by several orders of magnitude [6].

5.4. Algebraic Systems

A more radical approach to formal reasoning about
hardware is to use a completely different formal system,
one that is specifically adapted to expressing the concepts
relevant to the behavior of hardware (and software).

One type of system that does this consists of recursive
expressions that represent sequences of events generated
by communicating processes. When this is applied to
hardware, the processes describe individual compo-
nents—at some level of abstraction—and the events stand
for the signals that pass between the components as well
as signals to and from the outside. The expression for a
hardware system represents exactly those sequences of
events that can occur when the hardware is in operation.

This type of formal system provides a framework for
reasoning about the behavior of hardware. For example,
one can speak about equivalence between expressions,
meaning that they allow exactly the same event se-
quences; and there are rewriting rules for proving equiv-
alence, just as there are in a formal logic.

The hardware verification system of this type that has
received the most exposure is probably the CIRCAL sys-
tem [55], [57]. A CIRCAL description can be thought of
as representing a set of interconnected boxes. Each box
represents an independent computing agent or process and
has one or more connection points called ports. There are
primitives for reading and writing signals or messages on
these ports, and operators for combining these primitives
sequentially, conditionally, and iteratively (through re-
cursion). There are also operators for putting boxes to-
gether to make larger boxes. CIRCAL has rules for rea-

651

soning about expressions, transforming them, proving
equivalence, and so on.

Milne has used CIRCAL, for instance, to prove that a
circuit that checks for equality of bit vectors meets its
specification [56]. He has also proved that a simple ‘sil-
icon compiler’’ that translates gates into networks of tran-
sistors is correct [54], meaning that for any gate-level in-
put it always produces an implementation that has the
same behavior, within the given model of behavior. There
is a program, analogous to an automatic theorem prover,
that assists in CIRCAL proofs by automatically taking
care of the details of some of the smaller steps [73].

CIRCAL developed out of work done by Milne and
Milner on modeling concurrent systems [53]. The Cal-
culus of Communicating Systems, which CIRCAL resem-
bles in many ways, also developed out of this work [58].
The main difference between the two is CIRCAL’s ex-
plicit handling of nondeterminism. SCCS [59] and the dot
calculus [52] are similar frameworks for reasoning about
the behavior of concurrent systems.

VI. CoNCLUSION

In this paper we have investigated several systems for
reasoning about the correctness of sequential hardware.
All use formal logic, or another formal system that resem-
bles a logic, as a framework for stating and proving prop-
erties about the behavior of hardware designs. They dif-
fer, sometimes radically, in the way they represent some
of the complex features of hardware, such as temporal
behavior, hierarchical organization, and the relation be-
tween structure and function. Most important from the
point of view of the user, they differ in the extent to which
they trade off generality for ease of use. In this regard,
they range all the way from the higher order logic sys-
tems, which can express anything but require a great deal
of expertise and time to do a nontrivial proof, to a system
like the EMC, which is much more specialized in the
properties it can prove and the types of circuits it can rep-
resent, but can do the proofs automatically.

At present, there are very few practical applications of
formal hardware verification, although a few real chips
have been subjected to formal verification of one sort or
another. The question is, what role will formal verifica-
tion have in the future of hardware design? It is generally
acknowledged that with the complexity of modern VLSI
circuits, exhaustive simulation and testing is impossible.
Thus there is certainly a need for a method of analysis
that can establish general properties about a system, not
just the responses to individual stimuli. It would seem,
therefore, that formal verification has something impor-
tant to offer to the modern designer.

