C. Ghezzi sod I, @hgm‘“-

w

Prﬁfwﬂ-:r@w Cow-:ffﬁ!?, E/E.

L7

An Introduction o
Formal Semantics

b

Ageprding to the defmition given in Cheprer 3, the semantios of a language
degeribes “tha mearing” of sy syndaetically correct program in that Izn-
guage. In Chaptar § we deseribed the meaning of basie languags eoncepts,
sueh as variables, bindings, and run-time strugiures, in terms of a virtial

.maehine, That aporeech is, what wehave called ppergifonil semaniics.

T this chepder we Introduze two formal —that is, mathamatical—wags of
defining the semanties of a programeming languare: arimmatic semantio
and denctational semantics. Qur purphse i5 to dlustrate the spirit of how

= semantics can be defined formally, and how the twn siyles differ in
Havor from ooe another and from operational semantics. We do not ixdend
to cover che detsils of the definition of complete and realistic programming
lanpusges. We also warn the reader that trenting additional construeis and
details of real propramming languapss is not simply 2 matter of adding
mgre detadls to the formal deseription. Depending on the natuve of the con-
strugt or detail, new probiems may arise that may reqoive new snd perhaps
as yet unlmown mathetnatical solutions.

Alen, we restriet our attentien {o the formal semardics of imperative lan-
guages, whieh cotstitirte the main body of this tewt. Dealing with nortradi:
tiemal languages would requite the development of additionsl mathematieal
backgreamd, which is oot of the spope of this taxt.

9.4 THE NEED FOR FORMAL SEMANTICS
Why is forme] semantics useful? Why is & natural language description,

sueh as the Paseal Report, or the Ads Refevence Manual, or an operations)
view such as that prezented in Chapier 3, inadecuate? Informal natural lan-

9.1 Tha Mead for Fattal Samartics 347

Fruaze descriptions, even if they tefer 1o wellunderstood abatract mnaepﬁs, :

sueh a8 the SIMFLESEM virtual mechine of Chapter 8, lack Drecision; wery
often they are ambiguous, meomplete, 2nd inconsistent. Worse vet, deter.
minirgy that such a definfiion is unambigusts, complete, znd consistent fs a
nontrivial apd cortainly not a mechaniza) fask, _

These are the most fmperfant benedits of formal sementies:

1. Rigorous and neamhiguons definition. The language that = peed
to formally epecify semaatios, called mefelenguage, is based on well-under-
stoed and simple mathernatical concepts, This ie similar 0 what we have
sgen for formal deseriptions of the syntax of programming langusges. BNF
o syrtax disgrams are the metalanenages used to specHfy the ayntax of
drograrming languages. In cur cese, giving semnsnties to languese L by ns-
ing metalanguage M can be viewed as trandating from L to M, T M iz a
cotnplex, nonmathematical language, we would kave a eireular problem, be-
cause 3 itzelf would require a formal specification of s semanting, Instead,
no such need arises when M is simple and based on mathernaties] coneepts,
The resulting deseription is rigorous and mmarmbiguons.

2. Basis for language comparizon. The ability to compare different
features, perheps in different languages, to chooze & language or evalyate
alternative design decizions is often an clusive goal. The operational mode]
daveloped in Chapter 3 is certainly of zreat help, Mit one hopes that formal
semantics provides 2n even more detalled und brecise basis for compari-
S0, .
2. Independence from Implementation. When 2 coneapt is deseribed
in terms of an implernentation--be it abetract v eonerete--ohie tses 2 mrm-
her of exogencus, znelllary, implementation-dependent, eoncepts, These do
not deal with the essence of the concept, which is independsnt of any imgla-
mentation. To elreumvent this preblem, one right say that & given imple-
mentation represents the equivaience class of all eorvact implemeatations
ff.e., implementadons that give the same results for any propram and any
given inpuz). For exaraple, our SMPLESEM machine described in Chapter
3 n=es glafic Iinks to access nonlocs) environments, and detalls bave bean
givam to show how statie links =re installed =nd used ot run-Hme Exercize
3.23 shows gnother implementation in terms of 2 “‘disolay’ The two imple-
meniations belong to the srre equivalénce class of correct implementetions
of nonlocal environrents. The essence of the concent ther implement iz the
same, barh pumerous (and dferent) implementation-depandent details most
Le given in the specification. Iz conelusion, implementation-based sermantis
definitions, such as the operational definition of Chapter §, cannet, detin-
guish hetween what i= the pure essence of g Ipnpage coneept and 2 specifie
implementation: they lack abstracticn and eas?y can hecome cluttered with
detafls, -

Anntroduction to-rormal Sememtics

4. Basis for correctness proof of implementation. A language imple-
mentation {5 dafined eorrect if it conforms to the forraal semantic specifica-
tion. The formal deseription iz fhe reforenre for solving any controversial is-
ene. Imiplemertaticns may differ from one enother as far a8 officienay s
aeneerned, but the meaning of syntactieally sorrect progrers remains the
S,

5. Basis for program corTectness proofs. To prove that a given pro-
gram Is eorrect with respeet to a ghven specification, the effect of the pro-
gram et be dlearly understond, that {=, the language semanties should be
speciied rigerously. For example, o we have seen in Chapter 4, the onigina!
Pescal Beport does not define variznd records precisely As g vesuli, one
may be unable t¢ pnderstand presizely the meaning of & sfven program that
uzes variant records, and thus to prove whether the program meets its spec-
ifeation

Paints 4 and 5 also show that foemal semantics have the potertial of provid.
g merhanisal suppor: to correstness proofs. The only way for a computer
1o aid in the verification of 2 language fmplementation or the correctness of
& program is to start from 8 precize, forrmal lansuage definition.

