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Software quahty is achieved through the apphcatlon of development techniques and the 
use of verification procedures throughout the development process Careful consideratmn 
of specific quality attmbutes and validation reqmrements leads to the selection of a 
balanced collection of review, analysis, and testing techmques for use throughout the life 
cycle. This paper surveys current verification, validation, and testing approaches and 
discusses their strengths, weaknesses, and life-cycle usage. In conjunction with these, the 
paper describes automated tools used to nnplement vahdation, verification, and testmg. In 
the discussion of new research thrusts, emphasis is gwen to the continued need to develop 
a stronger theoretical basis for testing and the need to employ combinations of tools and 
techniques that may vary over each apphcation. 

Categories and Subject Descriptors: D 2 1 [Sof tware  Engineer ing]:  Requirements/ 
Specifications--methodologws, tools; D 2 2 [Sof tware  Engineer ing] :  Tools and 
Techniques--dec~smn tables; modules and interfaces, structured programming; top- 
down programmtng; user ~nterfaces; D.2.3 [Sof tware  Engineer ing] :  Coding-- 
standards; D.2.4 [Software Engineering] .  Program Verification--assertion checkers, 
correctness proofs; rehabd~ty, validation; D.2.5 [Sof tware  Engineer ing]  Testmg and 
Debugging--debugging a~ds; monitors; symbohc executmn; test data generators; D.2.6 
[Software Engineer ing]  Programming Envvconments, D.2.7 lSof tware  Engineer ing] :  
Distribution and Maintenance--documentatmn; versmn control; D.2.8 [Software 
Engineering]:  Metrics--complexity measures; D.2.9 [Sof tware  Engineer ing] :  
Management--hfe cycle; programming teams; software configuratmn management, 
software quahty assurance (SQA) 

General Terms: Reliability, Verification 

INTRODUCTION 
Programming is an exercise in problem 
solving. As with any problem-solving activ- 
ity, determination of the validity of the 
solution is part of the process. This survey 
discusses testing and analysis techniques 
that can be used to validate software and 
to instill confidence in the quality of the 
programming product. It presents a collec- 
tion of verification techniques that can be 
used throughout the development process 
to facilitate software quality assurance. 

Programs whose malfunction would have 
severe consequences justify greater effort 
in their validation. For example, software 
used in the control of airplane landings or 
directing of substantial money transfers re- 
quires higher confidence in its proper func- 
tioning than does a car pool locator pro- 
gram. For each software project, the vali- 
dation requirements, as well as the product 
requirements, should be determined and 
specified at the initiation of the project. 
Project size, uniqueness, criticalness, the 
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Figuro 1. A hmra rcby  of software quah ty  a t t r ibu tes  

cost of malfunction, and project budget all 
influence the validation needs. After the 
validation requirements have been clearly 
stated, specific techniques for validation, 
verification, and testing (VV&T) can and 
should be chosen. This paper concentrates 
on VV&T in medium and large projects, 
but many of the individual techniques are 
also applicable to small projects. VV&T for 
very small projects is discussed in BRAN80. 

Some of the terms used in this article 
may appear to have slightly different mean- 
ings elsewhere in the literature. For that 
reason, a glossary is included. 

Verification, validation, and testing are 
closely tied to software quality. There have 
been many studies directed toward deter- 
mining appropriate factors for software 
quality [BoEn78, McCA77, JONE76]. A 
number of attributes have been proposed; 
the set given by Figure 1 is representative. 
Each major quality attribute is given at the 
left of the figure and its characterizations 
are placed below and to the right of it. For 
example, software with the quality attri- 
bute of being testable has the characteri- 
zation of being both understandable and 
measurable, where understandable soft- 
ware has, in turn, the further characteriza- 

tions of being structured, concise, and self- 
descrtptwe. Most of these factors are qual- 
itative rather than quantitative. 

The main attributes of software quality 
include reliability, testability, usability, ef- 
ficiency, transportability, and maintainabil- 
ity, but  in practice, efficiency often conflicts 
with other attributes. For example, using a 
vendor-specific FORTRAN feature may in- 
crease execution efficiency but  decrease 
code transportability. Each software devel- 
opment project must determine which fac- 
tors have priority and must specify their 
relative importance. 

Two quality factors, reliability and test- 
ability, are tightly coupled with testing and 
verification issues. Clearly, reliable soft- 
ware must first be adequate: it must be 
correct, complete, and consistent at each 
stage of the development. Incomplete re- 
quirements will lead to an inadequate de- 
sign and an incorrect implementation. The 
second reliability requirement, robustness, 
represents the ability of the software to 
continue to operate or survive within its 
environment. 

Testable software must exhibit under- 
standability and measurability. Under- 
standability requires the product at each 
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stage to be represented in a structured, 
concise, and self-descriptive manner so that 
it can be compared with other stages, ana- 
lyzed, and understood. Measurability re- 
quires means to exist for actually instru- 
menting or inserting probes, for testing, and 
for evaluating the product of each stage. 

Although good quality may be difficult to 
define and measure, poor quality is glar- 
ingly apparent. For example, software that 
is filled with errors or does not work ob- 
viously lacks quality. Program testing, by 
executing the software using representative 
data samples and comparing the actual re- 
sults with the expected results, has been 
the fundamental technique used to deter- 
mine errors. However, testing is difficult, 
time consuming, and often inadequate. 
Consequently, increased emphasis has been 
placed upon ensuring quality through- 
out the entire development process, rather 
than trying to do so after the process is 
finished. 

Life-cycle 
stage 

Reqmrements 

Design 

Construction 

Verification 
activities 

Determine verification ap- 
proach 

Determine adequacy of re- 
quirements 

Generate functional test data 

Determine consistency of de- 
sign with requirements 

Determine adequacy of design 
Generate structural and func- 

tional test data 

Determine consistency w~th 
design 

Determine adequacy of imple- 
mentation 

Generate structural and func- 
tional test data 

Apply test data 

Operation and Revenfy, commensurate with 
Maintenance the level of redevelopment 

1. VERIFICATION THROUGH THE LIFE 
CYCLE 

In this survey, we look at verification, vali- 
dation, and testing techniques as they are 
applied throughout the software develop- 
ment life cycle. The traditional develop- 
ment life cycle confines testing to a stage 
immediately prior to operation and main- 
tenance. All too often, testing is the only 
verification technique used to determine 
the adequacy of the software. When verifi- 
cation is constrained to a single technique 
and confined to the latter stages of devel- 
opment, severe consequences can result, 
since the later in the life cycle that an error 
is found, the higher is the cost of its correc- 
tion [INFO79]. Consequently, if lower cost 
and higher quality are the goal, verification 
should not be isolated to a single stage in 
the development process but should be in- 
corporated into each phase of development. 
Barry Boehm [BoEH77] has stated that one 
of the most prevalent and costly mistakes 
made in software projects today is deferring 
the activity of detecting and correcting soft- 
ware problems until late in the project. The 
primary reason for early investment in ver- 
ification activity is to catch potentially ex- 
pensive errors early before the cost of their 
correction escalates. 

Figure 2. Life-cycle verification activities 

Figure 2 presents a life-cycle chart that 
includes verification activities. The success 
of performing verification throughout the 
development cycle depends upon the exis- 
tence of a clearly defined and stated prod- 
uct at each development stage {e.g., a re- 
quirement specification at the require- 
ments stage). The more formal and precise 
the statement of the development product, 
the more amenable it is to the analysis 
required to support verification. Many of 
the new software development methodolo- 
gies encourage a visible, analyzable product 
in the early development stages. 

1.1 The Requirements Definition Stage 

The verification activities that accompany 
the requirements stage of software devel- 
opment are extremely significant. The ad- 
equacy of the requirements, that is, their 
correctness, completeness, and consistency, 
must be thoroughly analyzed, and initial 
test cases with the expected (correct) re- 
sponses must be generated. The specific 
analysis techniques that can be applied de- 
pend upon the methodology used to specify 
the requirements. At a minimum, disci- 
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plined inspection and review should be 
used, with special care taken to determine 
that all pertinent aspects of the project 
have been stated in the requirements. 
Omissions are particularly pernicious and 
difficult to discover. Developing scenarios 
of expected system use, while helping to 
determine the test data and anticipated 
results, also help to establish completeness. 
The tests will form the core of the final test 
set. Generating these tests also helps guar- 
antee that the requirements are testable. 
Vague or untestable requirements will leave 
the validity of the delivered product in 
doubt since it will be difficult to determine 
if the delivered product is the required one. 
The late discovery of requirements inade- 
quancy can be very costly. A determination 
of the criticality of software quality attri- 
butes and the importance of validation 
should be made at this stage. Both product 
requirements and validation requirements 
should be established. 

Some tools to aid the developer in re- 
quirements definition exist. Examples in- 
clude Information System Design and Op- 
timization System (ISDOS) with Program 
Statement Language (PSL) and Program 
Statement Analyzer (PSA) [TEm77], Soft- 
ware Requirements Engineering Program 
(SREP) [ALFO77], Structured Analysis and 
Design Technique (SADT) [Ross77], and 
Systematic Activity Modeling Method 
(SAMM) [LAMB78]. All provide a disci- 
plined framework for expressing require- 
ments and thus aid in the checking of con- 
sistency and completeness. Although these 
tools provide only rudimentary verification 
procedures, requirement verification is 
greatly needed and it is a central subject of 
research being performed by Teichroew 
and his group at Michigan. 

Ideally, organization of the verification 
effort and test management activities 
should be initiated during the requirements 
stage, to be completed during preliminary 
design. The general testing strategy, includ- 
ing selection of test methods and test eval- 
uation criteria, should be formulated, and 
a test plan produced. If the project size and 
criticality warrants, an independent test 
team should be organized. In addition, a 
test schedule with observable milestones 
should be constructed. 

and J. C. Cherniavsky 

At this same time, the framework for 
quality assurance and test documentation 
should be estimated [FIPS76, BUCK79, 
IEEE79]. FIPS Publication 38, the Na- 
tional Bureau of Standards guideline for 
software documentation during the devel- 
opment phase, recommends that test doc- 
umentation be prepared for all multipur- 
pose or multiuser projects, and for all soft- 
ware development projects costing over 
$5000. FIPS Publication 38 recommends 
the preparation of a test plan and a test 
analysis report. The test plan should iden- 
tify test milestones and provide the testing 
schedule and requirements. In addition, it 

s h o u l d  include both the specifications, de- 
scriptions, and procedures for all tests, and 
the test data reduction and evaluation cri- 
teria. The test analysis report should sum- 
marize and document the test results and 
findings. The analysis summary should 
present the software capabilities, deficien- 
cies, and recommendations. As with all 
types of documentation, the extent, formal- 
ity, and level of detail of the test documen- 
tation are dependent upon the management 
practice of the development organization 
and will vary depending upon the size, com- 
plexity, and risk of the project. 