We must be clear, however, about just what formal ver-
ification does offer. It is not true, for example, and never
will be true, that formal verification will be able to ‘‘guar-
antee’’ the correctness of a circuit, as is sometimes im-
plied [14]. There are both practical and theoretical rea-
sons for this, and they occur at every point in the process
shown in Fig. 2. First of all, the theorem prover cannot

652 [EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

be guaranteed always to give a correct answer. In fact, for
any logic powerful enough to describe most of the inter-
esting properties of hardware, it may not give any answer
at all, because of decidability problems. Furthermore,
there is always the possibility of error in the verification
process. If the proof is done by hand, human error cannot
be ruled out. Given the size and complexity of the proofs
that must be done, it is indeed quite likely. On the other
hand, if a computer is used to produce the proof, to assist
in it, or even just to check it, then the result is only as
reliable as the program used. An automated theorem
prover or proof checker is far more complex than the
hardware we are trying to verify, so we could not guar-
antee the correctness of the theorem prover, for all the
same reasons we cannot verify the hardware with absolute
certainty. Even if we could verify the source code for the
theorem prover, we would still have to verify the com-
piler, the assembler, and the hardware they all run on.
Many of the same problems arise when we consider the
correctness of the translators from the specification and
design representation into the logic.

As difficult as they are, however, the translation and
comparison of the specification and design are the easy
part, because at least they all take place within a well-
defined formal system. When we consider the problem of
formulating a formal representation of the actual hard-
ware and its environment, the problems are far greater,
because the reality and its representation exist in different
universes, which are in some sense incomparable. When
we write specifications for a system, for example, we
work from a conceptual model of what the system is sup-
posed to do, what inputs it will receive, what outputs are
required of it, what the timing of events will be, and so
on. Even if we succeed in specifying correctly everything
in the model, the model itself is necessarily finite and dis-
crete, and cannot possibly capture the infinite reality of
the actual environment in which the hardware will operate
[70]. We only hope that we have not left out anything
important. Often enough, unfortunately, we do. Many
computer systems fail in practice, not because they don’t
meet their specifications, but because the specifications
left out some unanticipated circumstances or some un-
usual coincidence of events, so that when the unexpected
occurred, the system was not able to deal with it. This is
not necessarily due to sloppiness or stupidity on the part
of the designer or to an inadequate design methodology;
it is a fundamental characteristic of the design process. In
much the same way, our model of the behavior of a design
cannot capture the full reality. If we model it at the gate
level, we miss the analog characteristics of the devices,
as well as subtleties of timing, the distributed effects of
interconnect, and so on. Even if we brought everything
down to the quantum level, which would of course be
impossible for a complex circuit, we would have to make
approximations that might overlook important factors. In
addition, there are undoubtedly physical effects that quan-
tum mechanics cannot account for.

Nevertheless, if we drop the unrealistic expectation of
a guarantee of correctness, formal verification has much
to offer. It is a rigorous, disciplined way of analyzing the
behavior of a system and testing it against known require-
ments. Furthermore, it considers the behavior in general,
not just specific instances of it. Submitting a design to
formal verification can uncover inconsistencies and unex-
amined assumptions, and it allows one to work through
the implications of a design with more precision and in
more detail than is possible with informal checking.
Moreover, the whole process of writing a formal specifi-
cation and devising a verification strategy forces one to
think about the system in new ways, raises new questions,
and gives new insight into how the system works and why.
All of this can help catch errors and lead to a sounder
design.

The implication of all this is that formal verification
should not be seen as a purely mechanical process in
which the designer submits a design and a specification,
pushes a button, and waits to see if the red light or the
green light will go on. Automation undoubtedly has a role
to play—an essential one at that—but it is not the whole
story. The importance of formal verification is that, by
submitting to the discipline and rigor of the verification
process, the designer is forced to think through the design
process more carefully and thus comes to understand the
design better, with new insights into where it needs to be
improved. Even those systems that are most fully auto-
mated, like the EMC, are meant to be used interactively.
The user examines the design and develops a specification
incrementally by proposing properties and having the pro-
gram check them. If the check fails, the program helps
highlight the reason for the failure so that the user can go
back and rethink the design.

Formal verification can never be counted on to make
designs perfect. If properly developed, however, with at-
tention given to finding the most fruitful mode of coop-
eration between human judgement and automation, it can
become an important tool for making designs more reli-
able and increasing our confidence in them.

