
? L̂ U^AyHL^ Cô C&jftZ / (̂£ ^-•1 The K&ed tor FormalS&maniics 317Pn !»

£TU3£e descriptions, even if they refer to well-understood abstract, concepts, •

such astheSIMFLESEM virtual machine of Chapter 3, lack precision.; very
often they are ambiguous, incomplete, and inconsistent. Worse yet, deter-ruining that such a definition is unambiguous, complete, and consistent is a
nontrivial and certainly not a mechanical task.

These are the most important benefits of formal semantics:

1. Rigorous and unambiguous definition. The language that is used
to formally specify semantics, called rrMa-ln?igti&ge, is based on well-under-
stood and simple mathematical concepts. This is similar to what we have
seen for formal descriptions oi the syntax of programming languages. BNF
or syntax diagrams are the metalanguages used to specify the syntax of
programrAinglanguages. In our case., giving semanticsto language L by us-ing metalanguage M can be viewed as translating from L to M. If M is a
complex, nornnathematic.il language, we would have a circular problem*cause M itself would require a formal specification of its semantics.Instead,
no such need arises when M is simple and based on mathematical concepts,
Theresulting descriptionis rigorous and unambiguous.

2. Basis for language comparison. The ability to compare different
features, perhaps in different languages, to choose a language or evaluate
alternative design decisions is often an elusive goal. The operational model,

developed in Chapter 3 is certainly of great help* but one hopes that formal
semantics prorides, an even more detailed and precise basis for compari-sons.

AnIntroduction to
FormalSemantics

According to the definition given in Chapter 3, the semantics of a language
describes “the meaning” of any syntactically correct program in that lan-
guage. In Chapter $ we described the meaning of basic language concepts,
such as variables, bindings, and run-time structures, in berms of a virtual

. machine.Thatapproachis,what wehave called flgtfKtttfics,
In this chapter we introduce two formal—that is, mathematical—ways of

defining the semantics of a programming language: daimwtfcw semantics
and d¬abional semantics. Our purpose is to illustrate the spirit of how
language semantics can be definedformally, and how the two styles differ in
flavor from one another and from operational semantics. We do not intend
to cover the details of the definition of complete and realistic programming
language We also warn the reader that treating additional constructs and
details of real programming languages is not simply a matter of adding
more details to the format description. Depending on the nature of the con-
struct or detail, new problems may arise that may require new and perhaps
as yet unknown mathematical solutions.

Also, we restrict our attention to the formal semantics of imperative lan-
guages, which constitute the main body of this text- Dealing with nontradk
tional languages, would require the development of additional mathematical
background, whichis out of thescope of thistext.

3. Independence from implementation. When a concept is. described
in terms of an implementation—be it abstract or concrete—one uses a num-ber of exogenous, ancillary, implementatioivdependent concepts. These do
not deal with the essence of die concept, which is independent of any imple-
mentation. To circumvent this problem, one might say that a given, imple-
mentation. represents the equivalence class of all correct implementations
(i.e., implementations that give the same results for any program and any
given input). For example, our SIMFLESEM machine described in Chapter
3 uses static links to access nonlocal environments, and details have been
given to show how static links are installed and used at run-time Exercise
3.21 shows another implementation in terms of a “display.7' The two imple-
mentationsbelong to the same equivalence class of correct implementations
of nonlocal environments. The essence of the concent they implement is the
same,but numerous (and different) implementation-dependentdetails must
be given m the specification, In conclusion, impTementetion-based semantic
definitions, such as the operational definition of Chapter &* cannot distin-
guish between whatis the pure essence of a language concept and a specific
Implementation:theylack abstraction and easily can become cluttered with
details.

I

9.1 THE NEED FOR FORMAL SEMANTICS

Why is formal semantics useful? Why is a natural language description,
such as the Pascal Report, or the Ada Reference Manual, or an operational
view such as that presented in Chapter S, inadequate? Informal natural lan-

3-16

318 319An Introduction to-Formal S6ndn‘lcs 9.3 An infroductior- to Axiomatic Semoniics

4. Basis for correctness proof of implementation. A language imple-
mentation is defined correct if it conforms to the formal semantic specifica-
tion. The formal description is ifce reference for solving any controversial is-
sue- Implementations may differ from one another as far as efficiency is
concerned, but the meaning of syntactically correct, programs remains the
same.

5, Basis for program correctness proofs- ’To prove that a given pro-
gram is. correct with respect to a given Specification, the effect of the pro-
gram must be clearly understot'd, that is, the languagesemantics should be
specified rigorously For example, as- we have seen m Chapter 4, the original
Pascal Report does not define variant records precisely As a result, one
may be unable to understand precisely the meaning of a given program that
uses variant records, and thus to prove whether fee program meetsits spec-
ification-

‘ We distinguish between two kinds cf formal semantics:axiomatic seman-
tics and denotations^.semantics. describes themeaning
of each syntactically correct program by associating to it properties or vari-
ables (in terms, of predicate calculus.) feat- bold before execution scares and
after the program halt^ Thus fee metalanguage of axiomatic semantics is a
logic language, such aspredicate calculus. Denofatiwuil serncttrics describes
fee meaning of a program by associating to it a function from the input do-
main to the output domain. In this case the metalanguage Is that- of func-
tional calculus.

