
0018-9162/01/$10.00 © 2001 IEEE24 Computer

Software Cultures
and Evolution

To work effectively with legacy code, soft-
ware engineers need to understand a legacy
computer program’s culture—the combina-
tion of the programmer’s background, the
hardware environment, and the program-

ming techniques that guided its creation.
Software systems typically pass through a series of

stages.1 During the initial development stage, software
developers create a first functioning version of the
code. An evolution stage follows, during which devel-
opmental efforts focus on extending system capabili-
ties to meet user needs. During the servicing stage, only
minor repairs and simple functional changes are pos-
sible. In the phase out stage, the system is essentially
frozen, but it still produces value. Finally, during the
close down stage, the developers withdraw the system
and possibly replace it.

Most of the tasks in the evolution and servicing
phases require program comprehension—under-
standing how and why a software program functions
in order to work with it effectively. Effective compre-
hension requires viewing a legacy program not simply
as a product of inefficiency or stupidity, but instead as
an artifact of the circumstances in which it was devel-
oped. This information can be an important factor in
determining appropriate strategies for the software
program’s transition from the evolution stage to the
servicing or phase out stage.

DEFINING SOFTWARE CULTURE
Edward B. Tylor2 defined human culture as “...that

complex whole which includes knowledge, belief, art,
morals, law, custom, and any other capabilities and
habits acquired by man as a member of society.” The

programmers who created legacy software used the
knowledge and customs appropriate for the time and
circumstances in which they were working. Just as an
anthropologist needs background information to cor-
rectly interpret human cultures, having information
about the environment in which developers produced
a given piece of legacy software helps software engi-
neers understand it.

Imagine a software engineer attempting to reengi-
neer the statements in the example in Figure 1, drawn
from Convert, a Fortran program from the 1970s. A
recent computer science graduate raised on Unix or
Windows would recognize that the program reads in
some parameters and then prints them out. But the
first write statement using the 9000 FORMAT is
meaningless. Why does a line containing just the digit
“1” precede the output? However, a programmer from
the 1970s is likely to recognize this as output for a line
printer. Such printers typically used the first column
of output as a carriage control character, interpreted
by special hardware and used with perforated paper
tape to control printing. A “1” typically forced a skip
to the top of a new page, a “0” forced a double space,
and so on. This convention was reasonable given exist-
ing hardware because it reduced the number of lines
transmitted from computer to printer.

This is a typical example of the conventions that
impact comprehension of legacy programs. Although
programmers in modern computer installations rarely
encounter line printers, successful reengineering of
such code requires knowledge of the line printer con-
vention. Reengineering this program could require dis-
carding the first character of every record.

Changes in programmer background, hardware

Václav
Rajlich
Wayne State
University

Norman
Wilde
Michelle
Buckellew
University of
West Florida

Henry Page
Micro
Systems

C O M P U T I N G P R A C T I C E S

Working effectively with a legacy
software program requires software
engineers to view it in the context in
which its developers created it.

properties, problem-solving techniques, software
processes, and programming practices have resulted
in several major shifts during the history of mainstream
software engineering. The concept of what comprises
a “good” program has changed radically over time.

CULTURE CONTRASTS
Our case studies demonstrate that the software cul-

ture strongly affects both the comprehension and evo-
lution of software for large systems.3 In these studies,
we used a legacy Fortran system from the 1970s and
a more modern C application from the early 1990s.

The Fastgen geometric modeling system is a suite
of Fortran 77 programs that developers can use to
construct models of solid objects such as vehicles and
aircraft from primitives such as triangles, spheres,
cylinders, donuts, boxes, wedges, and rods. The US
Air Force uses Fastgen to model the interactions
between weapons and targets by tracing rays repre-
senting explosions or projectiles.4 Convert, a Fastgen
preprocessor that consists of a single Fortran 77
source file of 2,335 lines (raw line count), is repre-
sentative of the 1970s Fortran software culture.
Originally developed in 1978 for a mainframe envi-
ronment, Convert expands simplified geometric model
input and transforms models into the formats other
tools require. Software developers have updated and
maintained Convert many times to keep pace with the
introduction of different hardware platforms.

NCSA Mosaic,5 one of the first widely distributed
and used Web browsers, was developed in the
National Center for Supercomputing Applications at
the University of Illinois during the mid-1990s. After

four years of work and several released versions,
NCSA suspended work on this application in 1997.
However, source code is still publicly available
(http://www.ncsa.uiuc.edu), and programmers still use
it for case studies of program comprehension tech-
niques. Mosaic, which is fairly representative of the
mid-1990s C culture, is a single program consisting
of approximately 100,000 lines of well-structured,
fairly well-commented C code in approximately 180
C source files.