Having seen the advantages of formal semanfice, one wonders whether
there is 2 need for informal semantic descrptions, such a3 those of tradi-
tional language stendards. In prociics, both formal and informel descrip-
tions are nesded. The interpley between formal and infmal semantics Ia
as follows: When = langmage is being designed, one usially starts from an
mforrnal definition, The informal description then is converted inte = formal
deseription, and this may uncever inconstetenciss, ambiguities, and ineem-
Dpletenesses in the informal deseription. The provess is iterated untit the de-
aign is satisfactory, The Gnel formal semantics deseription then s wsed as a
Lasis for deriving more informal reports o the language, These definitely
are needed In practice. Becauze they are more readedle then their formal

counterparts, the reader only needs to refer to the formal definition when
the informal docurnents do not wrovide a satm.actcn-_r,' angwer. Also, the
practical use of the langrage should not requirs as a prevequisite the mathe-
mztical skifls needed to tumage formal semanties.

9.2 STYLES OF FORMAL SEMANTICS

Az we have seen in the previcus section, formal semanties of 2 programming
language maps svery syntactically correct Jangiaze construct into 2 meta-
languege that is based om 2 well-understood mathematical notation. Conge-
quently, formnal semantics can be specified 23 2 set of translation rules from
ihe domain of langesge constructs to the range of well-formed formulas of
the formalism.

9.5 An Imtradustion o Axiometin Semantios ne

" We distingrizsh between two linds of formal setnarrtics: axlomesis seman-
ties and denetationgl semantics. Artomadic semaniisg deseries the mesning
of eack syntactically correct program by assoodating to it properties of wark
shles (in tevme of predieate calenhzs) that hold befors everndion starts and
after the program halts. Thus the metalangunge of zadometic semantes isa
logie langusge, such 18 predicats calenlus, Denofebional semantles describes
tha meaning of a program by associating to it s function from the npat do-
Tain to the suipat domain, In this case the metalanguage is that of func-
tianal caleml,

The fundamenta? concepts naaded 4o mode the semandics of a progrem-

ming Fanevage are the stafe of compusation, and how this state i trans
formed by various langrags congtrocts. In ¢he Inforraal operaiiong seman-
ties of Chapter 8, the state was deseribed in terms of data structures of The
abstract STMPLESEM processor, and state transformations were de
seribied i terms of changes to the processor’s data siructures. In Bections
8.3 and 9.4 we will ses how this can be dome farrmally,

The rest of this chapter is organized as follows: Our discussion of formal
sernantics siarts in Jection 9.3 with ademetic semanties, which is highly in
tuitive and does not requive deep mathematical kmowledze to be apprec-
ated i practce. In Section 9.8.1 we also will give 2 glimpse of how axis-
matic semantics support formal proofs of progrem eorreciness. Section $.4
wili cutline the basics of denotationsl semanties. Finally, in Seetion 9.5 we
will eontrast the two styles and draw some conclusions.

93 AN INTRODUCTION TO AXIOMATIC SEMANTICS

Axdomatic semanties is based or: mathematical logic, The state of compu-
‘tation Is deseribed by a logical E}:presrcrrﬂcaﬂed_a medww:e oF assertion) on
jiartirieid varizhles that must be trug in that state, Infuitively, whereas in op-
erations] semanties the state of computation for a program js determined
by the data strzehures of the modeling machine, in axiomatic semantics it i

determined b].f a predicate on the values of the program varizbles.

Becanse in this chapter we ave only Interested in the favor of formal se-
mantics, onr use of the coneepts of logie will be rather informel and intni-
tive. To go deeper into the subiect, the reader needs a Backpround of mathe-
metical Jogie, which is ot required to understaad the spirit of the method
and its wsa. The Farther Reading Section o5 the end of the chapter provides
references to the Iteratmire on tlis subject.

A predicavs I that is reguired to kold after 8 suztement S {= called & post-
sondiiton for 8. A predicate ¢ such chat the execution of & terminates and
mtcrmdmmP holda upon tenmination i called a precondition for 5 and 2

. Far examnple, y=3 is one possible precondition for statement 1=y + 1, that

" leads to postrondition 23 0. The predieatz p=0 js gisp 2 premﬁdlt..u:m for

staterment mmy+1 a0d posteondition z>0, Actuzlly, y=0 s the weakes:
pregondition, that is, the nesessaey end syfficient preconditien for state-

ment 2=y +1 that Jeads to posteondition 2= 0. A predicate Wis celled the .
weakest precondition for a stmtement 5 ard a posteondition P, if any pre-

conditien € for § and P implies W that s, W hkolds for any precondition g
Amnong afl possible preconditions for statement 5 and vostoendition B, Wis
the weakest: it specifies the fewest constraints. If we write unphcs.tmn 1
=", fgr omr example we have
y=3=y=0

T general, given an asgignment gtatement & =F and a posteondition F, the

weakest precondition iz obtained by replacing each coowrrence of #in P with

excpression E, We express this weakest precondition with the notation Pz
In the eample, P, fey £ 120, that {5, g2 0.