The fundaments? concepts needed to model the semantics of a program-
ming language are the state of cosnvutation, and how tills state is iraras-
f&rme.d by various language constructs. In the informal operational seman-
tics of Chapter 3, the state was described in terms of data structures, of the
abstract SIMPLESEM processor, and state transformations were de~
scribed in terms of changes to the processor's data, structures. In Sections
9.3and 5.4 we will see how this can be doneformally.

The rest of this chapter is organized as follows:Our discussion of formal
semantics starts in Section 9.3 wife axiomatic semantics, which ishighly in-
tuitive and does not require deep mathematical knowledge to be appreci-
ated in practice. In Section 9.3.1 we also will give a glimpse of how aro-
matic semantics support formal proofs of program correctness. Section- 9.4
will outline the basics of denotations!semantics. Finally in Section 9.5 we
will contrast the two styles and draw some conclusions.

Points 4 and 5alsoshow that formal semantics have the potential of provid-
ing mechanical support to correctness proofs. The only way for a computer
to aid in theverification of a language implementation or fee correctness of
a program istostart from a precise, formal language definition.

Having seen fee advantages of formal semantics., one wonders whether
there is a need for informal semantic descriptions, such as those of tradi-
tional language standards. In practice, both formal and informal descrip-
tions are needed. The interplay between formal and informal semantics is
as follows: When a language is being designed* one usually starts from an
informal definition. The informal description then is converted intoaformal
description, and tins may uncover inconsistencies, ambiguities; and incom-
pletenesses in the informal description. The process- is iterated until the de-
sign is satisfactory.The final formal semantics description then is used as a
basis for deriving more informal reports on fee language. These definitely
are needed in practice. Because they are more readable then their formal
counterparts, the reader only needs to refer to the formal definition when
the informal documents do not. provide a satisfactory answer. Also, the
practical use of the language should not require as a prerequisite fee mathe-
matical skills needed to manageformal semantics.

9.3 AN INTRODUCTION TOAXIOMAnCSEMANTICS

Aromatic semantics is based on mathematical logic. The_stete of compu-
tation Is described by a logicals^ressionJ^caU&La^reii^^or assertion) on
program variables that must hetrue in that state..Intuitively, whereasin op-
erational semantics the state of computation for a program is determined
by fee data structures of the. modeling machine, in axiomatic semantics it is
determined by a predicate on fee valuesof fee program variables.

Bsc&use in this chapter we are only interested in the flavor of formal se-
mantics, our use of the concepts of logic will be rather informal and intui-
tive- To go deeper into the subject, the reader needs a background of mathe-
matical logic, which is not required to understand the spirit of the method
and its use. The Further Reading Section at the end of the chapter provides
references to theliterature on this subject,

A predicate P that is required to hold after a statement S is called a post-
omdtiwn- for S. A predicate Q such that the execution of S terminates and

• ,- .>/? y postcondition P holds upon termination is. called a jirecondit̂ m for S and R
For example, y«3is one possible precondition for statement x\ = y41, that
leads to postcondition x> Q. The predicate 0 is also a precondition for

92 STYLES OF FOBMAL SEMANTICS
As we have seen in the previous section, formal semantics of aprogramming
language maps every syntactically correct, language construct into a meta-
language that is based on a wetl-uncferstood mathematical notation.Conse-
quently formal semantics can be specified as a set of translation rules from
the domain of language constructs to the range of well-formed, formulas of
the formalism.

?
i

statement. IEI-W +I and postcondition £> 0. Actually, is the waatei
preconditim, that is, the rteoassary and sufficient precondition for state-
ment %:= y+1 that leads to postconditions>0. A predicate W is called the .

weakest precondition for a statement5 and a postcondition P7 if any pre- •

condition Q forS and P implies W, that is, W holds for any precondition Q.
Among all possible preconditions for statementB and postcondition # trig
the weakest:it specifies the fewest constraints- If we write implication as
''***

., for ourexample we have

cmposteion ruJ.es are needed to characterize the semantic effect of combin-
ing individual statements into a program segment- For example, for se-
quencing, if we know that

osemP1xP)=Q

and
05Sffi (S2rQ)=R

y =s3=* KS0
In general, given an assignment statement &=E and a postcondition Pr the
weakest precondition is obtained by replacing each occurrence of a:in P with
expression.El We express this weakest preconditionwith the notation Fs->&
In the example, P.̂ y+ 1 is y +1>0, that is, y 0-

To characterise the semantics of a programminglanguage, we would like
to describe the effect of each language construct in terms of the transfor-
mation of predicates it implies. To this endr we will define a function asera
(for axiomatic semantics,, also called a predicate frarcs/onraer) that for any
statement S and any postcondition PT has as its value the weakest precondi-
tionW Itis written as

then
asem (S2;Sf ,f]=/?