1.2 The Design Stage 

During detailed design, validation support 
tools should be acquired or developed and 
the test procedures themselves should be 
produced. Test  data to exercise the func- 
tions introduced during the design process 
as well as test cases based upon the struc- 
ture of the system should be generated. 
Thus, as the software development pro- 
ceeds, a more effective set of test cases is 
built up. 

In addition to the generation of test cases 
to be used during construction, the design 
itself should be analyzed and examined for 
errors. Simulation can be used to verify 
properties of the system structures and sub- 
system interaction. Design walk-throughs, 
a form of manual simulation, can and 
should be used by the developers to verify 
the flow and logical structure of the system. 
Design inspection should be performed by 
the test team to discover missing cases, 
faulty logic, module interface mismatches, 
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data structure inconsistencies, erroneous 
I/O assumptions, and user interface in- 
adequacies. Analysis techniques are used 
to show that the detailed design is intern- 
ally consistent, complete, and consistent 
with the preliminary design and require- 
ments. 

Although much of the verification must 
be performed manually, a formal design 
technique can facilitate the analysis by pro- 
viding a clear statement of the design. Sev- 
eral such design techniques are in current 
use. Top Down Design proposed by Harlan 
Mills of IBM [MILL70], Structured Design 
introduced by L. Constantine [YOUR79], 
and the Jackson Method [JACK75] are ex- 
amples of manual techniques. The Design 
Expression and Configuration Aid (DECA) 
[CARP75], the Process Design Language 
[CAIN75], Higher  Order Software 
[HAM176], and SPECIAL [RouB76] are ex- 
amples of automated design systems or lan- 
guages that support automated design anal- 
ysis and consistency checking. 

1.3 The Construction Stage 

Actual execution of the code with test data 
occurs during the construction stage of de- 
velopment. Many testing tools and tech- 
niques exist for this stage of system devel- 
opment. Code walk-through and code in- 
spection [FAcA76] are effective manual 
techniques. Static analysis techniques de- 
tect errors by analyzing program character- 
istics such as data flow and language con- 
struct usage. For programs of significant 
size, automated tools are required to per- 
form this analysis. Dynamic analysis, per- 
formed as the code actually executes, is 
used to determine test coverage through 
various instrumentation techniques. For- 
mal verification or proof techniques may be 
used on selected code to provide further 
quality assurance. 

During the entire test process, careful 
control and management of test informa- 
tion is critical. Test sets, test results, and 
test reports should be cataloged and stored 
in a database. For all but very small sys- 
tems, automated tools are required to do an 
adequate job, for the bookkeeping chores 
alone become too large to be handled man- 
ually. A test driver, test data generation 
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aids, test coverage tools, test results man- 
agement aids, and report generators are 
usually required. 

When using the design methodologies de- 
scribed in Section 1.2, at the construction 
stage, programmers are given design speci- 
fications from which they can first code 
individual modules based on the specifica- 
tion, and then integrate these modules into 
the completed system. Unless the module 
being developed is a stand-alone program, 
it will require considerable auxiliary soft- 
ware to exercise and test it. The auxiliary 
code that  sets up an appropriate environ- 
ment and calls the module is termed a 
driver, whereas code that simulates the 
results of a routine called by the module is 
a stub. For many modules both stubs and 
drivers must be written in order to execute 
a test. However, techniques can be used to 
decrease the auxiliary software required for 
testing. For example, when testing is per- 
formed incrementally, an untested module 
is combined with a tested one and the pack- 
age is then tested as one, thus lessening the 
number of drivers and/or stubs that must 
be written. In bottom-up testing, an ap- 
proach in which the lowest level of modules, 
those that  call no other modules, are tested 
first and then combined for further testing 
with the modules that  call them, the need 
for writing stubs can be eliminated. How- 
ever, test drivers must still be constructed 
for bottom-up testing. A second approach, 
top-down testing, which starts with the ex- 
ecutive module and incrementally adds 
modules that  it calls, requires that  stubs be 
created to simulate the actions of called 
modules that have not yet been incorpo- 
rated into the system, but eliminates the 
need for drivers. The testing order should 
be chosen to coordinate with the develop- 
ment methodology used. 

The actual performance of each test 
requires the execution of code with input 
data, an examination of the output, and a 
comparison of the output with the expected 
results. Since the testing operation is repet- 
itive in nature, with the same code executed 
numerous times with different input values, 
the process of test execution lends itself to 
automation. Programs that  perform this 
function are called test drivers, test har- 
nesses, or test systems. 
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The simplest test drivers merely reini- 
tiate the program with various input sets 
and save each set of output. The more 
sophisticated test systems, however, accept 
not only data inputs, but also expected out- 
puts, the names of routines to be executed, 
values to be returned by called routines, 
and other parameters. In addition to initi- 
ating the test runs, these test systems also 
compare the actual output with the ex- 
pected output and issue concise reports of 
the performance. TPL/2.0 [PANZ78], which 
uses a test language to describe test proce- 
dures, is an example of such a system. As is 
typical, TPL/2.0, in addition to executing 
the test, verifying the results, and produc- 
ing reports, helps the user generate the 
expected results. 

PRUFSTAND [SNEE78] is an example 
of such a comprehensive test system. It is 
an interactive system in which data values 
are either generated automatically or re- 
quested from the user as they are needed. 
PRUFSTAND is representative of inte- 
grated tools systems for software testing 
and is comprised of (1) a preprocessor to 
instrument the code; a translator to convert 
the source data descriptors into an internal 
symbolic test data description table; (2) a 
test driver to initialize and update the test 
environment; (3) test stubs to simulate the 
execution of called modules; (4) an execu- 
tion monitor to trace control flow through 
the test object; (5) a result validator; (6) a 
test file manager; and (7) a postprocessor to 
manage reports. 

A side benefit of a comprehensive test 
system is that it establishes a standard for- 
mat for test materials. This standardization 
is extremely useful for regression testing, 
which is discussed in Section 1.4. Currently 
automatic test driver systems are expensive 
to build and consequently are not in wide- 
spread use. 

1.4 The Operation and Maintenance Stage 

Over 50 percent of the life-cycle costs of a 
software system are maintenance [ZELK78, 
EDP81, GAO81]. As the system is used, it 
often requires modification either to correct 
errors or to augment its original capabili- 
ties. After each modification, the system 
must be retested. Such retesting activity is 

termed regression testing. Usually only 
those portions of the system affected by the 
modifications need to be retested. However, 
changes at a given level will necessitate 
retesting and reverifying products, and up- 
dating documentation at all levels below it. 
For example, a change at the design level 
requires design reverification, and unit re- 
testing and subsystem and system retesting 
at the construction level. During regression 
testing, test cases generated during system 
development are reused or used after ap- 
propriate modifications. Since the mate- 
rials prepared during development will be 
reused during regression testing, the quality 
of the test documentation will affect the 
cost of regression testing. If test data cases 
have been cataloged and preserved, dupli- 
cation of effort will be minimized. 

2. VALIDATION, VERIFICATION, AND 
TESTING TECHNIQUES 

Much intense research activity is directed 
toward developing techniques and tools for 
validation, verification, and testing. At the 
same time, a variety of other (and some- 
times effective) heuristic techniques and 
procedures have been put into practice. To 
describe this diverse collection in a coher- 
ent and comparative way is difficult. In this 
survey we try to follow the life-cycle frame- 
work set forth above (summarized in Figure 
2) and to integrate the great body of testing 
heuristics used in practice with the more 
recent research ideas. 

2.1 Testing Fundamentals 

Before discussing particular testing meth- 
odologies, it is useful to examine testing and 
its limitations. The objects that we test are 
the elements that  arise during the devel- 
opment of software. These include code 
modules, requirements and design specifi- 
cations, data structures, and any other ob- 
jects necessary for the correct development 
and implementation of software. We often 
use the term "program" in this survey to 
refer to any object that may be concep- 
tuaUy or actually executed. Thus, because 
design or requirements specifications can 
be conceptually executed (the flow of the 
input can be followed through the steps 
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defined by the specifications to produce a 
simulated output}, remarks directed toward 
"programs" have broad application. 

We view a program as a representat ion 
of a function. The  function describes the 
relationship of an input  e lement  (called a 
domain element) to an output  e lement  
(called a range element). The  testing pro- 
cess is then  used to ensure tha t  the program 
faithfully realizes the function. The  essen- 
tial components  of a program test  are the 
program in executable form, a description 
of the expected behavior, a way of observ- 
ing program behavior,  a description of the 
functional domain, and a method  of deter- 
mining whether  the observed behavior  con- 
forms with the expected behavior. The  test- 
ing process consists of obtaining a valid 
value from the functional domain (or an 
invalid value from outside the functional 
domain, if we are testing for robustness}, 
determining the expected behavior, execut- 
ing the program and observing its behavior,  
and finally comparing tha t  behavior  with 
the expected behavior.  If  the expected and 
the actual behavior  agree, we say tha t  the 
test  instance has succeeded; otherwise, we 
say tha t  the test  instance has uncovered an 
error. 

Of the five necessary components  in the 
testing process, it is f requently most  diffi- 
cult to obtain the description of the ex- 
pected behavior.  Consequently,  ad hoc 
methods  often must  be used, including 
hand calculation, simulation, and al ternate  
solutions to the same problem. Ideally, we 
would construct  an oracle, a source which, 
for any given input description, can provide 
a complete description of the corresponding 
output  behavior. 