To characterize tfue sersnties of = programoming languagse, e would like

to desrribe the affect of each languagze constriet in terms of the transfor-
maﬁtm of predicates it implies. To this end, we will defrms £ funetion asem
{8or wxiomatic semeantics, also called o predisate trongirmer) that for any
staserment 5 and any postecondition B has 45 its value the weakest precondi-
tiom W It is writden as

e (5 Mi=W
In the tase of an assignment statermart o= F, we have
asem (x=c Fl=F,_:

This cheractorization of assignments Is correet under the assumption
that the evaluation of the right-hand side of the statement does not have any
+ (gide-cficcts. Morsover, the varizble heing mgned eamat be an aliag of
othe:r propram variables. Ie such eases the execution of the assignrment also
-ma.y affect variahles not zppearing at the left-hand side of the statemeant,
Iand the piven semamiics would be meorrect. This is an example of how side-
'efferte and aliasing can complicats formal as well as mformal reasoning
a.hautprognyb&

Let us give an intuiiive explanation of how asem (3,F) canbe dezeribed a3
iving the semaniies of & Conzider how we can use the function we have
Just given for assipnment statements. Suppose we want to know whether
the statement waz+ 1 will prodice the rasuli 23 The function aoem cam
be used to tell ns that csemim=r+ 12% 8w x4, that is, as long as we start
with a computation state that ensures the truth of 2> 4, then the given as-
sipntrent staliement will achieve the desived effect. In ofher words, we cap
pradiet the exact effect of meaning of statements if we have the zgem fune-
tiar.

Sitnple statements, such as assignment statements, can be eombined indo
rore ecmples aciions by staternent-level contwel struetures. Theredore,

Hom——

somposiiton rules are needa-ﬁ to charactarize the semantic affect of combin-
ing individus] statements inte & program segment. For example, for se-
quencing, If we kmow that

areen (M, Fl=52
and
e (32, =R
then
' asam {82; 31. Fl=R

The cases of selection snd Tberation are more complex. If B iz a boolesn ex-
presgion and L1, L2 zre two statoment lsts, then let if-mat be the following
statement:

if 5then 1 else 52 6

If Fisthe posbcondlhon that must be establizhed by H-stat, thea the wealk-
et precondition is given by

asarmiif-stat, B=B = csemil], F’]andrmll‘;t:asem Lz M

For exmmple, given the following propram fragment (z, ¥, and mow aTe nte-
gers) :

if x»= 7 then mewme » elgp mev:z y fi
and the posteondition
(rrecpr=x and x=v] o=y und ¥R
the weakest precondition is sasily pwren to e zng,‘lhat 15, the statement

. satizfiss the posteondition without any constiaints on variables,

Suppose now that P is the posteondition that must be established by the
fellowing leop

while 5 do £ od

where B iz 4 boolean expression and L Is & stutement list. The aroblom is
that we do net know bow many fimes the body of the loop is Rerated. In-
dead, 1f we kmew, Tor example, thet the number of iterations ware », the fon-
siruct would he equivelent to the sequential composition

L;L;.._.,‘E

of langth n. Thus the sereniies of the statement would be straighsforwazd.
To gveraproe this Heficuliy, let us first reconzider why we have chosen to

refer to weakest preconditions In our formafization of semantics. The res-

) 1s that weakest p*emndlmns give an epact characterisation of seman-

Soroeladaw e X, Ay B xag ,s,z-f . ' v fnd & ’/f:)#w' =
R ey S R o -ufx_;-‘\-' :.;_J:F,'r /},}-- .f % - 4
7T G ;e =y Sl g ar,]

o E » ...} ;}ﬁ - ."J_

-

tics. If we chooae to refer to any other preconditions, they provide enly an
anprorimate characterization of semantfes: they are only a syfielent pre-
condition that can be derived for 2 given staternert and & giver postoondi-
tiom. In fed, If any precondition for 4 givem statement and a given posteon-
diticn helds, then the weakest precomdition alsa holdz. In other words, the
cangiraints on the stzte specified by a nonwealest precondition are
shronger than what 15 needed te ensure that 2 certain posteondition holds
afber axeoution of A statement 1f we relax our reguiremnent and accept non-
weakest preconditions a= an (approximate) sp-m:iﬁmtim of sernanties, here
iz how while stadements ean be handled.
Givan the while statement and apostmndm:m}.-"‘ we wish to determoine a
" precondition for the while statement and predicate P Q must be such
that : . '

[Theloop terrainates.
(b Atloop edi, P helds,

Thus predicate ¢} can be written as §=T and K, where T implies termina-
tion of the loop and R implies the trugh of F at loop exit. Detertnining twao
pmdlczt&ﬁ T and F that sati=fy thase propartles is not straigheforward and
remuires ingenvity. For simplicity's sake, we ignore the problem of terming-
iion and foqus our mﬁ Suppose we are able fo identity
& predieste I that helds both before and affer sach loop teration and, when
tha loop terminates {1.e., whet the boolean expression B is false), fimplies B
I iz salied an tneariont predicate for the loop, Formally, F satizhes the fol-
lawing eonditions,

(1] lond Beazemil,]
(n landnatB=PpP

If we are able to dentify o predicate 7 that satisfies both §) and i), then we
oan take T as the desired predicate B, bacause F holds upon termination i
£ =1holds hefore executing the loop.