The cases of selection and iteration are more complex. If B is a boolean ex-
pression andLI,L2 are twostatement lists, then let if-stat be the following
statement:
if £ then LI else L2 fi
If P is the postcondition that mast be established by xf-stat* then the weak-
est precondition is given by

asemflMah P)= B»e&err^LI, P) and not B =*asem (JU2.F)

For example, given the following program fragment (at, y, and mosare inte-
gers)

if z> ~ y then .BET::* r else .!!£*::= y fi

asem (S P)=W
In the case of an assignment statement x:*Ef we have

sem £*:=E
This characterization of assignments is correct under the assumption

that the evaluation of the right-hand tide of the statementdoes, not have any
, ,-_

VL- .*4^
,rf + (side-effects. Moreover, the variable being assigned cannot be an alias of

J.Xu : .'other program variables. In such cases the execution of the assignment also
!may affect variables not. appearing at. the left-hand side of the statement,
l and the given semantics would be incorrect.This is an example of how side-

|ejects and aliasing can complicate formal as well as informal reasoning
about programs,

Let us give an intuitive explanation of how usm (5(F) can be described as
giving the semantics of 5. Consider bow we can use the function we have
just given for assignment statements. Suppose we want to know whether
the statement snr t l will produce the result %>5. The function o&m .can
be used to tell us that asetrafa;:*= Z ± 1,T > Z>)^ X >47 that is, as long as we start
with a computation state that ensures the truth of x> 4, then the given as-
signment statement will achieve the desired effect. In other words, v;e can
predict the exact effect or meaning of statements tf we have the asem, func-
tion.

and the postcondition
(max=xand xsy) qr (max=.y and y >)<)

the weakest precondition is easily proven to tie (rw^iiat is, the statement
satisfies the postcondition without any constraints on variables.

Suppose now that P is the postcondition that must be established by the
following loop

sy+ip -a -*

? —'f

while 3 do L od
where B is a boolean expression and L is a statement list. The problem is
that we do not know how many times the body of the loop is instated. In*

deed, if we knew; for example, that the number of iterations were n, the con-
struct would be equivalent to the sequential composition

Li la} . . . J L
of lengthn.Thus the semantics of the statement would be straightforward.

To overcome thisdifficulty let us first reconsider why we have chosen to
refer to weakest preconditions in our formalization of semantics. The rea-
son fe that weakest, preconditions give an es&ct characterization of sejtnan-

ocT 6 f .

Simple statements, such as assignment statements, can be combinedinto
more complex actions by statement-level control structures. Therefore,

C*' l ‘ ''A h X ;-= ? : i i v e .* > y'J £?/
' y j

i % «. fc

_
d

J /.. i
f . - y iW y> V; a- ., . . 7>; "~u J-; trU-^y;.- *

rr-1

programs can be proven correct. We also will mention an interesting: me-
thodical approach that uses axiomatic semantics to guide in the derivation
of programs that are correct in the first place.

First, of allT the correctness requirements of the program must be speci-
fied formally by giving two predicates: a precondition Q*c (or input asser-
tion} on input variables and a postcondition OUT (or output assertion) on in-
put and output variables. The job of verification is to show that if IK holds-
before executing the program, execution terminates in a state where OUT
holds. This proof requires the use of the semantic characterisation of state-
merits such as the one described in theprevious section.

Program verificationis illustrated here with the aid of a simple example.
Consider the following program fragment, in which all variables are as-

sumed tobe integers.

tics. If we choose to refer to any other precondition^ they provide only an
&ppWHsmate characterisation of semantics: they are only a sujfioimt pre-
condition that can be derived for a given statement and a given postcondi-
tion. In facth if any precondition for a given statement and a given postcon-
dition holds, then the weakest precondition also holds. In other words, the
constraints. ' on the state specified by a iionweakesfc precondition are
stronger than what is needed to ensure that a certain postcondition holds
after execution of a statement If we relax our requirement and accept non-
weakest preconditions as. an (approximate) specification of semantics, here

• is how while statements can behandled.
Given the while statement and a postcondition E we wish to determine a

precondition Q for the while statement and predicate F Q must be such
that

im.* k; Gzu?:* k;(a) Thelrop terminated
(b) At loop cat,P holds.