REFERENCES

[1] S. Andler, ‘‘Synchronization primitives and the verification of con-
current programs,’” in Proc. Second Int. Symp. Op. Syst., Oct. 1978.

[2] G. Birtwistle, J. J. Joyce, and M. Gordon, ‘‘Verification and imple-
mentation of a microprocessor,”” VLSI Specification, Verification and
Synthesis, G. Birtwistle and P. A. Subrahmanyam, Eds. Hingham,
MA: Kluwer, 1988.

[3] G. V. Bochmann, ‘‘Hardware specification with temporal logic: an
example,”’ IEEE Trans. Comp., vol. C-31, pp. 223-231, Mar. 1982.

[4] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra, ‘‘ Automatic
verification of sequential circuits using temporal logic,’” IEEE Trans.
Comp., vol. C-35, pp. 1035-1044, Dec. 1986.

{51 R. Bryant, ‘‘Graph-based algorithms for Boolean function manipu-
lation,”’ IEEE Trans. Comp., vol. C-35, pp. 677-691, Aug. 1986.

[6] J. R. Burch, ‘*Sequential circuit verification using symbolic model
checking,”” in ACM/IEEE Proc. 27th Design Autom. Conf., pp. 46~
51, June 1990.

{7] A. Camilleri, M. Gordon, and T. Melham, ‘‘Hardware verification
using high-order logic,”* From HDL Descriptions to Guaranteed Cor-
rect Circuit Designs, D. Borrione, Ed. New York: North-Holland,
1987.

MCFARLAND: FORMAL VERIFICATION OF SEQUENTIAL HARDWARE

[8] W. C. Carter, W. H. Joyner, and G. B. Leeman, ‘‘Automated ex-
periments in validating microprograms,’’ presented at /nt. Symp. Fault
Tolerant Comp., June 1975.

[9] W. C. Carter and G. B. Leeman, ‘‘Automated proofs of micropro-
gram correctness,’’ presented at Ninth Ann. Workshop Microprog.,
pp. 51-55, Sept. 1976.

[10] M. S. Chandrasekhar, J. P. Privitera, and K. W. Conradt, ‘*Appli-
cation of term rewriting techniques to hardware design verification,””
in Proc. 24th Design Autom. Conf., pp. 277-282, June 1987.

[11}] M. Clint and C. A. R. Hoare, ‘‘Program proving: jumps and func-
tions,”” Act. Inform., vol. 1, no. 3, pp. 214-224, 1972.

[12] A. Cohn, *‘A proof of correctness of the viper microprocessor: the
first level,”’ VLSI Specification, Verification and Synthesis, G. Birt-
wistle and P. A. Subrahmanyam, Eds. Hingham, MA: Kluwer,
1987.

[13] A. Cohn, ‘*Correctness properties of the viper block model: the sec-
ond level,”” in Current Trends in Hardware Verification and Auto-
mated Theorem Proving, G. Birtwistle and P. A. Subrahmanyam, Eds.
New York: Springer-Verlag, 1989, pp. 1-91.

[14] A. Cohn, ‘‘The notion of proof in hardware verification,”” J. Aufo-
mated Reasoning, vol. 5, pp. 127-139, 1989.

{15} W. E. Cory, ‘‘Symbolic simulation for functional verification with
ADLIB and SDL,’ in Proc. 18th Design Autom. Conf., pp. 82-89,
1981.

[16] O. Coudert and J. C. Madre, ‘‘Symbolic computation of the valid
states of a sequential machine: algorithms and discussion,’” in Proc.
Int. Workshop Formal Methods VLSI Design, 1991.

[17] S. Crocker, *‘State deltas: a formalism for representing segments of
computation,”” Comp. Science Dep., Univ. of California, Los An-
geles, CA, UCLA-ENG-7784, Feb. 1978.