We can classify program test  methods  
into dynamic analysis and static analysis 
techniques. Dynamic  analysis requires tha t  
the program be executed, and hence follows 
the tradit ional pa t te rn  of program testing, 
in which the program is run on some test  
cases and the results of the program's per- 
formance are examined to check whether  
the program operated as expected. Static 
analysis, on the other  hand, does not  usu- 
ally involve actual program execution (al- 
though it may  involve some form of concep- 
tual execution). Common static analysis 
techniques include such compiler tasks as 
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syntax and type checking. We first consider 
some aspects of static and dynamic analysis 
within a general discussion of program test- 
ing. 

A complete verification of a program at 
any stage in the life cycle can be obtained 
by performing the test  process for every 
e lement  of the domain. If  each instance 
succeeds, the program is verified; otherwise, 
an error  has been found. This  testing 
me thod  is known as exhaustive testzng and 
is the only dynamic analysis technique tha t  
will guarantee the validity of a program. 
Unfortunately,  this technique is not  prac- 
tical. Frequently,  functional domains are 
infinite, or even if finite, sufficiently large 
to make the number  of required test  in- 
stances infeasible. 

In order  to reduce this potential ly infinite 
exhaustive testing process to a feasible test- 
ing process, we must  find criteria for choos- 
ing representat ive  elements  from the func- 
tional domain. These  criteria may  reflect 
ei ther  the functional description or the pro- 
gram structure.  A number  of criteria, both  
scientific and intuitive, have been suggested 
and are discussed. 

The  subset of elements  chosen for use in 
a testing process is called a test data set 
(test set for short). Thus  the crux of the 
testing problem is to find an adequate  test  
set, one large enough to span the domain 
and yet  small enough tha t  the testing proc- 
ess can be performed for each e lement  in 
the set. Goodenough and Gerhar t  [GooD75] 
present  the first formal t r ea tmen t  for de- 
termining when a criterion for test  set se- 
lection is adequate.  In their  paper, a crite- 
rion C is said to be reliable if the  test  sets 
T~ and T2 chosen by C are such tha t  all test  
instances of T~ are successful exactly when 
all test  instances of T2 are successful. A 
criterion C is said to be valid if it can 
produce test  sets tha t  uncover  all errors. 
These  definitions lead to the fundamental  
theorem of testing, which states: 

If there exmts a consistent, reliable, vahd, and com- 
plete criterion for test set selection for a program P 
and if a test set satmfymg the criterion is such that  
all test instances succeed, then the program P is 
correct 

Unfortunately,  it has been shown tha t  
there  is no algori thm to find consistent, 
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reliable, valid, and complete test criteria 
[HOWD76]. This confirms the fact that  test- 
ing, especially complete testing, is a very 
difficult process. As we shall see, there is no 
one best way to generate test data or to 
ensure best coverage, even heuristically. 
Combinations of various techniques can in- 
crease our confidence in the quality of the 
software being tested. These combinations 
depend heavily on the particular instance 
of the problem. 

Probably the most discouraging area of 
research is that of testing theory, precisely 
because results such as these abound, show- 
ing that  testing can never guarantee cor- 
rectness. Many of the sophisticated tech- 
niques that have been recently developed 
are proving intractable in practical appli- 
cations. At the same time, many of the 
heuristics in practice, while often success- 
fully used, do not have a solid theoretical 
basis from which they can be generalized or 
validated. Still the importance of the vali- 
dation and verification process in software 
development cannot be overstated. By us- 
ing a variety of techniques and gaining a 
thorough understanding of the implications 
and limitations of these techniques, we can 
increase our confidence in the quality of the 
software. 

2.2 General Techniques 

Some techniques are used at many stages. 
These include traditional informal methods 
such as desk checking as well as disciplined 
techniques such as structured walk- 
throughs and inspections. Proof-of-correct- 
ness research is now beginning to produce 
practical and effective tools and techniques 
that can be made part of each stage of 
software development. Moreover, there are 
other tools, such as simulation, that, al- 
though not specific to testing, are highly 
useful in the validation, verification, and 
testing process. 

2 2.1 Tradlbonal Manual Methods 

Desk checking, going over a program by 
hand while sitting at one's desk, is the most 
traditional means for analyzing a program, 
and forms the foundation for the more dis- 
ciplined techniques of walk-throughs, in- 
spections, and reviews. Requirements, de- 
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sign specifications, and code must always 
be hand analyzed as it is developed. To be 
effective this analysis must be careful and 
thorough. In most instances, this, as well as 
all other desk checking, is used more as a 
debugging technique than as a testing tech- 
nique. Since seeing one's own errors is dif- 
ficult, it is more effective if a second party 
does the desk checking. For example, two 
programmers trading listings and reading 
each other's code is often more productive 
than each reading his own. This approach 
still lacks the group interaction and insight 
present in formal walk-throughs, inspec- 
tions, and reviews. 

Another method of increasing the overall 
quality of software production is peer re- 
view, the reviewing of programmer's code 
by other programmers [MYER79]. The 
management can set up a panel that re- 
views sample code on a regular basis for 
efficiency, style, adherence to standards, 
etc., and that  provides feedback to the in- 
dividual programmer. Project leaders or 
chief programmers can maintain a note- 
book that  contains both required "fixes" 
and revisions to the software and an index 
indicating the original programmer or de- 
signer. In a "chief programmer team" 
[BAKE72] environment, the librarian can 
collect data on programmer runs, error re- 
ports, etc., and act as a review board or pass 
the information on to a separate peer re- 
view panel. 

2 2 2 Walk-Throughs, Inspections, and 
Reviews 

Walk-throughs and inspections are formal 
manual techniques that are a natural evo- 
lution of desk checking. While both tech- 
niques share a common philosophy and 
similar organization, they are quite differ- 
ent in execution. Furthermore, although 
they evolved from the simple desk check 
discipline of the single programmer, the 
disciplined procedures of both are aimed at 
removing the major responsibility for veri- 
fication from the programmer. 

Both walk-throughs and inspections re- 
quire a team, usually directed by a moder- 
ator and including the software developer. 
The remaining three to six members and 
the moderator should not be directly in- 
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volved in the development effort. Both 
techniques are based on a reading of the 
product (e.g., requirements, specifications, 
or code) in a formal meeting environment 
with specific rules for evaluation. The dif- 
ference between inspection and walk- 
through lies in the conduct of the meeting. 

Inspection involves a step-by-step read- 
ing of the product, with each step checked 
against a predetermined list of criteria. 
(These criteria include checks for histori- 
cally common errors, adherence to pro- 
gramming standards, and consistency with 
program specifications.) Guidance for de- 
veloping the test criteria can be found in 
MYER79, FAGA76, and WEIN71. Usually the 
developer narrates the reading of the prod- 
uct and finds many errors just by the simple 
review act of reading aloud. Others errors, 
of course, are determined as a result of the 
discussion with team members and by ap- 
plying the test criteria. 

Walk-throughs differ from inspections in 
that the programmer does not narrate a 
reading of the product by the team. A team 
leader, either the developer or another per- 
son, provides test data and leads the team 
through a manual simulation of the system. 
The test data are walked through the sys- 
tem, with intermediate results kept on a 
blackboard or paper. The test data should 
be kept simple, given the constraints of 
human simulation. The purpose of the 
walk-through is to encourage discussion, 
not just to complete the system simulation 
on the test data. Most errors are discovered 
by questioning the developer's decisions at 
various stages, rather than by examining 
the test data. 

At the problem definition stage, either 
walk-through or inspection can be used to 
determine whether the requirements satisfy 
the testability and adequacy measures of 
this stage in development. If formal require- 
ments have been developed, formal meth- 
ods, such as correctness techniques, may be 
applied to ensure adherence to the quality 
factors. 

Walk-throughs or inspections should be 
performed again at the preliminary and 
detailed design stages, especially in exam- 
ining the testability and adequacy of mod- 
ule and module interface designs. Any 
changes that  result from these analyses will 
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cause at least a partial repetition of the 
verification at the problem definition and 
earlier design stages, with an accompanying 
reexamination of the consistency between 
stages. 

Finally, the walk-through or inspection 
procedures should be performed on the 
code produced during the construction 
stage. Each module should be analyzed 
both separately and then as an integrated 
part of the finished software. 

Design reviews and audits are commonly 
performed as stages in software develop- 
ment. The Department of Defense has de- 
veloped a standard audit and review pro- 
cedure [MILS76] based on hardware pro- 
curement regulations. The process is rep- 
resentative of the use of formal reviews and 
includes several stages (detailed in the glos- 
sary). 

2 2.3 Proof-of-Correctness Techmques 

The most complete static analysis tech- 
nique is proof of correctness. At an informal 
level, proof-of-correctness techniques re- 
duce to the sort of step-by-step reasoning 
involved in an inspection or a walk-through. 
At a more formal level, the machinery of 
mathematical logic is brought to bear on 
the problem of proving that  a program 
meets its specification. 

Proof techniques as methods of valida- 
tion have been used since von Neumann's 
time. These techniques usually consist of 
validating the consistency of an output 
"assertion" (specification) with respect to 
a program (or requirements or design spec- 
ification) and an input assertion (specifica- 
tion). In the case of programs, the asser- 
tions are statements about the program's 
variables. If it can be shown that  executing 
the program causes the output assertion to 
be true for the possibly changed values of 
the program's variables whenever the input 
assertion is true for particular values of 
variables, then the program is "proved." To 
be completely sure that  a program is cor- 
rect, the programmer must also prove that 
the program terminates. Normally, the is- 
sue of termination is handled separately. 

There are two approaches to proof of 
correctness: formal proof and informal 
proof. In order to obtain formal proofs, a 
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mathematical logic must be developed with 
which one can "talk" about programming 
language objects and can express the notion 
of computation. Two approaches have been 
taken in designing such logics: (1) to employ 
mathematical logic with a natural notion of 
computation, essentially keeping the two 
separate [FLoY67]; and (2) to tightly inte- 
grate the computation aspects of program- 
ming languages with the static, mathemat- 
ical aspects of programming languages 
[CoNs78, PRAT77]. Because of the compu- 
tational power of most programming lan- 
guages, the logic used to verify programs is 
normally not decidable; that is, there is no 
algorithm to determine the truth or falsity 
of every statement in the logic. 