Thus predicate Q can be written as Q=Tand R, where T implies termina-
tion of the loop and R implies the truth of P at loop exit. Determining two
predicates T and R that satisfy these properties is not straightforward and
requires ingenuity. For simplicity’s sake, we ignorethe problem of termina- _
tion and focus, our attention on inventing R.Suppose we are able to identic
a predicate I that holds, both before and after each loop iteration and, when
the loop terminates(i.e., when the boolean expressionIf is false), / impliesJ?
I is caJied an invariard predicate for the loop. Formally I satisfies- the fol-
lowingconditions.

while f >1 do
i:= i-li

1 od
Let the input assertion be

IN : k >0
and Jet the output assertion be

a
OlJkSjmsE/

i

1

(13] andB*osem(L 3 J
(I I) landnotB=-. P

If we are able to identify a predicate1 that satisfies both i) and ii), then we
can take I as the desired predicate R, because P holds upon termination if
R=1holds before executing the loop.

In conclusion, the method of loop invariants allows us to approximate the
evaluation of semantics of a while statement; the precondition is one possi-
ble valid precondition, not necessarily the weakest, Because the major use
of axiomatic semantics is in proriding programs correct, (or deriving correct
programs), as we will see in the next section this inconvenience does not
cause us much trouble.

We want to prove the fragmentcorrect with respect to IK and GUT.
The termination of the loop is obviously assured, because variable i is al-

tered only by instruction t-:= i-1and, thus, assumes a decreasing sequence
of values, which would eventually make ili>V * false. For the invariant, the
predicate

fa
r;-' p- pi

• V*V t.)
- y.-i ; J

/ -— -k r r o r : i _" *
k

Sjand 0<isk
1 *

1; $um=

can be proven easily to satisfy conditions i) and ii) of the previous section
(we leave this proof to the reader). Thus, starting the execution of the loop
withvariablessatisfying I assures termination in a crate satisfying OUT.Fi-
nally it is also easy to prove that I holds after theinstructions

iis .ir; suer- Jr:

i

9.3.1 AxjomottcSemanilcs and Program Correctness
An in-depth study of the issues involved in the study of program correctness
is beyond the scope of this book. However, we are now in a petition to state
precisely what we mean by a- correct program,and togive a glimpse of how

*Y T £
T.~

if the precondition k>0 holds before the two instructions. In conclusion, if
IK holds before executing the fragment, execution terminates m a state

fl' J rj 3 t a- x - . > ' j ' m ~ ' £ -J.v ‘ P_: ,S — .J r ?.- }"i••
j.-•->1 Sir. I

v l - -/ ^’ J• . ~\ S’S> t; a+1* : > y7-' T•. Vr,•:
^7 • • f

where OUT holds, that is, the program is correct with respect to IN and
OUT. • .

as run-thne checks:this isa useful way of certifying programs via system-
atictestmgT

Another important use of axiomatic semantics is in the methodologies
that try to derive programs thatare correct in the first place.TMa approach
has boon exemplified by Dijkstrar who illustrated a calculus that, given in-
putand outputpredicates, can boused to synthesize correct programs. This
isapproach: programs are not proven correct a- posteriori,.af-
ter beingwritten, but ere derived correct, by the calculus* The approach has
been demonstrated to work on examples of low-te^mcderate complexity but
it is not dear if (and how) it can bo used in more complex and larger applies-

. tions. Further discussion of this topic is beyond the scope oi this watt, and
belongs in the area of programming methodology. The reader interested in
the subject will find references to the literature in the Further Beading sec-
tion. •

Given the input and output assertions.* program verification proceeds by
deriving intermediate assertions that must be proven to hold at various
points in the program. In particular, as we have seen+ intermediate asser- .
tions must be supplied by the verifier (human or machine) in the form of
loop invariants. Other examples of intermediate assertions are the legality

f assertions generated by the Euchd compiler, which we mentioned in Ch&p-
'V ^ter 5* In addition, Euclid allows the programmer to specify assert state-

^ ^ menus in the program.The Euclid^assert statement is used to supply inter-
mediate assertions- to be proven by the verifier as an integral part of the
program. In this way, assertions become part- of the documentation of the
program.Moreover, compiler options allow the programmer to transfom as-
sert statements into run-time checks- during the testing phase or, alterna-
tively, to suppress their evaluation.Finally if a verifier.is part of the set of
tools provided by the programming1 environment, assertions can be proven
by theverifier and the programis fullycertified statically.

The mechanical verifier cannot proceed in a purely automatic fashion,

but must interact with the user.In particular, the user must use ingenuity to--•I* W— ’

* invent loop invariantsthatars needed in the derivation of a precondition for
a given program containing loops and agiven output assertion.