In conelusion, the method of loop invarianits sfows us to approdmate the

evaloation of semanties of & while statement; the precendition is one possi-
bie valid precondition, not necessarily the weakest, Bacanze the mejor use
of 2edomatie semanties Is in providing programs eorreet (or deriving correct
programs), 4% we will see In the next section this Inconvenienee does not
cause 15 ek trouhle,

234 Axiometic Semaniics and Piogram Comasiness

An indepth study of the lssues irvolwed in the sindy of program correctneas
is begond the scope of this buok, However, we are now in a position to state
precisely what we mezn by o correst program, and 1o give a glimpss of how

[

TR T W TR S :—T.Jﬂ-""

progrems can be proven correct. We alao will mention zn Interesiing me-
thodical approach dhat uses axdematic sernamtics to guide In the derivetion
of programs that are correct in the first place,

Firet of all, the correctness requirements of the program roust be spect-
flad dormally by giving two prodisatas: a precondition I (or dnpui asser-
Fiond on Input variables and a pesteondition OUT (o suwtpud assevtion) on n-
pat and cutput variebles, The job of verification s to show that if TN holds
bafore execnting the Prograny, execution termanates in a state whers QUT
halds. Thie proof requrires the tee of the semantic chavasterization of state-
ments such as the one deseribed in the vrevicus section.

Frogram verification iz Mustrated here with the aid of & simple examnle,
Consider the ollowity program fragment, in which al) variables are ss-
sumed tobe integers,

Sra E; sumes l;
while 1> 71 do
di= I=1;
Fuprs gome 1

od
Lot the input assertion be

IM: k=0
and Jot the outpit assertion be

[
OUT: sum= Lof
L]

We wzrt to prove the fragment correct with respect fo [N and OUT.

The tevmination of the loop is shwitwely azared, becanse variable 4 is -
teresd ondy by instraction 4:= ¢~ 1 =nd, thus, agsumes & decreasing seguenes
of valnes, which would eventually make 4317 false, Fbr the invariart, the
predmate
. i
Eeroriy

K
Lsum= 1 and O<isk
T 1A
can be proven easily to aatisfy conditioms) apd ify of the previous sestion
{we leawe ihis prood to the roaader). Thus, staviing the swecution of the logg
with variables satisfving 7 assures terminztion ip a atzte satisfying QUT. Fi-
na}l:f it 35 also exsy to prove tnani' helds after the inshnrctions

Qe F—-—

tE Ky SUENE X i

[

if the precondition k=0 holds before the two instructions. In conelusion, if
. IN helds before exeu:m"mlg d'l& fragment, execuiion terminates Ir 2 state

. . =
T Rde T Dig 2y LT }'0 e *—” ;

T

-
. :'."73-":-.

'-',f.L-n.' X
WV 4.-‘”

-I‘ gl -'J

where OUT holds, that iz, the program is correst with respeet to IN and

Giver the inpuf and output assertions, program verificetion propeeds by
deriving fnbermediats aseertions that must be proven to held ad varimms
points in the progrem In partienlar, 2= we have seen, intermediste asser-
tions must be supplied by the veriffer (ruman or machine) in the form of
loop fnvariants. Other examplas of intermediate assertions are the legality
aszertions penerated by the Buclid compiler, which we menticned in Chep-
Yer 8. o addition, Euelid allows the programmer to specify assert state-

" mengs in the program. The Euelid's assert statement is used to supply inter-

madiate assertions {0 be proven by the verifiar as an intapral part of the
progremn. In this way, asserdons become patt of the decumentation of the
program. Moveover, compller options aliow the prograrirnet to irensfom as-
sert statements into mn-time cheeles dioring the testing phase or, aiternes-
tively, to suppress thelr evaluation. Finally, if 4 verifier.is nart of the set of
toels provided by the programming envirenment, assertions can be proven
by the verifier and the program iz fally certified statieally

Tha mechanical verifier cannot proceed in a purely antamatie fashion,
Brk st imteract with the usar, In partioular, the wser must w5e ingennity to
invent loop imvariants that ave needed in the derivation of a precondizion for
a given program coptaining loons and a given ouiput assertion.