Table 1 summarizes the main differences between
Fastgen and Mosaic.

System partitioning
Fastgen programs share files of intermediate results.

Convert typically preprocesses a geometric model and
then feeds the output into other programs for simu-
lation, analysis, or display. Early software often used
this kind of partitioning, obviously motivated by the
limited memory available in most computers. This
places a greater burden on the user, who must execute
each program individually and run them in the cor-
rect order with the correct parameters. One benefit is
that the developers wrote very accurate user docu-
mentation for the individual Fastgen programs.

In comparison, 1990s developers implemented
Mosaic as a monolithic program in which users either
select options from a menu or the software executes
them in response to the input data.

Modularity
In keeping with modern practices, Mosaic’s devel-

opers implemented a large number of C functions,

September 2001 25

Table 1. Summary of Fastgen and Mosaic cultural differences.

System Partitioning Modularity Control flow Obsolete program plans
Fastgen System of programs Large noncohesive Unstructured, tangled, Input/output in batches
1970s Fortran that share files subroutines many GO TOs Scratch files

Global data in large Data packed into integers
common blocks Binary files

Mosaic Single monolithic Small cohesive functions Structured
1990s C program Little use of global data

WRITE (IOUT,9000)
READ (45,9010,IOSTAT=IOS) IV,IDONT,ISORT,IASCI,KPRNT,IBIN,FACT,

* PTSS,PSTT
WRITE (IOUT,9020) IV,IDONT,ISORT,IASCI,KPRNT,IBIN,FACT,PTSS,PSTT

9000 FORMAT ('1')
9020 FORMAT (' IV = ',I5,' IDONT = ',I5,’ ISORT = ',I5,

* ' IASCI = ',I5,' KPRNT = ',I5/,' IBIN = ',I5,' FACT = ',
* F5.1,' PTSS = ',F5.1,' PSTT = ',F5.1)

Figure 1. Short quiz
for recent computer
science graduates:
What does the first
line of this code do?

26 Computer

typically with high cohesion. Relatively short descrip-
tions summarize each function’s purpose. In contrast,
Fastgen’s developers implemented it before program-
mers accepted the importance of cohesion. Subrou-
tines are large, and they mix many unrelated issues,
which makes comprehension difficult because the sub-
routines no longer serve as logical chunks of program
code. Convert holds most of the data in large global
common blocks that many subroutines share, as
Figure 2 shows.6 In comparison, Mosaic uses few
global variables that are well coupled with the rele-
vant processing.

Convert’s poor modularity had a substantial impact
on program comprehension. In C, programmers use
the functions as the basic chunks for program com-
prehension—understanding each function is a step in
the comprehension methodology. Programmers could
not do this with Convert because the subroutines lack
the necessary cohesion.

Control flow
Although modern control flow structures are avail-

able in Fortran77, Convert relied extensively on using
GO TO. The developers may have implemented the first
version of Convert in an earlier version of Fortran and
then ported it into Fortran77. The frequent use of GO
TOs complicates reconstructing program plans and
makes code reading difficult, particularly for today’s
programmers, who are accustomed to structured con-
trol flow. For example, the main loop that reads and
processes a geometric model’s components uses GO TOs
that jump both forward and backward over hundreds
of lines of code. This creates a complex structure that
seems at first to be totally arbitrary. In contrast, Mosaic
expresses program plans in structured control flow
constructs and rarely uses C’s goto.

Obsolete program plans
Obsolete program plans solve hardware and oper-

ating system problems that no longer exist. The line
printer carriage control character is one example, but
Convert provides others.

Input/output batching. Convert reads and processes
geometric models in batches of 200 records. Batching
made execution in old mainframe operating systems
more efficient because the system swapped a job that
was doing I/O out of memory. A simple read-process-
read-process cycle was very inefficient because it
caused multiple swaps. However, I/O batching pro-
vides little benefit on more modern PC systems. The
batch cycle complicates the code because processing
breaks at the arbitrary 200th record, not at any logi-
cal point such as at the end of a model component.

Consider how this might affect an attempt to reengi-
neer Convert. The software engineer who does not
understand the plan’s purpose might continue using
the 200-record cycle, just in case it conceals some
important functionality of the program.