The influence of programming language features on the process of rea*

sorting about programs is felt both by human readers and mechanical pro-

gram verifiers. Many features that make reasoning about programs diffi-
cult for humans also are hard to deal with for a program verifier. For
example, side-effects in functions, complicate the evaluation of the weakest

• - precondition for assignment^ as the following example shows. Let
r- 3 y:mf(x) -f z be an assignment statement and P(z)be a predicate on variable z

that must hold asa postcondition for the assignment. The absence of side-
effects guarantees that P(z) also is the weakest precondition. The possibility
of sid^effecte, however, requires examining the function f, which might
modify 2.Moreover, the verifier—be it human or automatic—must be care-
ful if aliasing is permitted by the language. In the example, Fiz) would not
be theweakest precondition if z and y are aliases.

What is’ the practical influence of program verification on the program-
ming activity? Unlike* what many computer scientists foresaw in the past,
program verification has not become common practice in everyday pro-
gramming and probably never will. Nevertheless, program verification is-
sues have a deep influence on programming and programming languages. .
They stimulate a rigorous approach to programming- and’ provide a, formal
definition of programming languages. Even in the absence of a mechanical
program verifier, rigorous reasoning about program correctness can help
the programmer in discovering possible errors. Intermediate a5jortjons__
th;at should be proven by the verifier (e.g., loop invariants) can be expressed.

•r-j,l. -

M AN INTRODUCTION TO DENOTADONALSEMANTICSV-'!
As we said in Section 9.2,. denotation*!semantics associates to each pro-
gram a functionfrom the inputdomain to the outputdomain.To do so, as we
did for axiomatic semantics, it is necessary to formalize the notion of state,
that is, the concepts of ?nerooxy (that binds identifiers to values), input,and
outpuL Instructions of our programming language will be modeled through
the state tramf0rirfatipn theyimply-, For simplicity, we assume that our pro-
grams deal only with simple integer values and booleans, which may result
from relational expressions. Symbol Z stands for the set of integers: symbol
^wndef * standsfor the undefined value.

For anygiven program F, jprsstate &F isformalized by a triple

<mernp,r* o?>

c.1 “

)'

T* •.•••

where:

menv is a function that gives the value of each identifier. If IdP is the
set of Ps identifiers,we can write:

memiP: ,rc[P-*Z u {uncef}
if ,and oP are the input and output streams, respectively. Both are
strings of integers, that is, iP and oP are elements of Z* (symbol * de-
notes the reflexive and transitive closure of a set ThusZ* isthe set of
all sequences of integers, including the null sequence.)

Each language instruction will be specified nowin terms of a. state transfer-
mation. To this end, we define a function dsern (for nterotational ssraiantics)
for each construct of the language and we define how d&em can he
structed for each program in terms of function ism for individual state-

con-

Similarly,if WEisthe set of all write statements, we define
dsenw WRxS-*$ u {eiror}

mente.To make thenotation more readable, an abbreviation for the name of
the construct will be used as a subscript of dsem in our formal definitions; S
w31denote the set of states.

let us start onr analysis with aritemeiw exvressi<m& Assuming that ex-pression evaluation doas not produce any side-effects, arithmetic expres=
.'

^
siona do_not cause any state changed thus, semantics of arithmetic express
sions simply describe how a value is produced by expression evaluation. If
EXis the set of all legal arithmeticexpressions, we can write:

• cisem^: EXxS.-+ ZU {&tcx}

s)^QT'OT if s= emsur), i o>cmd memM=u,noeffor some
varfofcfe vrccogrrtng InE;ctberwis$

dsem^E s] i fa= <mem, £ o>ande Isth© resuftef svaltetfing f
afterreplacing eochliable voccurring inEwith
rnemjyj.

According to this definition, an error can arise only because of undefined
operands* For simplicity, we ignore the possibility of overflows and under-flows during exeeutiom Also, we implicitly assume here—and in what ?ol-lows—that programs are.atarictf fhus^

foriextunpl'e,"type errors
' dan beignored. * “
""" LetASTbethsTset of all legal assignment statements, Semantics of assign-ment statements can be defined as a state-transformation function,

dsern :̂AS*S- S u {error}

. . whore _
d

__
"Lvsfrtty dsem^wrttoM. s)± error\f $= <mem1, l o>ardmemlx)~undet .olberwfee

dsem̂ fwritâ),. s]=f v.fere s= <m&rr,-, l o>„ — < memr, f,o*>.
mem=rriem1-, f=f,a’ = cO, where O-memft|A - "r"-L.