The influencs of progravoming languagre faatures on the provess of rea

soning about programs i f2lt beth by buman resders apd meehanical pro-
gram verifiers. Many features that maloe reasening shout programs diff-
cult for hurnans alse are hard to deal with for 2 propram verifier. For
example, side-eifects in funetions eomplicate the evaluation of the weakest
vrecondition for assignments, as the following example shows. Let
g fE) -+ be an assipnment statement and Pz} be a predicate on variable 2
that roast hold as a postcondition for the asstgnment. The absenee of side-
efferts pugrantess that Piz) alao iz the weakest precondition. The posgibilicy
of side-effects, however, requires &mmining the function f, which might
modify = Moreover, the verifier —he it hurnan o automatip—must be eare-
ful if aliasing is permitied by the language, In the example, Pz} would oot
e the weakest precondifion if = end i arve aliazes,

YWhat isthe practical influence of prograrn werification on the program-
raing activity? Unlike what moany cormputer selentists foressw in the past,
program verification has not become commot practice In evervday pre-
gramming and probably never will. Nevertheless, program verification is

sues bave g deep influence on prograrumning and progyanening languages. |

They shmulete & rigovous approach to programming and provide a formal
definition of programming languages, Even in the absenee of & machanieal
program verifier, ngorcms reascning abodl program correctness can help
the programmer in d: sw,eung poszible ervors, Intermediate agsertions
that showuld Se proven by the verifier (e.g., loop mvs.nants}l can be expressed.

as Tun-time checks: th:msa.useﬁﬂwn;rofcertmﬂngprﬂgrmus viz syEweIn-
atictesifng

Angther imporfant use of axiomatic semantics iz in the mathedologies
hat try to derive programs that are correct in the first place. This approach
hag beor ewamplified by Dijkstra, whe flustrated a calenles that, gven in-
puf and sutput predicates, can hensed to synthesize corpect programs. This
i5 & eonstrucive approceh: DrogTamEe re nob DrOVED corTeet ¢ posteriord, af-
ter being writter, hut are darived correct by the cilewlues. The zpproach has
been demonsirated to work on exemples of low-to-moderate complaity, but
it 1 not clear if {and biow) it can be nzed in more comples and Jarger applice-

. toms, Further discussion of $his topie iz beyond the seope of this taxt, and

Lelongs in the aree of programming methodology. The reader interested in
the subjest will find references to the Htaratora in the Further Reading sea-
tien. -

2.4 AN INTRODUCTION TO DENOTATIONAL SEMANTICS

A3z we s2id in Section 9.2, denotationyd semantics associates to each pro-
gram a fanetion from the mpat demain 5 the outpat domain. To do 50, a5 we
did for axiomaiic sementies, it iz necassary to formalize the soton of stats
that i3, the conrepts of memory (that binds identifiers o wilues), thput, and
outpuct, Iustms:"mns uf qur pm language will be medeted through

srema desl only with simple mﬂger - values and booleans which may result
frenn relational axpressions. Symhbol £ stands for the set of integers: syrithel
“undef” stands for the undefined value,

Faor any given program F, F's state s is formalized by a triple

LMETT fp Calr
whare: :

* memp is & funetion thet gives the value of each identifier. If Idx iz the
sat of P'z idenfifiars, we can write:

mMetie fde—+Z U {ungef}

ipand op are the nput and catpud stveams, respectively. Both are
strings of integere, that is, 4 and ¢p are elements of Z* (smbol * de-
notes the reflesdve and transiiive closure of 2 sot. Thus Z* iz the set of
all sequences of integers, ingluding the pulf secquence)

Eachi isnguags instruetion will he spectfiad now in terms of a state dransfor-
smation, To this end, we define = function dsem ({for denctations] semantics)
for each construct of the langusge and we define how dsem cn be cone
structed for each program in terms of funcfion deem for indivicdual state-

ments. To make the notation more readable, an abbreviation for the name of

Bimilarly, if WE iz the set of all wrile statements, w2 define
the construet will be used az s subseript of deem In our formal definitions; 5 :

o, WS =5 L ferar}

wil] denote the set of stakes. . : . . where Ce
Let ve stavt onr analysis with erithmetic erpressions. Assuming that ex- B RN (wrha <errerits= <mam, i o> and mem=undef tiherwise
ireai, Dression evaluation does not produce any side-effects, arithmétic expres: e s g::m,., mﬁnnfeg% g;r_wﬁ‘sah T, | O, 8= <Me, I, o',
—¢irgeh:r | glons do mot cause any state changél thus semanties of aritimetie expres- i '

ez dard : =k n=mmen, i=F, o =00, where O=rmem (%]
o aers giong simply deseribe bow 2 valoe i prodused by expression evaluation. T meti

EX is the set of all legal arithmetic expressions, we can write: Now, Jet us tuen to compiund statements. First, let 81 be the set of all sinie-
ehETin X — . ment lists, Sernanties can be specified by the function
| -‘-}:*ETZU temert - dpemy: SLx S = S U {emd}
of s wiEd s,] . . % o
-) We define dsemg; vecursively as follows, First, if the statement list is the
ampty list, the state does not change:

whars

hemedE, slmamarif 5= < mam, | oe-omd metniVl=unoerion some
varabte vecountng In £ ciherwise -

dearnglE. =aifs= crmem, { o> and & ls the rasutt of envallating £ : dserm, fempty fist, 5)=5 _
cifter replacing ecch vemicitle v occamng in £wih : Socond, if the statement Tist is a statement T followed by o statenent list L _
_ MEm{). : : { ' E | 2rd dsem describes Ts semanties:]
Aecording to this definition, an error can arize only becansze of undefined | P dsemg (T L)=arrarif dsemn (L 5= e cirereiss
operands. For sfmplicity, we ignore the possbility of overflows and vndor- : H‘-i};*;f;%é.; cn clsarmy i L gacemeny (L dsein [T 55
fiows during execution, Also, we implicitly assume here—and {n what #ol- e HE T Lk

7 Aw far an selection iz concerned, Yt us refer to A PascalJike :f .- then...
else . . . fi statement. If the staternent list in the elze branch is empty, then

lovia—that, programs are statleall eorser thas, 507 eximple, ype erors _
;. ' our saleetion statement can be abbreviated as if . - then . . . fi. If IF is the

“dan be ignored.