Scratch files. Convert opens at least seven scratch
files for intermediate results as soon as it starts pro-
cessing. Because old computers had limited local mem-
ory, Convert stores all data of large or unknown size—
such as parts of a geometric model—on a scratch tape,
and continually rewinds and rewrites these tapes. This
greatly complicates the understanding of Convert’s
“mirroring” feature. Mirroring simplifies input of a
geometric model by allowing the user to input just one
half of a symmetric component, while the system gen-
erates the other half. The program writes the compo-
nent to be mirrored to the scratch tape and then reads
it back in. On the second pass, the system reexecutes
much of the Convert code, but this time with data
from the scratch tape instead of the original input.
Understanding mirroring relies on understanding the
scratch tape plan.

Packing data into an integer. In early computers, input
data was largely constrained to punched cards, which
imposed a limit of 80 characters per record. To save
record space and main memory, programmers some-
times used complicated encodings to pack data together.
For example, Convert packs the following data into a
single integer for each geometric component:

• First digit: a code for the kind of component (tri-
angle, donut, sphere, box, and so on);

• Second and third digits: the component thickness
in hundredths of an inch;

• Fourth digit: a space code, to specify what is adja-
cent to the component; and

• Sign: the modeling mode (volume or plate).

Convert contains code that picks this integer apart
to extract the individual items.

VIFOR

BROWSER – 1

DATA

comb

dntwrk

donut

convert

ctobin

boxy

concyl

influe

sphere

work

soot

thread

convert3.f

UU

GLOBALS

repms

jcsave

iwhx

files

mode

neww

factor

specs

cyl

comp

blk

convert3.f

Figure 2. Common
subroutine use in
Convert. In this dis-
play from the Vifor
Fortran analyzer pro-
gram, subroutines
appear in the left col-
umn and the pro-
gram’s common
blocks appear in the
right column. A line
indicates that the
subroutine references
the block.

Binary input/output. A primary use of Convert is to
convert a geometric model from ASCII to binary for-
mat for use by other programs in the Fastgen suite.
Because the models can be quite large, using binary
input reduced both storage space and I/O time signif-
icantly on earlier machines. However, this is less ben-
eficial for current PCs because much more memory is
available.

The programmers who implemented Convert
solved legitimate problems of their time, and often
solved them well. However, hardware and operating
system properties have continued to change so radi-
cally that these plans are now an obsolete and dys-
functional reminder of the past. Mosaic also contains
many complicated program plans, but they do not
appear to be as obsolete at the moment. In a few years,
Mosaic too is likely to appear strange and dated to
newly trained programmers.

RECENT CULTURE CHANGES
Antipatterns are an example of a recent software

programming change. William Brown and colleagues7

described a collection of antipatterns that program-
mers should avoid. Controversially, one of the antipat-
terns is functional decomposition, which was widely
used in software architecture as late as the early 1990s.
The Mosaic system we describe uses functional
decomposition. Brown’s book clearly states that func-
tional decomposition is a bad strategy and that new
projects should not use it. Of course, this offers little
help to the programmer who must maintain a pro-
gram from the functional decomposition culture.

Harry Sneed8 argued that program code is the result
of the programmer’s thought patterns, which in turn
depend on the programmer’s experience. Understand-
ing and maintaining the programs requires decipher-
ing these patterns.

Code decay, the accumulation of factors that make
software changes difficult, drives a software system
from the evolution phase to the servicing phase. Loss
of expertise is the main reason for code decay, and cul-
ture change is a major contributor. Recent computer
science graduates invariably received training in the
C/Unix, object-oriented, or component-based culture,
remaining unaware of programming methods used
several decades ago. Older programmers may still
retain knowledge of these methods, but as time pro-
gresses, this source of expertise is disappearing.

Yet organizations still use programs implemented
decades ago, and—as the Y2K problem showed—
in some cases, these programs are mission-critical.
The large investment these systems represent makes
continuing evolution a necessity, but understanding
the code becomes progressively more difficult.
Consequently, organizations are forced into a servic-
ing or phase-out strategy that emphasizes minimal

change, with a potentially high cost of losing
business flexibility.

Sometimes software culture differences are so
large that programmers who are evolving old
programs must learn the old cultures. As a first
step, programmers need to document, through
interviews and code study, some of the main prac-
tices that were considered acceptable in different
periods and environments. To prepare them for
encountering legacy code written for a very dif-
ferent environment, the education of newly
trained programmers should help them develop
an appreciation and tolerance for old cultures.

Programmers sometimes try to reengineer old
code to bring it up to date. However, simply
translating an old program into a new language or
restructuring the code won’t help. Obsolete program
plans that solve problems that no longer exist are a
troublesome cultural difference that translation or
restructuring won’t solve. Because these plans are vari-
able and have complicated interactions, programmers
cannot identify and remove them automatically.
Documentation of the old culture will facilitate the
task of programmers who must perform this task
manually.