_
f >

f -* 7-
Now, letns tnm to compound statements. First, let SL be tne set of all statc-

m&it lists. Semanticscanbe specified by the function
dserrta;SLxS -> S u {error}

Wo define dsfiWBgL recursively es follows. First, if the statement list, is the
emptylist, the state does notchange:

where

dsem^(emptyJstr s)=s
Second, if the statementlist is a statement T followed by a statement list L

. and dsem. describesT$ semantics:/ •

\ I .!i ^C-v 'i d&sm- (L L -&rror if dsem[I $)-error: otherwise
* dserrkj.(7;L 5)“dsem̂ [L dsafn[E s))

^,JJAB tar assstecftww is concerned, let us refer to a FascaUike if , - - then - - -
else . . , £i statement* If the statement list in the else branch is empty, then

selection statement can be abbreviated as if T - . then , + . fi. If IF is the
set of all correct selections we can write in our language, we define

. dseny IFxo -+ $ U {error}
If B is a boolean valued relational expression, LI and L2 are two statement
lists; we have:

dseTTipCrf J5then M etee f.2fl $1-errer if dsen^.[A sj-urctef otherwise
dserr̂ cfrf 6theni1 else 12fts)= <J where If <Ssam [ft sj-true, then

U=dsemal̂ s]

Semantic function tism^COL describes the boolean result of a relational e-*o
pression. It can be defined exactly like ds&n&Ex and its definition is left to the
reader.

Finally, ive define the semantics- of a Pascal-like while , . . do , T T od -
statement If DO is the set of all syntactically correct loops, we define

'd^m^ DOxS-+$ U {error}
If B is a boolean expression and A is a statement list, we can define dsemuo
as a recursive fwwGtiQii

. cJse^.^iw^^ Btioi cd,s)=error if dsem^[ft s]=ur?ctefi otherwise
d^mcJwtifl© BdoLod s]=s if isemKCt [ft5j=false; otherwise

s- s r

our

l .

where
iaserrv^c=£s)= I f sj=error;oSherwlse

d$ernArj>r:- ft s]ssrru-l̂ res? - < rr&rrsj, c*> , $= <m&mi D> J .
f «1a'-a rriemr(rf=mia!nMfor all
mean#)-dsem^ft s)

Suppose that tnpwi are written in. our language as K:-read
{ }, whiefi means- that the n«ct input value readis assigned to s. Intuitively,,
the effect of such a statement is a state modification that, affects both the
memory and the.input stream.Formally, let RDbe the.set of all legalread
statements. Then

dserr^RDxS'^EU { r̂ror}
where

dserrir;S. [x:-read(),s \=error if s-<mem,io>arc- >rIs empty;otherwise
CSS&TTIRCIX:=recidt h S]- s' wheres= r,o>, sr = <memr, L or>,

o^o1, tor son̂ e f in Zand some f in 2* ,
memCy)=mem'llfor all y andmemM

y > < - sr -t
i

J. - ^
• • ' r*j

(The formal proof off this is left to ihe reader.) Let us consider now an mput' "

string consisting of one integer value z.We have

W dsempnneCJ? z)=out[dsanr^[read f n); . . . ; wiftepbeft -cr/nemO,
4empty> J]

=out [dsem^ Fbcf:= l; write[fcrcfy <meml
empty, empty>]),

where memo Q0= unPef for aii identifiers JC mem1 [x] =uncteffor
olE identifiersx*n,mem! [,n]=z.

dsem âtwhlaEdoLod, s]=eiTD.r if dsema[L$)=erar;otherwise
dsenriK^white Bdo i od. s)=dsenriH^whleB i, od, dsenr &̂Lsj)

Finally, if FROGistheset off ill statically correct programs in our language,
the l&nfiucifie isdefined by thefollowingfunction:

dsenriRos: PROG XT’ u {error}
(Z* represents both the input—when it appears to the loft of * -+* —and the
output domain). If L is the statement list that constitutes a program, ronc-
tioneijempp^is defined as: -V̂ -sT"

Skippingafew trivia] step^wget

Cb) dsenrifftosCE z) =out (white . , . -r write [fccfl, <mem2J

- empty, empty>)]
whteremem2[n]=4 mem2[focf]= 1 . mem2[0=t , mem2[>c\ = ujTCfef
for tiny other identifierx

cfesrnpiKss^0=out[dsefiv [L Snlt (/]],

where

* anit (i)= i, 0> rflwmfltr)= de/for all identifiers ^ 0=empty
* cut {e-rrpr}**error
* out(<7a ^ ir o>)=o

If we wish to formate additional constructs of the language, we may ran
into unexpected problems that cannot be handled within the current theo-
retical framework. Ffrr example, the current model does not allow ustodeal
with aliasing. Because in our mode!'irnrri map&JdentiEer names "

direcrjytp
values, there is' ho waytospecif that two.identifiers sharethe same o^ect-
A3so”m our model the resist of the function dsem associated with some con-
struct passed to the function associated to the construct that follows it In
the program.This does not model the case where a jump or a procedure call
causes a break in the sequential control flow. A denotatfonal specification
can be given to cover these cases too, but this requires additional mathemat-
ical sophistication.

Before dosing this section, let us consider an exampie.

Let us examine the while loop.