" Let AN be the set of all legal assignment statements. Semanties of assign-
rrent statements can be deffned as a state-transformation function,

dsern,g ASw S -+ § U {ermor}
where

deemfx=E f=amor f deemg E $l=emor cihenalse
dsarmuie=F f=s whene # = cmeml o' > s=<men i o,
F=i o =0 memlyl=meredy] for all we
s (= clserng £ 5

Buppoze that fuput stafements are written in our languaze a8 o mread
{ % which means that the next input value read is assigned o 2. Intuitively,
the effecs of such 4 statement is a state modification that sffects both the
memary and the inpur stresr. Formally, let BD be the sot of all legal read

statements. Then
dseffipn: RDx S =3 1 {aror)
where :
dearn. be=reod), S=oror ii 5= <mem. [oo s emty: Stharwiss
ttemipl =read]), 8= & whefes= amem. L o>, 8 = <mam’, 7o',
o=, =i forsame fin £ and some Fin 27,
eemi= ey for all ¥ =x, and meml =/

set of all eorrect selections we can write in our language, wa define
s Fxd — 5 U {omer}

If B is a hoolean valued relationsl expression, L1 and L2 s twm statement
lists; we havo:
csemdit Bthen L1 else (2 1L §=2T0r i diermyen (B §)=undal ofnerwiss
clrarnyf Biven L1 elga 12 i 5)=4 whers If dsern (B 3= fua, then
U=dgany(l], 5] elss
U=dsemgil2, g

Semantic funedon dsempegr, describes the beslesn resuli of a rg],atiune.l e
pression, B can be defined exactly ke deempey and fts definition isfeft tothe
reader. .

Finally, we define the semantics of a Pascallike while ... do ... od
stetement. If DO is the set of all syntactically correct Joops, we define

e DO S - U {eme}
If B is a boolean sxpression and [ia 2 staiement bst, we ean define deemp,
38 & recuroive fuetion

. csetroswhile Bdo L ad, S=eror if dssMunn (B 5| =undef otherwise
elsarrpwhile B do Lo, §=5 if dsamgae (8 8=Talse; atheraise

deamyfwhie B do L od, si=amorif dsemg (L sl=arar ofereise
dsarmp/while 8 do [od, 5)=dsemeSwhils £cko | od, dsemyg(L. 5]

Firelly, if FROG &2 the sef. of 21l statically correct programs in our langiage,
the lomguags semanties 5 defined by the follewing furction:

e Mg PROG T = 2* U {emor)

(Z* Teprazents both the input—when it appears to the left of *—"'—and the
output dowein), If L is the statement last that eonsitutes & program, fune-
tion duemipens s defined as:

- deeMpnaglL. /)= out [dsermy (L it (7],
where '

o it = cmemd, 4, o> memiia) =tndef for all identifiers x, o =empty
* oot {errerlxerrer
ot {wem, 4, 0> h=0

If w wigh to formabize additfonal conetrusts of the languegs, e may run
fnto unecpested problems that connot be handled within the cwrrent thec-
retical framework, For examils, the qurrent model dues not atlow us to deal
with aliasing. Because in out @pde! ‘e, maps identifier names directly 1o
values, there is 7o Wy S specisy that two, idenifiers share the same ne ohjert.
Aleo] it it madel the rezult of the fanction dsem associated with Some con-
gtruet i passed to the fumetior azzoriated to the conatiuet that fellows it in
tha prograrm. This does not model the caze where & jomp or a procedurs call
causes ¢ breal in the sequential eontrol flow. & denetational specifization
can be given to cover these eases too, bt this requires edditions] mathemat-
ipal zophiztication.

Beigre glosing this sem;:u:m, Iet us consider 2n example.

Exampies
Consider the fgllowing program P

mad [5]; featz= 17 f:x I
while Z <= 10 do
Fagki= Faet & I
i= J4+1
od;
writa | faod);

We wish to evaluate P's denotationz] semantics. ﬂkmou513 if the irput
stream is etnpty we have

TMennsf? ernpty)= armor

SEen g e STE T T

{.#I‘J .

{The formal proof of this iz left to the reacf(er) Lt us consider ;13:1?%.1; %ﬁt =
string consisting of o integer value 2. We have

(O dsermpmog(F #=aut [dsarg (read {n); . . .
Zampiy=§
=ouf [dserme [fact=1;...
ety empty =L
whens mernl (= unded for alf identifiers x. mam [x] =undeffor
qaltidentifiers x 2 n, mem1 [M=z2

;,..-::;_—c e
Skipning a few trivial steyfwege‘ﬁ‘_‘—‘ SR

swtelfoef, < mernl,

. write(fazf], <memi.