Most recent research in applying proof 
techniques to verification has concentrated 
on programs. The techniques apply, how- 
ever, equally well to any level of the devel- 
opment life cycle where a formal represen- 
tation or description exists. The GYPSY 
[AMBL78] and HDM [RoBI79, NEUM75] 
methodologies  use proof techniques  
throughout the development stages. For ex- 
ample, HDM has as a goal the formal proof 
of each level of development. Good sum- 
maries of program proving and correctness 
research are given in KING76 and APT81. 

Since formal mathematical techniques 
grow rapidly in complexity, heuristic pro- 
cedures for proving programs formally are 
essential. Unfortunately, these are not yet 
well enough developed to allow the formal 
verification of a large class of programs. In 
the absence of efficient heuristics, some 
approaches to verification require that  the 
programmer provide information interac- 
tively to the verification system order to 
complete the proof. Examples include AF- 
FIRM [GERH80], the Stanford PASCAL 
Verifier [LUCK79], and PL/CV [CoNs78]. 
Such provided information may include 
facts about the program's domain and op- 
erators or facts about the program's in- 
tended function. 

Informal proof techniques follow the log- 
ical reasoning behind the formal proof tech- 
niques but without the formal details. Often 
the less formal techniques are more palat- 
able to the programmers because they are 
intuitive and not burdened with mathemat- 
ical formalism. The complexity of informal 

and J. C. Cherniavsky 

proof ranges from simple checks, such as 
array bounds not being exceeded, to com- 
plex logic chains showing noninterference 
of processes accessing common data. Pro- 
grammers are always using informal proof 
techniques; if they make the techniques 
explicit, it would require the same resource 
investment as following a discipline such as 
structured walk-through. 

Notwithstanding the substantial re- 
search efforts in developing useful proof-of- 
correctness systems, there has been dispute 
concerning the ultimate utility of auto- 
mated correctness proving as a useful tool 
of verification and validation [DEMI79, 
DI~K78]. It is unlikely that  this dispute will 
be quickly settled, but it is likely that  proof- 
of-correctness techniques will continue to 
play a role in the validation and verification 
process. 

2 2 4 Stmulatlon 

Simulation is a broad term. In a sense any 
validation technique that does not involve 
actual execution "simulates" the execution 
in some fashion. All of the techniques de- 
scribed above thus use simulation by this 
very broad definition. Even if we employ a 
more narrow definition, that  simulation is 
the use of an executable model to represent 
the behavior of an object, simulation, as we 
shall show, is still a powerful tool for testing. 

Simulation is most often employed in 
real-time systems development where the 
"real-world" interface is critical and inte- 
gration with the system hardware is central 
to the total design. There are, however, 
many non-real-time applications in which 
simulation is a cost-effective verification 
and test data generation technique. 

Several models must be developed to use 
simulation as a verification tool. Verifica- 
tion is performed by determining, with use 
of simulation, whether the model of the 
software behaves as expected on models of 
the computational and external environ- 
ments. 

To construct a model of the software for 
a particular stage in the development life 
cycle, one must develop a formal represen- 
tation of the product at that stage compat- 
ible with the simulation system. This rep- 
resentation may consist of the formal re- 
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quirements specification, the design speci- 
fication, or the actual code, depending on 
the stage, or it may be a separate model of 
the program behavior. If a different model 
is used, then the developer will need to 
demonstrate and verify that the model is a 
complete, consistent, and accurate repre- 
sentation of the software at the stage of 
development being verified. 

After creating the formal model for the 
software, the developer must construct a 
model of the computational environment in 
which the system will operate. This model 
will include, as components, representa- 
tions of the hardware on which the system 
will be implemented and of the external 
demands on the total system. This model 
can be largely derived from the require- 
ments, with statistical representations de- 
veloped for the external demand and the 
environmental interactions. 

Simulating the system at the early devel- 
opment stages is the only means of predict- 
ing the system behavior in response to the 
eventual implementation environment. At 
the construction stage, since the code is 
sometimes developed on a host machine 
quite different from the target machine, the 
code may be run on a simulation of the 
target machine under interpretative con- 
trol. 

Simulation also plays a useful role in 
determining the performance of algorithms. 
While this is often directed at analyzing 
competing algorithms for cost, resource, or 
performance trade-offs, the simulation of 
algorithms on large data sets also provides 
error information. 

2.3 Test Data Generation 

Test data generation is a critical step in 
testing. Test data sets must not only con- 
tain input to exercise the software, but must 
also provide the corresponding correct out- 
put responses to the test data inputs. Thus 
the developing of test data sets involves 
two aspects: the selecting of data input and 
the determining of expected response. Of- 
ten the second aspect is most difficult, be- 
cause, although hand calculation and sim- 
ulation can be used to derive expected out- 
put response, such manual techniques be- 
come unsatisfactory and insufficient for 
very large or complicated systems. 
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One promising direction is the develop- 
ment of executable specification languages 
and specification language analyzers 
[SRS79, TEIC77]. These can be used to act 
as "oracles," providing the responses for 
the test data sets. Some analyzers such as 
the REVS system [BELL77] include a sim- 
ulation capability. An executable specifica- 
tion language representation of a software 
system is an actual implementation of the 
design, but at a higher level than the final 
code. Usually interpreted rather than com- 
piled, it is less efficient, omits certain details 
found in the final implementation, and is 
constructed with certain information 
"hidden." This implementation would be, 
in Parnas' terms [PARN77], an "abstract 
program," representing in less detail the 
final implementation. The execution of the 
specification language "program" could be 
on a host machine quite different from the 
implementation target machine. 

Test data can be generated randomly 
with specific distributions chosen to pro- 
vide some statistical assurance that the sys- 
tem, after having been fully tested, is error 
free. This is a method often used in high- 
density large-scale integrated (LSI) testing. 
Unfortunately, while errors in LSI chips 
appear correlated and statistically predict- 
able, this is not true of software. Until re- 
cently, the domains of programs were far 
more intractable than those occurring in 
hardware. This gap is closing with the ad- 
vances in very large-scale integration 
(VLSI). 

Given the apparent difficulty of applying 
statistical tests to software, test data are 
derived in two global ways, often called 
"black box," or functional, analysis and 
"white box," or structural, analysis. In func- 
tional analysis, the test data are derived 
from the external specification of the soft- 
ware behavior with no consideration given 
to the internal organization, logic, control, 
or data flow. One such technique, design- 
based functional analysis [HowD80a], in- 
cludes examination and analysis of data 
structure and control flow requirements 
and specifications throughout the hierar- 
chical decomposition of the system during 
the design. In a complementary fashion, 
tests derived from structural analysis de- 
pend almost completely on the internal log- 
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a null matrix should be tested. Often the 
single-element data structure is a good 
choice. If numeric values are used in arith- 
metic computations, then the test data 
should include values that are numerically 
very close and values that are numerically 
quite different. Guessing carries no guar- 
antee for success, but neither does it carry 
any penalty. 

2 4 2 Design-Based Functional Testing 

The techniques described above derive test 
data sets from analysis of functions speci- 
fied in the requirements. Howden has ex- 
tended functional analysis to functions used 
in the design process [HowD80a]. A distinc- 
tion can be made between requirements 
functions and design functions. Require- 
ments functions describe the overall func- 
tional capabilities of a program, and cannot 
usually be implemented without the devel- 
oper first inventing other "smaller func- 
tions" to design the program. If one thinks 
of this relationship as a tree structure, then 
a requirements function would be repre- 
sented as a root node, and the "smaller 
functions," all those functional capabilities 
corresponding to design functions, would be 
represented by boxes at the second level in 
the tree. Implementing one design function 
may require inventing still other design 
functions. This successive refinement dur- 
ing top-down design can then be repre- 
sented as levels in the tree structure, 
where the (n + 1)st-level nodes are refine- 
ments or subfunctions of the nth-level 
functions. 

To utilize design-based functional test- 
ing, the functional design trees as described 
above should be constructed. The functions 
included in the design trees must be chosen 
carefully with the most important selection 
criteria being that the function be accessi- 
ble for independent testing. It must be pos- 
sible to find a test data set that tests the 
function, to derive the expected values for 
the function, and to observe the actual out- 
put computed by the code implementing 
the function. 

If top-down design techniques are fol- 
lowed, each of the functions in the func- 
tional design tree can be associated with 
the final code used to implement that func- 

tion. This code may consist of one or more 
procedures, parts of a procedure, or state- 
ments. Design-based functional testing re- 
quires that the input and output variables 
for each design function be completely 
specified. Given these multiple functions to 
analyze, test data generation can proceed 
as described in the boundary value analysis 
discussion above. Extremal, nonextremal, 
and special-values test data should be se- 
lected for each input variable. Test data 
should also be selected to generate extre- 
mal, nonextremal, and special-output 
values. 

2 4 3 Cause-Effect Graphing 

Cause-effect graphing [MYER79] is a tech- 
nique for developing test cases for programs 
from the high-level specifications. For ex- 
ample, a program that has specified re- 
sponses to eight characteristic stimuli 
{called causes) has potentially 256 "types" 
of input {i.e., those with characteristics 1 
and 3, those with characteristics 5, 7, and 8, 
etc.). A naive approach to test case gener- 
ation would be to try to generate all 256 
types. A more sophisticated approach is to 
use the program specifications to analyze 
the program's effect on the various types of 
inputs. 

The program's output domain can be 
partitioned into various classes called 
"effects." For example, inputs with charac- 
teristic 2 might be subsumed by (i.e., cause 
the same effect as) those with characteris- 
tics 3 and 4. Hence, it would not be neces- 
sary to test inputs with just characteristic 
2 and also inputs with characteristics 3 and 
4. This analysis results in a partitioning of 
the causes according to their corresponding 
effects. 

After this analysis, the programmer can 
construct a limited-entry decision table 
from the directed graph reflecting these 
dependencies {i.e., causes 2 and 3 result in 
effect 4; causes 2, 3, and 5 result in effect 6; 
and so on), reduce the decision table in 
complexity by applying standard tech- 
niques [METZ77], and choose test cases to 
exercise each column of the table. Since 
many aspects of the cause-effect graphing 
can be automated, it is an attractive tool 
for aiding in the generation of functional 
test cases. 
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2.5 Structural Testing Techniques 

Unlike functional testing, which was con- 
cerned with the function the program per- 
formed and did not deal with how the func- 
tion was implemented, structural testing is 
concerned with testing its implementation. 
Although used primarily during the coding 
phase, structural testing should be used in 
all phases of the life cycle where the soft- 
ware is represented formally in some algo- 
rithmic, design, or requirements language. 
The intent of structural testing is to find 
test data that will force sufficient coverage 
of the structures present in the formal rep- 
resentation. In order to determine whether 
the coverage is sufficient, it is necessary to 
have a structural coverage metric. Thus the 
process of generating tests for structural 
testing is sometimes known as metric- based 
test data generation. 