H (c) dsam^Cwhile . . . od < m$m2r empty empty>) =
if dsem̂ i (J< =nr <mam2, empty,£mpty>)=fals£BOOL

ih n̂ <mem2, empty empty:*
dsenr^xjfwhile. . .od, dsamsl(fo7Cf:= /Pct* /; y: =f + 1. <msm2 r empty,empty>])=

if dsem^L (r < =n, <mem2, empty ern pty>)=tafse
then <mem2, empty empty>
el$edsem^twhlle. . .od, </nem3, empty empty ?-]

mem3[n)=mem2[n}1 msm3 [fad] =mem2\fact)* mom2
(fl , n?ej7j3[fl=mem2[0-M, mem3tjrJ =under tor any other
identifier x

a
l< . -

Example

Consider the following programP Equation (cl defines recursively a function dserapo from ft to g U -[error}.
_ _

,_ To_solve it, we must rely upon the tHapty of recursive functions that under-̂ y ^lies^notafiohal semantics. Without entering into the details of the theory ^ ^
we give the resultingfunction:

m̂cotwhlle . , , do, empty, empty>]“<mem2rJ empty
empty?-

wheremmS'(fact)= ! =- z ! From b and the above d^mD0we obtain

(d) dsemawafE -out [<mem2}, empty z! >)=z!

Had [u] ;
while i < = a do

*:T - f T
"-J- >-> I

= f&ct tt i'Tac
- i-rl

od ;
write (fact); *We wish to evaluate Prs dcnotational semantics. Obviously if the input
stream is empty we have 1empty)=GfTpr i'

j .
1 '

i •

. J..

This example has given a denotational semantics to a very ample iterative
PascaJ-like program. In particular, it has shown that denotatfonai seman-
tics is founded on the tiheor^ofĵ n-sive functions; functions that define

^' the semhriftcs ofa program are descrfeed.through'fccursî .e-q^tions
^
and,

cine must be abfe to solve.them._ For more information, the interested
"reader"

is referred to the literature in the Further Readings section of this
chapter.

tionaJ specifications, on the other hand, is more in terms of a highly stylised
and veryabstract implementation.

SUGGESTIONS FOR FURTHER READING
AND BIBLIOGRAPHIC NOTES
Formal semantics, of programming languages usually is treated m special-
ized texts and taught in specialized courses- We have only introduced the
subject here because a more complete treatment cannot be done in a single
chapter of a book.

Mandrioli and Gheszi (1986) present the mathematical background
needed to develop the formal description of semantics of programming lan-
guages and provide a discussion of axiomatic and denotations!semantics.
Tennent (1976) and Gordon (1979) are excellent introductions to denote-

. tional semantics, A denotational technique is described by Bjrimer and
Jones (1978).

Dijkstra (1976) deques programming language semantics in terms of
weakest preconditions'and illustrates the use of the concept in a methodol-
ogy for developing correct programs. Given the input sod output predi-
cates, Bijkstra illustrates a calculus that allows one to derive a pre-gram
that is correct, with respect to the predicates.The approach isfurther devel-
oped by GrieS (1981).

Hoare and Wirth (1978) and Alagi6 and Arbib (1978) present an axio-
matic description of Pascal semantics. Tennent (1973) presents a forma!
definition of SNOBOL4, Kahn et al. (i960) give a preliminary report on the
formal definition of Ada; a complete form.al definition of semantics is pres-
ently under development- ALGOL 68 has been among the first languages
for which a forma] definition has been given (van Wijngaarden et al. 1976).
The formalism used there is based on so-called two-level grammars. An axi-
omaticdefinition of ALGOL 6Shasalso beengiven (Schwartz 1978b).

The mathematical foundations of axiomatic sentantics and program veri-
fication were laid by Floyd (1967) and Hoare (1969). A presentation of the
Floyd-Hoare theory is contained in (Manna 1973). Manna (1973) discusses
the method of computational induction for proving functional programs cor-
rect using denotations!semantics- The theory of program correctness also
is studied in (DeBakker1980).

The evolving state-of-the-art of the field of automatic program verifica-
tion is surveyed in (Teh1977b), by London's paper in (Wegner 1979), and by
Good{1985)- DehEllo et al.(1979) argue that program verification cannot be
used in practice to guarantee software reliability because of the nature of
proofs, It reports examples from mathematics in which proofs of theorems
are shown to contain errors years after their truth were accepted.

9JB CONCLUSIONS
This chapter introduced the concept of formal semanticsand illustrated the
spirit of two different approaches:axiomatic semanticsand denotation^se-
mantles The mathematical prerequisites needed to develop the subject- in
more depth prevented us from discussing more details, particularly in the
case of denotations!semantics.

Although, in practice, languages are seldom described formally, formal
definitions can be useful and will be used more in the future. As we antici-
pated in Section 9-2, we envisage an interplay betweenformal and informal '

specification techniques in thedefinition of semantics- In particular, v;e sug-
gested that the informal reports on the use of the language should be de-
rived systematically from the formal definition. The official definition of the
language should be formal, and wa should refer to it every time a conflict
arises in the interpretation of the informal reports.