D) diemMmeslf 2l=out [dsesne (while ... ; write [foof), <mem?,
- ampty. emptys)
where mem2(R =z, mem2(fac =1, memz(]= .,mem?l}rl undef -

tar cny other lenfifier
Lot g exarnine the w]u'le loop-

. 1G] dsempalwhile. ..od <mem?2 emphy ermpty ==
. if daempog (= =n. <memz, amphy smpty=)=false
then < mams, ampty, emphvs
@lta dsemaoiwhile . . . od, dsarng{foct =foct it =
i+, <memd, emphrempfy ==
it dserngon (f< =n, <memzZ, ernghy, emply =)=1alse
then «mem?, empty emply
glse gsempplwhile . . . od, <memd, empty, ernpty =]
wherg mam3n)=memZ(nt mam3 [fact] =mem? [focii*mem?2
{1, mem3l=mam2[1+1. memaxl=under for any other
iderndtifier x

Ta solve it, we must rely upan | the theory of recursive functions that under- r_ 12

Equation (c) defines recorsively a function dsewmyy, from § o § W {error}.

" lies denctational safantics, without entering into the derails of the theory,
we give the Tesulting funetion:

deampelwhila . . do. <mem?, empty emety == <mem, snpty
Moty =
whire mem (ot} = memain)! = z! From b and the ahove deempy we abtain
e o
. L

) dsemepasif 2)=cui [« mam2, empty £ =)=z

This example has given & denﬁtatmnal sernantics 30 a very simple ierative
Paseslike program. In particuler, i# has shown that denotational seman-
tics is founded on the theory of recursive fumctions; ﬁm’on_s_ﬂit_fiﬁj}e
“the Sernantics of 4 progam mre described throuph Feeursive equations and
¢ne miE be able to solve themn. For more information, the interssted
Teader 15 referTed to the Tteraturs i the Further Readings section of this

chapter,

2.5 CONCLUSIONS

Thiz chapter introduced the concept of formal semantics and tustrated the

spirit of two gifferent approaches: axiomatic sernanties and denctational se”

mantics. The mathematical prevequisites needed to develop the subject in
more depth prevented us from digeussing mere detaile, partewlarly in the
nage of demotational semanties. '

Althongh, In practice, langusges are seldom described formally, formzl
definiticns can be IIEEfLﬂ and will be wsed more in the firture. As we antiel-

pated in Section 9.2, we envisage an Mterplay between formal and informal

specifieation techmques in the definition of semanties. In particular, we sug-
pesved that the informal reporis on the use of the langnage should be de
rived systematically from the formal defmition. The official definftion of the
langiage showld be formal, and we sheold redfer to it every time a conflict
srises i the iInterpretation of the iwformal repotts.

Pestdes providing & notation for deserdhing larpuages, formal semanties
Supparts Tigoreas reasoning about programs. In particular, it supports (me-
charieal) program verification. We have seen this for axicmatic semantics,
which is move Infuitive, but there also are proof technigues that derive from
denotztional seraanties (see the Furiher Readings section). Verifieation is-
suaz, 0 turn, heve influenced the desien of nrc-gmnunh-g languages (this is
yet another reason why we have presented the toplc here). Arother area
whets formal semeniics ¢can be usefnl is the awtematic production of lan-
guage translators from the langusge’s semantic deseription. Both axiomatie
ané denotational 2amentios have been wsed for this purpose.

Denotational and avicmaric semantics are bazed on different mathemati-
eal foundations. Denctational semantics Is based on functions, in partiealar,
remrsively defined fonctions. Axjomatic semantios is based on logie, in par-
tinular, predicgte calenlus, Both are formal and can supgort correctness
proeds; the chaiee of one or the other is mosily & matter of individua)l taste
and mathematical dackground A<iomstic semantics 15 move easily read-
gbie; iz style is more elogely related to 4 declarstive speciﬁcatic-n style
where ong staies the properties of the mechanism that is being defined
witheut saying anything about the jwplernentation. The siyle of denota.

=

tiona) specifications, on the other hand, is more in terms of 4 Kighly stylized
and very abstract implementation.

SUGGESTIONS FOR FURTHER READING
AND BIBLIOGRAPHIC NOTES

Formal sermanties of prosramming languages wsuelly is trestad i special-
ired taxts and tanghe in specislized courses. We have only nfroduced the
subject here beeause 2 more complete freatment cannot be done in = single
chapter of 4 book. -
Mandricli and Ghersi (1986} present the mathemaiical background
needad to develop the formel desorintion of semantios of programming lan-
guages and provide a discussion of axiomatic and denctational semaniics,
Tennert (1976) and Gordon (1979) are excellent introductions to denota-

" dlomal semanties. A depoiational techniqee is described by Bjérner and

Jomes (18T,

Diifistra (1976) defines programming gemantics In terms of
weakess precondifions apd lrstrates the wse of the eontept In 2 methodol-
ogy for developing correct prosrams. Given the Input and sutpud predi-
cxtes, Dijkstra fllustrates a calenles that allows one o derive g program
that iz corract with respect to the predicates. The approach is further devel-
oped by Gries (1981),

Hoare and Wirth (2978) and Alagid and Avrhib (1978) presens an axic-
maztic deseription of Pases] semanties. Tennent [1973) presents a forma)
definition of SNOBQLA, Kahn et 1. {1880) give a preliminary report on the
formal definition of Ada; a complete forrmal definition of semantics is pres-
ently under development. ALGOL 68 has been among the first languages
Tor which 2 formal definition has been given (van Wijngearden b 4l 1976}
The formalism used there is baged on so-called two-level gramrosrs. A axd-
aoratie definition of ATGOL 65 has alao bean given (Schwariz 1978h).