Metric-based test data generation can be 
divided into two categories by the metric 
used: coverage-based testing and complex- 
ity-based testing. In the first category, a 
criterion is used that  provides a measure of 
the number of structural units of the soft- 
ware which are fully exercised by the test 
data sets. In the second category, tests are 
derived in proportion to the software com- 
plexity. 

2.5.1 Coverage-Based Testing 

Most coverage metrics are based on the 
number of statements, branches, or paths 
in the program that are exercised by the 
test data. Such metrics can be used both to 
evaluate the test data and to aid in the 
generation of the test data. 

Any program can be represented by a 
graph. The nodes represent statements or 
collections of sequential statements, and 
the lines or edges represent the control 
flow. A node with a single exiting edge to 
another node represents a sequential code 
segment. A node with multiple exiting 
edges represents a branch predicate or a 
code segment containing a branch predicate 
as the last statement. 

As an example of the representation of a 
program by a graph, consider the bubble 
sort program of Figure 3 (from an example 
due to Pare77) and its associated program 
graph shown in Figure 4. 

1 S U B R O U T I N E  B U B B L E  (A, N) 
2 BEGIN 
3 FOR I -- 2 S T E P S  1 U N T I L  N DO 
4 BEGIN 
5 IF A(I) GE A ( I  - l) T H E N  GOTO N E X T  
6 J = I  

7 LOOP: IF J LE 1 T H E N  GOTO N E X T  
8 IF A(J) GE A (J  - 1) T H E N  G O T O  N E X T  
9 T E M P  = A(J)  
10 A(J) = A ( J  - 1) 
11 A ( J -  I) = T E M P  
12 J = J - i  
13 GOTO LOOP 
14 NEXT" N U L L  
15 E N D  
16 E N D  

Figure 3. A bubble  sor t  program.  (Adapted  from 
PAI677, I E E E  Transactions on Software Engtneer- 
tng SE-3,  6 (Nov. 1977), 387, with permiss ion of the  
IEEE.)  

On a particular set of data, a program 
will execute along a particular path, where 
certain branches are taken or not taken, 
depending on the evaluation of branch 
predicates. Any program path can be rep- 
resented by a sequence, possibly with re- 
peating subsequences (when the program 
has backward branches), of edge names 
from the program graph. These sequences 
are called path expressions. Each path or 
each data set may vary, depending on the 
number of loop iterations executed. A pro- 
gram with variable loop control may have 
effectively an infinite number of paths, and 
hence an infinite number of path expres- 
sions. 

To test the program structure com- 
pletely, the test data chosen should ideally 
cause the execution of all paths. But be- 
cause some, possibly many, paths in a pro- 
gram are not finite, they cannot be executed 
under test conditions. Since complete cov- 
erage is not possible in general, metrics 
have been developed that  give a measure of 
the quality of test data based on its prox- 
imity to this ideal coverage. Path coverage 
determination is further complicated by the 
existence of infeasible paths, that, owing to 
inadvertent program design, are never exe- 
cuted, no matter  what data are used. Au- 
tomatic determination of infeasible paths is 
generally difficult if not impossible. A main 
theme in structured top-down design 
[DIJK72, JACK75, YOUR79] is to construct 
modules that  are simple and of low corn- 
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Ftgure 4. Control-flow graph for the program in Figure 3 (Adapted from 
PAI677, IEEE Transactions on Software Engtneermg SE-3,  6 (Nov. 1977), 389, 
with permission of the IEEE ) 
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plexity so that all paths, excluding loop 
iteration, may be tested and that infeasible 
paths may be avoided. Of course, during 
integration testing when simple modules 
are combined into more complex modules, 
paths will cross modules and infeasible 
paths may again arise. The goal is to main- 
tain simple structure at all levels of integra- 
tion, therefore maximizing path coverage. 

All techniques for determining coverage 
metrics are based on graph requirements 
of programs. A variety of metrics exist rang- 
ing from simple-statement coverage to 
full-path coverage. There have been sev- 
eral attempts to classify these metrics 
[MILL77]; however, new variations appear 
so often that such attempts are not always 
successful. We discuss the major ideas with- 
out attempting to cover all the variations. 

The simplest metric measures the per- 
centage of statements executed by all the 
test data. Since coverage tools collect data 
about which statements have been exe- 
cuted (as well as about the percentage of 
coverage), results can guide the program- 
mer in selecting test data to ensure com- 
plete coverage. To apply the metric, the 
programmer instruments the program or 
module either by hand or by a preprocessor, 
and then uses either a postprocessor or 
manual analysis of the results to find the 
level of statement coverage. Finding an ef- 
ficient and complete test data set that sat- 
isfies this metric is more difficult. Branch 
predicates that  send control to omitted 
statements can, when examined, help de- 
termine which input data will cause execu- 
tion of those omitted statements. 

Examination of the program's actions on 
the test set, $1 = {A(1) = 5, A(2) = 3, 
N = 2} (Figure 3), demonstrates that 100 
percent statement coverage is reached. 
This metric, however, is not strong enough. 
A slight change in the example program 
(replacing the greater or equal test by an 
equality test) results in an incorrect pro- 
gram and an error that the test set does not 
uncover. 

A slightly stronger metric measures the 
percentage of segments executed under the 
application of all test data. A segment in 
this sense corresponds to a decision-to-de- 
cision path (dd path) [MILL77]. It is a 
portion of a program path beginning with 

the execution of a branch predicate and 
including all statements up to the evalua- 
tion (but not execution) of the next branch 
predicate. In the example of Figure 4, the 
path including statements 8, 9, 10, 11, 12, 
13 is a segment. Segment coverage clearly 
guarantees statement coverage. It also cov- 
ers branches with no executable state- 
ments, as in the case in an I F - T H E N -  
ELSE with no ELSE statement; coverage 
still requires data, causing the predicate to 
be evaluated as both true and false, and 
segment coverage guarantees that  both 
have been checked. Techniques similar to 
those used for statement coverage are used 
for applying the metric and deriving test 
data. 

Returning to the example program, the 
test data set, $1, proposed earlier does not 
cover the two segments with no executable 
statements (segments beginning at nodes 5 
and 8). The set 

Se = ((A(1) = 5, A(2) = 3, A(3) = 3, N =  3}, 

(,4(1) = 3, A(2 )=5 ,  N = 2 } }  

yields 100 percent segment coverage, but 
still does not uncover the error introduced 
by replacing greater or equal by equal. 

Often a loop construct is improperly 
used. An improper termination may result 
when the loop predicate is not initially sat- 
isfied. Thus, the next logical step is to 
strengthen the metric by requiring separate 
coverage for both the exterior and interior 
of loops. Since segment coverage only re- 
quires that  both branches from a branch 
predicate be taken, the situation can arise 
that test sets always execute the loop body 
at least once (satisfies internal test) before 
the exiting branch is traversed (external 
test satisfied). To ensure that a test data 
set contains data that requires the exiting 
branch to be taken without executing the 
loop body, segment coverage is strength- 
ened so as to require that external tests be 
performed without loop body execution. 
This metric requires more paths to be cov- 
ered than does segment coverage, whereas 
segment coverage requires more paths to 
be covered than does statement coverage. 

In the example, adding (A(1) = 3, 
N = 1} to the test data set $2 gives a test 
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set, $3, that forces execution of both the 
interior and exterior of the FOR loop. The 
single element array ensures that the loop 
controlling predicate is tested without exe- 
cution of the loop body. 

Variations on the loop and segment met- 
ric include requiring at least k interior it- 
erations per loop or requiring that all 2 n 
combinations of Boolean variables be ap- 
plied for each n-variable predicate expres- 
sion. The latter variation has led to a new 
path-testing technique called finite-domain 
testing [ W H I T 7 8 ] .  

Automated tools for instrumenting and 
analyzing the code have been available for 
a few years [MILL75, OSTE76, LYON74, 
RAMA74, MAIT80]. These tools are gener- 
ally applicable to most of the coverage met- 
rics described above. Automating test data 
generation, however, is less advanced. Of- 
ten test data are generated by iteratively 
using analyzers, and then applying manual 
methods for deriving tests. A promising but 
expensive way to generate test data for path 
testing is through the use of symbolic 
executors [BOYE75, KING76, CLAR77, 
HOWD77]. The use of these tools is dis- 
cussed further in Section 2.7. Even though 
any particular structural metric may be 
satisfied, there is still no guarantee that 
software is correct. As discussed in Section 
2.1, the only method of ensuring that the 
testing is complete is to test the program 
exhaustively. None of the above coverage 
metrics, nor any proposed coverage metrics, 
guarantees exhaustive testing. The choice 
of which coverage metric to use must be 
guided by the resources available for test- 
ing. A coverage metric that forces more 
paths to be tested in order to achieve the 
same coverage as a simplier metric is more 
expensive to use because more test cases 
must be generated. The last few errors un- 
covered can cost several orders of magni- 
tude more than the first error uncovered. 

2.5.2 Complexity-Based Testing 

Several complexity-based metrics have 
been proposed recently. Among these are 
cyclomatic complexity [McCA76], Hal- 
stead's metrics [HAas77], and Chapin's 
software complexity measure [CHAP79]. 
These and many other metrics are designed 

Testing of Computer Software • 175 

to analyze the complexity of software sys- 
tems. Although these metrics are valuable 
new approaches to the analysis of software, 
most are unsuited, or have not been applied 
to the problem of testing. The McCabe 
metrics are the exception. 

McCabe actually proposed three metrics: 
cyclomatic, essential, and actual complex- 
ity. All three are based on a graphical rep- 
resentation of the program being tested. 
The first two metrics are calculated from 
the program graph, while the third metric 
is calculated at run time. 