Betides providing a notation for describing languages, formal semantics
supports rigorous reasoning about programs. In particular, it supports (me-
chanical) program verification. We have seen this for axiomatic semantics,
which is more intuitive, but there also are proof techniques that derive from
derotational semantics (see the Further Readings section). Verification is-
sues, in turn, have influenced the design of programming languages (this is
yet another reason why we have presented the topic here). Another area
where formal semantics can be useful is the automatic production of Ian-
guage translators- from the language's semantic description.Bothaxiomatic
and denotetiottal semantics have been u êd for thispurpose.

Denotetional and axiomatic semantics are based on different mathemati-
calfoundations. Denotations!semantics is basso on functions, in particular,
recursivelydefined functions.Axiomatic semantics is baaed on logic, in par-
ticular, predicate calculus. Both are forma!and can support correctness
proofs; the choice of one or the other is mostly a matter of individual taste
and mathematical background- Axiomatic semantics is more easily read-
able; its style is more closely related to a declarative specification style
where one states the properties of the mechanism that is being defined
without saying anything about the implementation. The style of denote-

f

M!:I
I

i

EXERCISES

9-1 Describe the axiomatic semantics of ihe- following Pascal statements:

• repeat . + . until.
• for.
• case.

V . ^ T
\ . '£ i ', L

Describe the a^doinauc semantics of Dijlratia's guarded if and do state- '/ LanguageDesignJTjBntfi.
9.3 Give an example of an assignment statement with a side-effect that invali-

dates the role given in Section 9.3 to evaluate the weakest precondition.
x9.4 Consider the Pascal-Bra program of the t^unptegfven ifr Section 5.4 Using

a:riomntic semantics, prove Ei. correct with respect te the following input and output
assertions:

J

, .wnsolidotioTb %Qtinimatim.. / ' Cffaare1575)

IN: n>0
OlJT: foct =n- - - C.T-2)- , < . fc ,1

9.5 Write an iterates Pascal program thai evaluates the product of two positive
integErs 77i n by repeated additions. Prove the program correct with respect te
the followingassertions-

The leitmotiv of thisbook is- that programing languages are tools for soft-
ware production. The previous chapters have expounded this viewpoint in
depth by discussing: programming language concepts, and comparing and
equatingthe many solutions adopted by exi&tmg programminglanguages.
We have suggested a number of criteria, for evaluating programming lan-
guages, centered around the concepts of data types, control structures, pro-
gram correctness, and programming in the large. Viewed slightly differ-
ently, however, these criteria also suggest a number of guidelines for
progranumng language design. As we examine language design issues in
this chapter, therefore, we will encounter many considerations that we have
seen in previous chapters. This chapter, then, is mainly recapitulatory; we
will try to put together the many facets of theproblem and, in several cases,
show how different language features, each desirable in itself, can interfere
with one another when combined.

According to C - A.R.Hoare(Hoare 1973),

IN: 7TT >0,n>0
OUT:pf0Cf== <Trn.

Does the program work properly with exactly the same postcondition, if either
i7ts= 0 or ti^6? 3f the answer is yes in one such case,,why can we say that IN is not.
the weakest precondition?

9.U What is the weakest precondition for some postcondition P.and a urogram
that containsa loop that never terminates? For example

i:- Oi
while i > = 0 do

i:= i+ I Th* Eanguagc designer should he familiar with many alternative features de-
signed by others, and should have excellent judgment' in choosing the best,and
rejecting any that are mcrtnally inconsistent.He must be capable of reconcil-
ing, by good engineerir^design, any remaining miner inconsistencies or over-
laps between separately designed features. He must have a dear idaa of the
scope and'purpose an.d range of apnucation of his new language, and howfarit
should go in size and complexity . . , One thing he should not do is to include
untried ideas of his own.His task is consolidation, not innovation.
Haring designed a language, it is also necessary to design an implemen-

tation for it. According to Wirth (l£“5a), “In practice;, a programming lan-
guage is as good as its compilers)-” In fact, much of the popularity of older
languages such as FORTRAN probably stems, from the availability of efii-

od

9.7 Give a denotationol description of the Pascal case statement.
9.B Give ?, formal definition of ds«nEooL»^hich was introduced hut not.defined in

Section9,4.
9.9 Giveadenotations!description of the Pascal repeat statement.
9.10 Suppose tbpjt te.nj concurrent processes FI j-nd are ^ecuting the state-

ment lists LI and L2, respectively. Suppose chat these processes siso access some
shared variables in mutual exclusion. E>oe$ iaefftfL defined in Section 9,4 describe
the sematitics ofL- L andL2 correctly? Why? Why not?

333
I J-X • -