The mathematioa? fundations of axdomatic semanties and program veri-
fleation were laid by Floyd (1967) and Hoare (1963). A presentation of the
Floyd-Hoare theory is contained in (Manna 1978) Manna (1573) discusses
the methed of cornprztational indaetion for proving funetiomal programes eor-
Tect nsing derotational semantics. The theory of program eorrectness alzo
iz gtirdied in (DeBalder 1980). .

The evolving state-of-the-art of the Seld of automarzie program werifica-
tion is surveyed in (Yeh 1977h), by Landon's paper in (Wegner 1979}, and by
Good {1985), Dellilla et al. (1979) argue that program verification cannot be
wzed in preefice to grarantes soffware reliabilivy, becense of the nature of
proofs. [£ rapotts examples from mathematics in whick proofs of theorems
are showT to contain ervors vears gfter thelr truth weres accepted,

EXERCISES

. :
#7083 Daseribe the avdomatic semantics of the foliewing Fascal staterents:

® repeat,, mntil, |
+ for.

® case,

bR . _

“re 9,2 Dasoribe the sdomatie semanties of Dijkstra’s guarded if and do state- : e

' -
= . Language Design
9.3 Give an axample of an sesignment starement with & side-pifect that nv=li- : . .

dates the rule given in Bection 9.3 to evaluate the wealest gresac dition,

. 4.4 Consider the Pageml-like program of the example pven in Section .4, Using
axiomatic sementies, prove i correet with respect oy the follewdng input ard atput
B23aTEONE

e %0
QT faxct=ne e 2y .. . 1

4.5 Write an iterative Passs] program that svainates the product of Sun pasitive
Irtegers moand n by repeated additions. Frove the program correct with respect to
the follewing assertiona: :

M mafn=
U =,

Thees the oropram work nropeatly, with exactly the zame posteondition, i either

wze(or nix 07 I the anawer is yes in one such case why can we say thed [N is nat,

the weakest pracondition? _
9.6 Whar it the weskest precondition for some posteor@ition: Pand 8 program
that contains % loop that never terminates? For example

Imm J; .
while f == 10 do

iis 41
ol

" A7 Give afenotational deseription of the Pazcal case statement.

9.8 Give » formal definition of dsemppy, which was insroduced but not defined in
Beetion 9.4

8.9 Give s denotations] descriplion of the Pascal pepeat statemeant,

9,10 Suppoye that tum soncnrrent processes F1 gnd PF are eveculing the stute-
ment Hzie LT and L2, respectivels Suppose that these protegses 2150 adbeds SOl
shared varizhles in nmtual exclusion. Does dserng, defined in Section 3.4 dezeribe
the sermatities of L1 and L2 eocvectly? Wiyt Why nos!

“, . consolidaiion, net itnetution . (Heewre 1975)

The leitmotiv of this book iz that progremming langregas ave fools for soft-
ware preduetion. The previous chapters have epounded this viewpoint in
depth by discussing programming languags coneepts, and comparing and
evalnating the many solutions adepted by existing programming languages.
We have suggested a number of criteria for evaluating programming lan-
Buages, centered armurd the concepte of data types, eontrol shuctures, pro-
gram correctness, @nd programming in the large, Viewed slightly differ-
ently, however, these eriteria also sugpest a number of guidslines for
programming lnpuage deslgn, As we eornine lanpuege Sesiprn issues in
this chapter, therefore, wa will encounter many comsiderabions that we have
seen in previous chapters, This chapter, then, 5 mainly recapitufator: we
wil try to put together the many facets of the problem and, In sevaral cases,
show how different Iangiage featires, each desirable in itself, can interfere
with: give ancther when eombined.

- Aeeording o C. 4. R. Hoare (Hoare 1873,

The fanguage designer should e Semiliar with many abernative featuras de-
gigmed by others, and shogld have excallent judgment in choosing the hest and
rejecting any thet sre motmally inconsistent. He st be capable of reconsil-
ing, by good enpineeritg desipm, any rernaining mingr inponsistensias ot cver-
lape befween separately designed faatures. He wust have a olesrr idea of the
zeope and porpose and rangs of spniiration of s new Jangeage, and how far it
should go in gize and complesdty: . . . One thing ha should not do s to inelnde -
untried 'deas of his own. His tasi is conselidation, not innovation,

Having designed = languags, it is also necessary to desizn an implemen-
tation for it. According to Wirtk (1878a), “In practice, 2 programmiryg lan-
guage Is as good as ity compiler(g).™ In fact, much of the popularity of elder
linguages such as FORTEAN probably steme from the availabilicy of eff-

333