The problem of software cultural change will
not go away in the future. For example,
the National Aeronautics and Space Admini-

stration is planning very long term space probes, which
will have missions lasting 50 years or more. Such space
vehicles will undoubtedly require a large volume of
software, both onboard and as ground support.
Presumably, programmers will use today’s best soft-
ware practices for these programs, but it would be
foolish to assume that the software will not require
major evolution over such a time period. In the year
2050, where will NASA find trained software engi-
neers willing to immerse themselves in the archaic
ways of the early 21st century? ✸

Acknowledgment
This work was partially supported by the Air Force

Office of Scientific Research under grant number
F49620-99-1-0057.

References
1. V.T. Rajlich and K.H. Bennett, “A Staged Model for the

Software Life Cycle,” Computer, July 2000, pp. 66-71.
2. E. Tylor, Primitive Culture, Harper and Row, New York,

1958.
3. N. Wilde et al., “A Case Study of Feature Location in

Unstructured Legacy Fortran Code,” Proc. 5th Euro-
pean Conf. Software Maintenance and Reengineering,

September 2001 27

Hardware and
operating systems
have changed so

radically that many
program plans in

legacy systems are
now a dysfunctional
reminder of the past.

28 Computer

IEEE CS Press, Los Alamitos, Calif., 2001, pp. 68-76.
4. E.D. Aitken et al., A Guide to Fastgen Target Geomet-

ric Modeling: User’s Manual, ASI Systems, Fort Walton
Beach, Fla., 1993.

5. NCSA Software Development Group, “NCSA Mosaic
Home Page,” http://www.ncsa.uiuc.edu/SDG/Software/
Mosaic (current Aug. 2001).

6. V. Rajlich et al., “Vifor: A Tool for Software Mainte-
nance,” Software Practice and Experience, Jan. 1990,
pp. 67-77.

7. W.J. Brown et al., Antipatterns: Refactoring Software,
Architectures, and Projects in Crisis, John Wiley & Sons,
New York, 1998.

8. H. Sneed, “Human Cognition of Complex Thought Pat-
terns—How Much Is Our Perception of the Present
Determined by Our Experience of the Past?” Proc. 6th
Int’l Workshop on Program Comprehension (IWPC 98),
IEEE CS Press, Los Alamitos, Calif., 1998, http://cds.
unina.it/~iwpc98/keynote.html.

Václav Rajlich is a full professor and former chair in
the Department of Computer Science at Wayne State
University. His research interests include software
change, evolution, comprehension, and maintenance.
Rajlich received a PhD in mathematics from Case
Western Reserve University. He is a member of the

IEEE Computer Society and the ACM. Contact him
at vtr@cs.wayne.edu.

Norman Wilde is a full professor of computer science
at the University of West Florida. His research inter-
ests include software maintenance and program com-
prehension. Wilde received a PhD in mathematics and
operations research from the Massachusetts Institute
of Technology. He is a member of the IEEE and the
IEEE Computer Society. Contact him at nwilde@
uwf.edu.

Michelle Buckellew is a software engineer at Lock-
heed Martin Integrated Systems in Orlando, Fla. Her
work involves developing software for the Joint Air-
to-Surface Standoff Missile (JASSM). She received an
MS in software engineering from the University of
West Florida. Contact her at Michelle.Buckellew@
lmco.com.

Henry Page is a senior software engineer at Micro Sys-
tems, Fort Walton Beach, Fla. Page received an MS in
software engineering from the University of West
Florida. He has participated in several case studies in
software maintenance and program comprehension.
Contact him at hpage@gomicrosystems.com.

IT Professional is looking for contributions about the following cover feature topics for 2002. Submit articles
to itpro-ma@computer.org.

Jan./Feb. Knowledge Management
Companies that invested in knowledge sharing and gathering initiatives are taking a hard look at return
on investment.

Mar./Apr. Enterprise Databases
Now at the core of several critical systems, databases deserve careful attention in the data modeling stages.

May/June Network Security
Find out what basic security measures you should be taking to protect your system from intruders and attacks.

July/Aug. IT Infrastructure
Building systems to fit a cohesive architecture and system organization can save you from some IT headaches.

Sept./Oct. Managing Software Projects
Are your software projects threatening to get out of hand? Let our experts tell you how to keep them in check.

Nov./Dec. Information Resources Management
Juggling scarce resources will be key to surviving the next several months as business looks for a recovery.

2002
EDITORIAL
CALENDAR

2002
EDITORIAL
CALENDAR