McCabe defines cyclomatic complexity 
by finding the graph theoretic "basis set." 
In graph theory, there are sets of linearly 
independent program paths through any 
program graph. A maximal set of these 
linearly independent paths, called a "basis 
set," can always be found. Intuitively, since 
the program graph and any path through 
the graph can be constructed from the basis 
set, the size of this basis set should be 
related to the program complexity. From 
graph theory, the cyclomatic number of the 
graph, V(G), is given by 

V(G} -- e -  n + p  

for a graph G with number of nodes n, edges 
e, and connected components p. The num- 
ber of linearly independent program paths 
though a program graph is V(G) + p, a 
number McCabe calls the cyclomatic com- 
plexity of the program. Cyclomatic com- 
plexity, CV(G), where 

CV(G) = e -  n + 2p, 

can then be calculated from the program 
graph. In the graph of Figure 4, e = 19, 
v = 16, and p = 1. Thus V(G) = 4 and 
CV(G) = 5. 

A proper subgraph of a graph G is a 
collection of nodes and edges such that, if 
an edge is included in the subgraph, then 
both nodes it connects in the complete 
graph G must also be in the subgraph. Any 
flow graph can be reduced by combining 
sequential single-entry, single-exit nodes 
into a single node. Structured constructs 
appear in a program graph as proper 
subgraphs with only one single-entry node 
whose entering edges are not in the 
subgraph, and with only one single-exit 
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node, whose exiting edges are also not in- 
cluded in the subgraph. For all other nodes, 
all connecting edges are included in the 
subgraph. This single-entry, single-exit 
subgraph can then be reduced to a single 
node. 

Essential complexity is a measure of the 
"unstructuredness" of a program. The de- 
gree of essential complexity depends on the 
number of these single-entry, single-exit 
proper subgraphs containing two or more 
nodes. There are many ways in which to 
form these subgraphs. For a straight-line 
graph (no loops and no branches), it is 
possible to collect the nodes and edges to 
form from 1 to v/2 (v = number of nodes) 
single-entry, single-exit subgraphs. Hecht  
and Ullman [HEcH72] have a simple algo- 
ri thm that  is guaranteed to find the mini- 
mum number of such subgraphs in a graph. 
Figure 5 is an example of a program graph 
with single-entry, single-exit proper sub- 
graphs identified from Hecht  and Ullman's 
algorithm. The nodes in the four proper 
subgraphs are (1, 2}, {3, 4, 5, 6, 16}, (7, 8, 
9, 10, 11, 12, 13}, and (14, 15). 

Let m be the minimum number calcu- 
lated from Hecht  and Ullman's algorithm. 
The essential complexity EV(G) is defined 
a s  

EV(G) = CV(G) - m. 

The program graph for a program built 
with structured constructs will generally be 
decomposable into subgraphs that  are sin- 
gle entry, single exit. The minimum number 
of such proper subgraphs (calculated 
from Hecht  and Ullman's algorithm) is 
CV(G) - 1. Hence, the essential complexity 
of a structured program is 1. The program 
of Figure 3 has essential complexity of 1 
indicating that  the program is structured. 

Actual complexity, AV, is the number of 
independent paths actually executed by a 
program running on a test data set. AV is 
always less than or equal to the cyclomatic 
complexity and is similar to a path coverage 
metric. A testing strategy would be to at- 
tempt to drive AV closer to CV(G) by find- 
ing test data which cover more paths or by 
eliminating decision nodes and reducing 
portions of the program to in-line code. 
There exist tools [MAIT80] to calculate all 
three McCabe metrics. 

2.6 Test Data Analysis 

After the construction of a test data set, it 
is necessary to determine the "goodness" of 
that  set. Simple metrics like statement cov- 
erage may be required to be as high as 90- 
95 percent. It is much more difficult to find 
test data providing 90 percent coverage un- 
der the more complex coverage metrics. 
However, it has been noted [BRow73] that  
methods based on the more complex met- 
rics with lower coverage requirements have 
uncovered as many as 90 percent of all 
program faults. 

2.6.1 Stat~sbcal Analyses and Error 
Seeding 

The most common type of test data analy- 
sis is statistical. An estimate of the number 
of errors in a program can be obtained by 
analyzing of errors uncovered by the test 
data. In fact, as we shall see, this leads to a 
dynamic testing technique. 

Let us assume that there are some num- 
ber of errors E in the software being tested. 
We would like to two things: a maximum 
likelihood estimate for the number of errors 
and a level-of-confidence measure on that  
estimate. Mills developed a technique 
[MILL72] to "seed" known errors into the 
code so that  their placement is statistically 
similar to that  of actual errors. The test 
data are then applied, and the number of 
known seeded errors and the number of 
original errors uncovered is determined. If 
one assumes that  the statistical properties 
of the seeded and unseeded errors are the 
same (i.e., that  both kinds of errors are 
equally findable) and that  the testing and 
seeding are statistically unbiased, then the 
maximum-likelihood estimator for E is 
given by 

estimate E = I S / K  

where S is the number of seeded errors, K 
is the number of discovered seeded errors, 
and I is the number of discovered unseeded 
errors. This estimate obviously assumes 
that  the proportion of undetected errors is 
very likely to be the same for the seeded 
and original errors. This assumption is open 
to criticism [SCHI78] since many errors left 
after the debugging stage are very subtle, 
deep logical errors [DEMI78], which are not 
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Fugure 5. Example from Figure 4 with subgraphs identified. 
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statistically independent  and are likely to 
be quite different f rom the seeded errors. 

Mills developed confidence levels for his 
techniques, which are revised and discussed 
in TAUS77. A fur ther  and perhaps  more  
complete examinat ion of confidence levels 
is described in DURA81a. A strategy for 
using this statistical technique in dynamic 
testing is to moni tor  the maximum like- 
lihood estimator,  and to perform the confi- 
dence-level calculation as testing prog- 
resses. If  the est imator  becomes high rela- 
tive to the number  of seeded errors, then  it 
is unlikely tha t  a desirable confidence level 
can be obtained. The  seeded errors should 
be removed and the testing resumed. If  the 
number  of real  errors discovered remains 
small (ideally, remains zero) as the number  
of seeded errors uncovered approaches the 
total  number  seeded, then  our  confidence 
level increases. 

Schick and Wolver ton [Scm78]  and oth- 
ers have described a technique of using two 
people to test  the software, using one per- 
son's discovered errors as the "seeded" er- 
rors and then  applying the est imator  to the 
second person's  results. But  it is difficult to 
make the two people's testing procedures  
sufficiently different so tha t  the overlap in 
their  uncovered errors is small; as the over- 
lap increases, confidence of the est imation 
must  decrease. 

T a u s w o r t h e  [TAus77]  d iscusses  a 
me thod  for seeding errors tha t  has some 
hope of imitating the distribution of the 
actual errors. He  suggests randomly  choos- 
ing lines at  which to insert  the error, and 
then  making various different modifications 
to the code, introducing errors. The  modi- 
fications of the code are similar to those 
used in muta t ion  testing as described be- 
low. Duran  and Wiorkowski [Dul~A81a] 
suggest using errors detected during prelim- 
inary testing as seed errors for this tech- 
nique. In ei ther  case, again, success depends 
on the detected errors having the same 
probabil i ty of  detect ion as the undiscovered 
errors, which is not  likely. 

2 6 2 Mutabon Analysis 

A new method  of determining the adequacy 
of test  da ta  sets has been developed by 
DeMillo, Lipton, and Sayward and is called 
muta t ion  analysis [DEMI78]. As above, the 
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program tha t  is to be tested is seeded with 
errors. Several  mutan ts  of the original pro- 
gram are generated.  Each  is created by 
introducing different errors or sets of errors 
into the original program. T h e  program and 
its mutan t s  are then  run interpret ively on 
the test  set. 

The  set of mutants  must  be held to a 
manageable  size. First, consider the 
"competen t  p rogrammer  assumption," 
stating tha t  an incorrect  program will not  
differ much  from the desired program. T h a t  
is, a competen t  p rogrammer  will not  make 
a massive number  of errors when writing a 
program. Second, consider the "coupling 
effect," the conjecture tha t  tests tha t  un- 
cover simple errors will also uncover  deeper  
and more  complex errors. 

These  two assumptions greatly simplify 
the construction of program mutations.  To  
determine the adequacy of test  sets, we 
introduce a muta t ion  score ms(P,  T) de- 
fined as 

ms(P, T) = ',DM(P, T),/L M(P)  - E(P)I, 

where P is a program, T is a test  set, M(P)  
is some finite set of mutan t  programs of the 
language, E(P)  is the set of functionally 
equivalent  programs to P in M(P),  and 
DM(P,  T)  is the set of programs in M(P)  
differentiated from P by the test  set T. If 
the construct ion of mutan ts  is correct ly 
chosen (i.e., the  finite set of program mu- 
tat ions is appropria te ly  constructed),  then  
as the muta t ion  score, ms(P, T),  ap- 
proaches 1, the adequacy of  the test  set T 
increases (and T uncovers  more errors). 

The  construct ion of the set of muta t ions  
is crucial to the success of the technique. 
The  mu tan t  set is obtained from P by mod- 
ifying single s ta tements  of the program in 
order  to reflect probable errors. Since each 
e lement  of the finite set of program muta-  
tions differs f rom P in only one s ta tement  
and since variable names may  be changed 
in order  to construct  elements  of the set of 
mutat ions,  the size of M(P)  is bounded by 
a quadrat ic  function of the length of P. 

T h e  muta t ion  analysis method  of deter- 
mining the adequacy of test  sets includes 
both  branch coverage and s ta tement  cov- 
erage metrics as special cases. Over the last 
two years, the me thod  has been run on a 
number  of F O R T R A N  and COBOL pro- 
grams ranging from a few lines in length to 
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production programs of 1700 lines in length. 
Test sets with mutation scores of 0.95 or 
higher were experimentally shown to be 
adequate in that additional errors were not 
discovered with subsequent use of the pro- 
grams [ACRE80]. 

It must be stressed that  mutation analy- 
sis rests on two assumptions: that  the pro- 
gram is "nearly correct" (a consequence of 
the competent programmer hypothesis) 
and that  test sets which uncover single 
errors are also effective in uncovering mul- 
tiple errors (the coupling effect hypothesis). 
Both of these assumptions have been ex- 
perimentally validated over a fairly large 
range of programs [ACRE80]. 