{18} S. D. Crocker, L. Marcus, and D. van-Mierop, ‘‘Microcode verifi-
cation project: final report,”’ Inform. Sci. Inst., Univ. of Southern
California, Los Angeles, CA, ISI/WP-17, Dec. 1979.

[19]). Darringer, *‘The application of program verification techniques to
hardware verification,’’ in Proc. 16th Design Autom. Conf., pp. 375-
381, June 1979.

[20] S. Dasgupta and A. Wagner, ‘‘The use of Hoare logic in the verifi-
cation of horizontal microprograms,”’ Int. J. Comp. Infor. Sci., vol.
13, no. 6, pp. 461-490, 1984.

[21] S. Devadas, H. T. Ma, and A. R. Newton, ‘*On the verification of
sequential machines at different levels of abstraction,’” in Proc. 24th
Design Autom. Conf., pp. 271-276, June 1987.

[22] D. L. Dill, ““Trace theory for automatic hierarchical verification of
speed-independent circuits,”” in Advanced Research in VLSI: Proc.
Sth MIT Conf., 1988.

{23} D. L. Dill and E. M. Clarke, ‘‘Automatic verification of asynchro-
nous circuits using temporal logic,”” in Chapel Hill Conf. on VLSI,
pp. 127-143, 1985.

[24] R. W. Floyd, ‘‘Assigning meaning to programs,’
Applied Math. 19, pp. 19-32, 1967.

[25] M. Fujita, H. Fujisawa, and N. Kawato, ‘‘Evaluation and improve-
ments of Boolean comparison method based on binary decision dia-
grams,’’ in IEEE Proc. ICCAD8S, pp. 2-5, Nov. 1988.

[26]) S. M. German and Y. Wang, ‘‘Formal verification of parameterized
hardware designs,’’ in Proc. IEEE ICCD85, 1985.

[27] 1. Gertner and R. P. Kurshan, ‘‘Logical analysis of digital circuits,”’
in Proc. 6th CHDL, pp. 47-57, 1987.

[28] C. Girault, C. Chatelain, and S. Haddad, *‘Specification and prop-
erties of a cache coherence protocol model,”’ in Advances in Petri
Nets 1987, G. Rozenberg, Ed. New York: Springer-Verlag, 1987,
pp. 1-20.

[29] M. Gordon, ‘‘Why higher-order logic is a good formalism for spec-
ifying and verifying hardware,’’ in Formal Aspects of VLSI Design,
G. Milne and P. A. Subrahmanyam, Eds. New York: North-Hol-
land, 1986.

[30] M. J. C. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF: A
Mechanized Logic of Computation. Berlin, Germany: Springer-Ver-
lag, 1979.

[31] J. Halpern, Z. Manna, and B. Moszkowski, ‘‘A hardware semantics
based on temporal intervals,’’ in Proc. 10th Int. Colloq. Automata,
Languages, Prog., pp. 278-291, 1983.

[32] L. H. Hanes, ‘‘Logic design verification using static analysis,”” Ph.D.
dissertation, Elec. Eng. Dep., Univ. of Illinois at Champaign-Ur-
bana, IL, 1983.

[33] F. K. Hanna and N. Daeche, ‘‘Specification and verification using
higher-order logic,”’ in Proc. 7th CHDL, 1985.

»

in Proc. Symp.

653

[34] Z. Har’El and R. P. Kurshan, ‘‘Software for analytical development
of communications protocols,”” AT&T Tech. J., vol. 69, no. 1, pp.
45-59, Jan./Feb. 1990.

[35] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sher-
man, A. Shtull-Trauring, and M. Trakhtenbrot, *‘Statemate: A work-
ing environment for the development of complex reactive systems,””
IEEE Trans. Software Eng., vol. 16, pp. 403-414, Apr. 1990.

[36] J. Herbert, **The application of formal specification and verification
to a hardware design,”’ in Proc. 7th CHDL, 1985.

[37] C. A. R. Hoare, ‘‘An axiomatic basis of computer programming, "’
CACM, vol. 12, no. 10, pp. 576-580, Oct. 1969.