Recently Howden [HOwD81a] developed 
a new test completeness metric that is 
stronger than branch coverage, but weaker 
than mutant coverage. Derived from the 
ideas on design-based functional testing, 
the metric depends either on coverage of 
functions computed by a program, parts of 
the program, or by parts of statements in 
the program. This method is less costly 
than mutation analysis, but much more 
effective than branch coverage. 

2.7 Static Analysis Techniques 

As we stated at the outset, analytical tech- 
niques can be categorized as dynamic or 
static. Dynamic activity, such as the appli- 
cation and analysis of test data, usually 
involves the actual execution of code, 
whereas static analysis usually does not. 
Many of the general techniques discussed 
above, such as formal proof techniques and 
inspections, are static analysis techniques. 
Static analysis is part of any testing tech- 
nique, since it must be used in analysis that 
derives test data, calculates assertions, or 
determines instrumentation breakpoints. 
But the actual verification must be 
achieved through dynamic testing. The line 
between static and dynamic analysis is not 
always easily drawn. For example, proof-of- 
correctness techniques and symbolic exe- 
cution both "execute" code, but usually not 
in a real environment. 

Most static analysis is performed by par- 
sers and associated translators residing in 
compilers. Depending upon the sophistica- 
tion of the parser, it uncovers errors ranging 
in complexity from ill-formed arithmetic 

expressions to complex type-incompatibili- 
ties. In most compilers, the parser and 
translator are augmented with additional 
capabilities that allow activities useful for 
producing quality software, such as code 
optimization, listing of variable names, and 
pretty printing. Preprocessors are also fre- 
quently used in conjunction with the par- 
ser. These may perform activities such as 
allowing "structured programming" in an 
unstructured programming language, 
checking for errors such as mismatched 
common areas, and checking for module 
interface incompatibilities. The parser may 
also serve in a policing role. Thus, by using 
static analysis the parser can enforce cod- 
ing standards, monitor quality of code, 
and check adherence to programming 
standards (standards such as FORTRAN77 
[ANSI78]. 

2 7 1 Flow Analysts 

Data-flow and control-flow analysis are 
similar in many ways. Both are based upon 
graphical representation. In control-flow 
analysis, the program graph has nodes, rep- 
resenting a statement or segment, that pos- 
sibly end in a branch predicate. The edges 
represent the allowed flow of control from 
one segment to another. The control-flow 
graph is used to analyze the program be- 
havior, to locate instrumentation break- 
points, to identify paths, and to perform 
static analysis activities. In data-flow anal- 
ysis, graph nodes usually represent single 
statements, while the edges still represent 
the flow of control. Nodes are analyzed to 
determine the transformations made on 
program variables. Data-flow analysis is 
used to discover program anomalies such 
as undefined or unreferenced variables. 
Data-flow analysis was used by Cocke and 
Allen [ALLE74, ALLE76] to do global pro- 
gram optimization. 

Data-flow anomalies are more easily 
found than resolved. Consider the following 
FORTRAN code segment: 

SUBROUTINE HYP (A, B, C) 
U = 0.5 
W = 1/V 
Y = A * * W  
Y = E * * W  
Z = X + Y  
C = Z ** (V) 
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There are several anomalies in this code 
segment. One variable, U, is defined and 
never used, while three variables, X, V, and 
E, are undefined when used. The problem 
is not in detecting these errors, but in re- 
solving them. It is possible, for instance, 
that U was meant to be V, E was meant to 
be B, and the first occurrence of Y on the 
left of an assignment was a typo for X. 
There is no answer to the problem of reso- 
lution, but data-flow analysis can help to 
detect the anomalies, including ones more 
subtle than those above. 

In data-flow analysis, we are interested 
in tracing the behavior of program variables 
as they are initialized and modified during 
the program execution. This behavior can 
be classified according to when a particular 
variable is referenced, defined, or unrefer- 
enced in the program. A variable is refer- 
enced when its value is obtained from mem- 
ory during the evaluation of an expression 
in a statement. For example, a variable is 
referenced when it appears on the right- 
hand side of an assignment statement, or 
when it appears as an array index anywhere 
in a statement. A variable is defined if a 
new value for that  variable results from the 
execution of a statement, as occurs when a 
variable appears on the left-hand side of an 
assignment. A variable becomes unrefer- 
enced when its value is no longer determin- 
able from the program flow. Examples of 
unreferenced variables are local variables 
in a subroutine after exit and FORTRAN 
DO indices on loop exit. 

Data-flow analysis is performed, at each 
node in the data flow graph, by associating 
values for tokens (the latter representing 
program variables) that indicate whether 
the corresponding variable is referenced, 
unreferenced, or defined with the execution 
of the statement represented by that  node. 
If, for instance, the symbols, u, d, r, and l 
(for null), are used to represent the values 
of a token, then path expressions for a 
variable (or token) can be generated begin- 
ning at, ending in, or for some particular 
node, yielding, for example, the typical path 
expression drlUllrrllllldllrll. This expression 
can then be reduced, by eliminating nulls, 
to drrrdru. Such a path expression contains 
no anomalies, but the presence of a double 
nonnull value in an expression, such as 

• . .dd . . . .  indicates a variable defined twice 
without being referenced, and does identify 
a potential anomaly. Most anomalies, such 
as unreferenced followed by referenced or 
referenced without being defined, can be 
discovered through analysis of the path 
expressions. 

To simplify the analysis of the flow 
graph, statements can be combined, as in 
control-flow analysis, into segments of nec- 
essarily sequential statements represented 
by a single node. Often, however, state- 
ments must be represented by more than 
one node. Consider the expression, 

IF (X.GT.1) X = X - 1 

The variable X is certainly referenced in 
the statement, but it will be defined only if 
the predicate is true. In such a case, the 
representation would use two nodes, and 
the graph would actually represent the 
code: 

IF (X.GT.1) loo, 200 
100X= X -  1 
2OO CONTINUE 

Another problem requiring node splitting 
arises at the last statement of a FORTRAN 
DO loop, in which case the index variable 
will become undefined if the loop is exited. 
The problems introduced by subroutine 
and function calls can also be resolved using 
data-flow analysis. Osterweil [OSTE76] 
and Fosdick [FOSD76] describe the use of 
data-flow analysis for static analysis and 
testing. 

2 7.2 Symbohc Execution 

Symbolic execution is a method of symbol- 
ically defining data that forces program 
paths to be executed. Instead of executing 
the program with actual data values, the 
variable names that  hold the input values 
are used as input values• 

All branches are taken during a symbolic 
execution, and the effect of assignments 
during a symbolic execution is to replace 
the value of the left-hand side variable by 
the unevaluated expression on the right- 
hand side. Sometimes symbolic execution 
is combined with actual execution in order 
to simplify the terms being collected in 
variables. Most often, however, all variable 
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manipulations and decisions are made sym- 
bolically. As a consequence, all assignments 
become string assignments and all decision 
points are indeterminate. To illustrate a 
symbolic execution, consider the following 
small pseudocode program: 

IN a, b; 
a := a * a; 
x:=a+b; 
I F x = 0  T H E N x : = 0  

ELSE x := 1; 

The symbolic execution of the program will 
result in the following expression: 

i fa  * a + b = 0 then x :- 0 
else i f a * a + b # O t h e n x : = l  

Note that  we are unable to determine the 
result of the equality test for we only have 
symbolic values available. 

The result of a symbolic execution is a 
large, complex expression that  can be de- 
composed and viewed as a tree structure, 
where each leaf represents a path through 
the program. The symbolic values of each 
variable are known at every point within 
the tree and the branch points of the tree 
represent the decision points of the pro- 
gram. Every program path is represented 
in the tree, and every branch path is, by 
definition, taken. 

If the program has no loops, then the 
resultant tree structure is finite, and can be 
used as an aid in generating test data that  
will cause every path in the program to be 
executed. The predicates at each branch 
point of the tree structure, for a particular 
path, are then collected into a single logical 
expression. Data that cause a particular 
path to be executed can be found by deter- 
mining which data will make the path 
expression true. If the predicates are equal- 
ities, inequalities, and orderings, the prob- 
lem of data selection becomes the classic 
problem of trying to solve a system of equal- 
ities and orderings. For more detail, see 
CLAR77 or HowD77. 

There are two major difficulties with us- 
ing symbolic execution as a test set con- 
struction mechanism. The first is the com- 
binatorial explosion inherent in the tree 
structure construction: the number of paths 
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in the symbolic execution tree structure 
may grow as an exponential in the length 
of the program, leading to serious compu- 
tational difficulties. If the program has 
loops, then the symbolic execution tree 
structure is necessarily infinite (since every 
predicate branch is taken). ~sually only a 
finite number of loop executions is required, 
enabling a finite loop unwinding to be per- 
formed. The second difficulty is that the 
problem of determining whether the path 
expression has values that  satisfy it is un- 
decidable even with restricted program- 
ming languages [CHER79a]. For certain ap- 
plications, however, symbolic execution has 
been successful in constructing test sets. 

Another use of symbolic execution tech- 
niques is in the construction of verification 
conditions from partially annotated pro- 
grams. Typically, the program has attached 
to each of its loops an assertion, called an 
"invariant," that  is true at both the first 
and the last statement of the loop. (Thus 
the assertion remains "invariant" over one 
execution of the loop.) From this assertion, 
the programmer can construct an assertion 
that is true before entrance to the loop and 
an assertion that  is true after exit of the 
loop. Such a program can then be viewed 
as free of loops (since each loop is consid- 
ered as a single statement) and assertions 
can be extended to all statements of the 
program (so it is fully annotated) using 
techniques similar to those for symbolic 
execution. A good survey of these methods 
has been done by Hantler [HANT76], and 
an example of their use in verifiers appears 
in Luckham [LucK79]. 

2.7.3 Dynamic Analysis Techniques 

Dynamic analysis is usually a three-step 
procedure involving static analysis and in- 
strumentation of a program, execution of 
the instrumented program, and finally, 
analysis of the instrumentation data. Often 
this is accomplished interactively through 
automated tools. 

The simplest instrumentation technique 
for dynamic analysis is the insertion of a 
counter or "turnstile." Branch and segment 
coverage are determined in this manner. A 
preprocessor analyzes the program (usually 
by internally representing the program as 
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a program graph) and inserts counters at 
appropriate places. 