[38] C. A. R. Hoare, **Proof of correctness of data representations,’” Act.
Inform., vol. 1, no. 4, pp. 271-281, Nov. 1972.

[39] W. A. Hunt, **FM8501: A Verified Microprocessor,”” Ph.D. disser-
tation, Univ. of Texas at Austin, TX, Feb. 1986.

{40} K. Jensen, *“Coloured Petri nets. A way to describe and analyse real-
world systems—without drowning in unnecessary details,”’ in JEEE
Proc. 5th Int. Conf. on Syst. Eng., pp. 395-401, 1987.

[41] F. Kroger, Temporal Logic of Programs. New York: Springer-Ver-
lag, 1987.

[42] R. P. Kurshan, ‘‘Reducibility in analysis of coordination,’’ in Proc.
1IASA Workshop on Discrete Event Systems, Aug. 1987.

[43] M. E. Leeser, ‘‘Reasoning about the function and timing of integrated
circuits using interval temporal logic,”” JEEE Trans. CAD/ICAS, vol.
8, pp. 1233-45, Dec. 1989.

{44} J. Madre and J. Billon, ‘‘Proving circuit correctness using formal
comparison between expected and extracted behavior,”” in Proc. 25th
Design Autom. Conf., pp. 205-210, June 1988.

[45] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli,
“‘Logic verification using binary decision diagrams in a logic synthe- :
sis environment,”’ in Proc. ICCADS88, pp. 6-9, Nov. 1988.

[46] Z. Manna, Mathematical Theory of Computation. New York:
McGraw-Hill, 1974.

[47] F. Maruyama and M. Fujita, ‘‘Hardware verification,’’ Computer,
vol. 18, no. 2, pp. 22-32, Feb. 1985.

{48) F. Maruyama, T. Uchara, N. Kawato, and T. Saito, ‘A verification
technique for hardware designs,’” in Proc. 19th Design Autom. Conf.,
pp. 832-41, 1982.

[49] M. C. McFarland, ‘‘A practical application of verification to high-
level synthesis,”” in Proc. Int. Workshop on Formal Methods in VLSI,
1991.

{50] M. C. McFarland and A. C. Parker, ‘*An abstract model of behavior
for hardware descriptions,’’ IEEE Trans. Comp., vol. C-32, pp. 621~
36, July 1983.

[51] T. F. Melham, ‘‘Abstraction mechanisms for hardware verification,’
VLSI Specifications, Verification and Synthesis, G. Birtwistle and P.
A. Subrahmanyam, Eds. Hingham, MA: Kluwer, 1988.

[52] G. Milne, ‘*Abstraction and nondeterminism in concurrent systems,’’
in IEEE Proc. 3rd Int. Conf. on Distributed Comp. Syst., 1982.

[53] G. Milne and R. Milner, ‘‘Concurrent processes and their syntax,’’
J. ACM, vol. 26, no. 2, pp. 302-321, Apr. 1979.

[54] G. 1. Milne, ‘‘The correctness of a simple silicon compiler,’” in Proc.
6th CHDL, pp. 1-12, 1983.

[55] G. 1. Milne, “‘A model for hardware description and verification,”’
in Proc. 21st Design Autom. Conf., pp. 251-257, 1984.

{56] G. J. Milne, “‘Towards verifiably correct VLSI designs,”” Formal
Aspects of VLSI Designs, G. J. Milne and P.'A. Subrahmanyam, Eds.
New York: North-Holland, 1985, pp. 1-22.

[57] G. J. Milne, ““CIRCAL and the Representation of Communication,
Concurrency and Time,"” ACM TOPLAS, vol. 7, no. 2, pp. 270-298,
Apr. 1985.

(58] R. Milner, A Calculus of Communicating Systems, 92, LNCS. Ber-
lin, W. Germany: Springer-Verlag, 1980.

[59] R. Milner, ‘‘Calculi for synchrony and asynchrony,’’ Theoretical
Comp. Science, vol. 25, no. 3, pp. 267-310, 1983.

[60] M. K. Molloy, *‘Descrete time stochastic Petri nets,”” IEEE Trans.
Software Eng., vol. SE-11, pp. 417-423, Apr. 1985.

[61] B. Moszkowski, ‘‘Reasoning about digital circuits,”” Stanford Univ.,
Stanford, CA, STAN-CS-83-970, 1983.

[62] B. Moszkowski, ‘‘A temporal logic for multilevel reasoning about
hardware,"’ Computer, vol. 18, pp. 10-19, Feb. 1985.

{63] P. Narendran and J. Stillman, ‘‘Formal verification of the Sobel im-
age processing chip,’” in Proc. 25th Design Autom. Conf., pp. 211-
217, June 1988.

[64] N. J. Nilsson, Problem-Solving Methods of Artificial Intelligence.
New York: McGraw-Hill, 1971.

654 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993

[65] S. Owicki and D. Gries, ‘*Verifying properties of parallel programs:
an axiomatic approach,’’ CACM, vol. 19, no. 5, pp. 279-285, May
1976.

[66] V. Pitchumani and E. P. Stabler, ‘‘An inductive assertion method for
register transfer level design verification,"” IEEE Trans. Comp., vol.
C-32, pp. 1073-1080, Dec. 1983.

[67] A. Pnueli, ‘‘The temporal logic of concurrent programs,’’ Theoreti-
cal Comp. Science, vol. 13, no. 1, pp. 415-60, Jan. 1981.

[68] J. A. Robinson, ‘‘A machine-oriented logic based on the resolution
principle,”” JACM, vol. 12, no. 1, pp. 23-41, 1965.

[69] J. P. Roth, ‘‘Hardware verification,’”” IEEE Trans. on Comp., vol.
C-26, pp. 1292-1294, Dec. 1977.

[70] B. C. Smith, ‘‘Limits of correctness in computers,’’ Ctr. Study Lang.,
Infor., CSLI-85-36, 1985.

[71] V. Stavridou, H. Barringer, and D. A. Edwards, *‘Formal specifica-
tion and verification of hardware: a comparative case study,”’ in Proc.
25th Design Autom. Conf., pp. 197-204, 1988.

[72} H. Touati, R. K. Brayton, and R. Kurshan, ‘‘Testing language con-
tainment for w-automata using BDD's,”” in Proc. Int. Workshop on
Formal Methods in VLSI Design, 1991.

[73] N. Traub, ‘A lisp based CIRCAL environment,’’ Univ. of Edin-
burgh Dep. Comp. Science, Edinburgh, UK, CSR-152-83, 1983.

[74] T. J. Wagner, ‘‘Hardware verification,’” Stanford Artificial Intelli-
gence Lab., Stanford Univ., Stanford, CA, AIM 304, Sept. 1977.

| I

[75) A. J. Wojcik, ‘‘Formal design verification of digital systems,”’ in
Proc. 20th Design Autom. Conf., pp. 228-234, June 1983.

[76] M. Yoeli, Ed., Formal Verification of Hardware Design.
mitos, CA: IEEE Comp. Soc., 1991.

Los Ala-

Michael C. McFarland (S'77-M'85) received the
A.B. degree in physics from Cornell University in
1969 and the M.S. and Ph.D. degrees in electrical
engineering from Carnegie Mellon University in
1978 and 1981, respectively. He also has M.Div.
and Th.M. degrees from Weston School of The-
ology.

He is an Associate Professor of Computer Sci-
ence at Boston College, Chestnut Hill, MA, and
a consultant at AT&T Bell Laboratories, Murray
Hill, NJ. His research interests include high-level
synthesis of VLSI designs, the specification and formal verification of dig-
ital systems, and ethics in computer science and engineering.

Dr. McFarland is a member of ACM and Computer Professionals for
Social Responsibility.