For example, for IF statements, control 
will be directed, first, to a distinct statement 
responsible for incrementing a counter for 
each possible branch, and, second, back to 
the original statement. Two separate 
counters are dmployed when two IF state- 
ments branch to the same point. Loop con- 
structs often have to be modified so that  
both interior and exterior paths can be in- 
strumented. For example, the exterior path 
of a loop usually has no executable state- 
ments. To insert a counter, the loop con- 
struct must be modified, as below: 

DO 20 1 = J, K, L 

20 Statement k 

IF (I.GT.K) THEN 201 
20 N(20) = N(20) + 1 

Statement k 
I = I + L  
IF (I.LE.K) THEN 20 

201 N(201) = N(201) + 1 

N(201) counts the exterior executions and 
N(20) counts the interior executions. 

Simple statement coverage requires 
much less instrumentation than does either 
branch coverage or more extensive metrics. 
For complicated assignments and loop and 
branch predicates, more detailed instru- 
mentation is employed. Besides simple 
counts, it is useful to know the maximum 
and minimum values of variables (particu- 
larly useful for array subscripts), the initial 
and final value, and other constraints par- 
ticular to the application. 

Instrumentation does not have to rely on 
direct code insertion. A simple alternate 
implementation is to insert calls to run-time 
routines in place of actual counters. The 
developer can insert commands in the code 
which is then passed through a preproces- 
sor/compiler. The preprocessor adds the 
instrumentation only if the correct com- 
mands are set to enable it. 

Stucki introduced the concept of instru- 
menting a program with dynamic asser- 
tions. A preprocessor generates instrumen- 
tation for dynamically checking conditions 
that  are often as complicated as those used 

in program-proof techniques [Svuc77]. 
These assertions are entered as comments 
in program code and are meant to be per- 
manent. They provide both documentation 
and means for maintenance testing. All or 
individual assertions are enabled during 
test by using simple commands to the pre- 
processor. 

There are assertions which can be em- 
ployed globally, regionally, locally, or at 
entry and exit. The general form for a local 
assertion is 

ASSERT LOCAL [optional qualifier] 
(extended-logical-expression) [control] 

The optional qualifiers are adjectives such 
as ALL and SOME. The control options 
include (1) LEVEL, which controls the 
levels in a block-structured program; (2) 
CONDITIONS, which allows dynamic en- 
abling of the instrumentation; and (3) 
LIMIT, which allows a specific number of 
violations to occur. The logical expression 
is used to represent an expected condition, 
which is then dynamically verified. For ex- 
ample, placing 

ASSERT LOCAL 
(A(2 : 6, 2 : 10).NE.0) LIMIT 4 

within a program will cause the values of 
array elements A(2, 2), A(2, 3) . . . .  , A(2, 10), 
A(3, 2), . . . ,  A(6, 10) to be checked against 
a zero value at each locality. After four 
violations during the execution of the pro- 
gram, the assertion will become false. 

The global, regional, and entry-exit  as- 
sertions are similar in structure to the local 
assertions described earlier. Note the simi- 
larity with proof-of-correctness techniques. 
These assertions are very much like the 
input, output, and intermediate assertions 
used in program proving (called verification 
conditions), especially if the entry-exit  as- 
sertions are employed. Furthermore, sym- 
bolic execution can be used, just as it was 
with proof techniques, to generate the as- 
sertions. Some efforts are currently under 
way to integrate dynamic assertions, proof 
techniques, and symbolic evaluation. One 
of these is described below. 

Andrews and Benson have described a 
system developed by General Research 
[ANDR81] that  employs dynamic assertion 
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techniques in an automated test system. 
Code with embedded executable assertions 
can be tested using constrained optimiza- 
tion search strategies to vary an initial test 
data set over a range of test inputs, adapt- 
ing the test data to the test results. The 
automated test system records the dynamic 
assertion evaluation for a large number of 
tests. 

There are many other techniques for dy- 
namic analysis. Most involve the dynamic 
{while under execution) measurement of 
the behavior of a part of a program, where 
the features of interest have been isolated 
and instrumented based on a static analy- 
sis. Some typical techniques include expres- 
sion analysis, flow analysis, and timing 
analysis. 

2.8 Combined Methods 

There are many ways in which the tech- 
niques described above can be used in con- 
cert to form a more powerful and efficient 
testing technique. One of the more common 
combinations today merges standard test- 
ing techniques with formal verification. Our 
ability, through formal methods, to verify 
significant segments of code is improving 
[GERH78], and certain modules, either for 
security or reliability reasons, now justify 
the additional expense of formal verifica- 
tion. 

Other possibilities for combination in- 
clude using symbolic execution or formal 
proof techniques to verify those segments 
of code that, through coverage analysis, 
have been shown to be most frequently 
executed. Mutation analysis, for some spe- 
cial cases like decision tables, can be used 
to verify programs fully [BUDD78b]. Formal 
proof techniques may be useful in one of 
the problem areas of mutation analysis, the 
determination of equivalent mutants. 

Another example, combining data-flow 
analysis, symbolic execution, elementary 
theorem proving, dynamic assertions, and 
standard testing is suggested by Osterweil 
[OSTE80]. Osterweil addresses the issue of 
how to combine efficiently these powerful 
techniques in one systematic method. As 
has been mentioned, symbolic evaluation 
can be used to generate dynamic assertions 
by first executing paths symbolically so that 
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each decision point and every loop has an 
assertion, then checking for consistency us- 
ing both data-flow and proof techniques. If 
all the assertions along a path are consist- 
ent, they can be reduced to a single dynamic 
assertion for the path. Either theorem- 
proving techniques can be used to "prove" 
the path assertion and termination, or dy- 
namic testing methods can be used to test 
and evaluate the dynamic assertions for the 
test data. 

Osterweil's technique allows for several 
trade-offs between testing and formal 
methods. For instance, symbolically de- 
rived dynamic assertions, although more 
reliable than manually derived assertions, 
cost more to generate. Consistency analysis 
of the assertions using proof and data-flow 
techniques adds cost to development, but 
reduces the number of repeated executions. 
Finally there is the overall trade-off be- 
tween theorem proving and testing to verify 
the dynamic assertions. 

3. CONCLUSIONS AND RESEARCH 
DIRECTIONS 

We have surveyed many of the techniques 
used to validate software systems. Of the 
methods discussed, the most successful 
have been the disciplined manual tech- 
niques, such as walk-throughs, reviews, and 
inspections, applied to all stages in the life 
cycle [FAGA76]. Discovery of errors within 
the first stages of development {require- 
ments and design) is particularly critical 
since the cost of these errors escalates sig- 
nificantly if they remain undiscovered until 
construction or later. Until the develop- 
ment products at the requirements and de- 
sign stages become formalized, and hence 
amenable to automated analysis, disci- 
plined manual techniques will continue to 
be the key verification techniques. 

Many of the other techniques discussed 
in Section 2 have not seen wide use. These 
techniques appeal to our intuition, but we 
have only anecdotal evidence that  they 
work. Howden showed in a study of a com- 
mercial FORTRAN-based scientific library 
[IMSL78, HOWD80b] that  the success of 
particular testing technique does not cor- 
relate with structural or functional attri- 
butes of the code. It was this study that led 
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Howden to develop the ideas of design- 
based functional testing described in Sec- 
tion 2.4. 

Recently Howden performed a similar 
study of a commercial COBOL-based gen- 
eral ledger system [HowD81b], in which he 
found that the errors were much different 
from those in the IMSL library. As one 
might expect, errors in the data definition 
were much more common than errors in 
the procedures. Moreover, the most com- 
mon errors were due to missing logic (i.e., 
various cases not being covered by program 
logic) and thus invisible to any structurally 
based technique. Glass [GLAs81] has noted 
similar experiences with embedded soft- 
ware. These experiences point up another 
problem that  most of the techniques de- 
scribed in Section 2 are directed at proce- 
dural languages with only rudimentary in- 
put /output  capability and are probably not 
as useful when applied to COBOL and sim- 
ilar languages. Test coverage will have to 
be more closely tied to the requirements to 
overcome this difficulty. Structural tech- 
niques based on data-flow coverage rather 
than control-flow coverage will need to be 
developed as well. 

The Howden studies point to the major 
problem in testing: the lack of a sound 
theoretical foundation. Besides the work of 
Goodenough and Gerhart, Howden, and the 
Lipton, DeMillo, Sayward, and Budd mu- 
tation research we have made very little 
progress toward developing a theoretical 
basis from which to relate software behav- 
ior to validation and verification. While 
there have been efforts in this area by 
White [WHIT78], Clarke and Richardson 
[RICH81], Weyuker et al. [WEYU80, 
OSTR80, DAVI81], and others, it clearly re- 
quires considerably more research effort. 

There are problems with these tech- 
niques other than just the lack of a sound 
theoretical basis. Many of the techniques 
have major costs associated with custom- 
izing them to the verification process (sim- 
ulation) or high costs for their use (symbolic 
execution), or unproved applicability in 
practice (proof of correctness). Many of the 
techniques are areas of intense current re- 
search, but have not yet been developed or 
proven sufficiently in the real world. Only 
recently has validation and verification 

been given the attention it deserves in the 
development cycle. Budgets, except for a 
few highly critical software projects, have 
not included sufficient funds for adequate 
testing. 

Even with these problems, the impor- 
tance of performing validation throughout 
the life cycle is not diminished. One of the 
reasons for the great success of disciplined 
manual techniques is their uniform appli- 
cability at requirements, design, and coding 
phases. These techniques can be used with- 
out massive capital expenditure. However, 
to be most effective, they require a serious 
commitment and a disciplined application. 
Careful planning, clearly stated objectives, 
precisely defined techniques, good manage- 
ment, organized record keeping, and strong 
commitment are critical to successful vali- 
dation. 

We view the integration of validation 
with software development as crucial, and 
we suggest that  it be an integral part of the 
requirements statement. Validation re- 
quirements should specify the type of man- 
ual techniques, the tools, the form of proj- 
ect management and control, the develop- 
ment methodology, and the acceptability 
criteria that  are to be used during software 
development. These requirements are in 
addition to the functional requirements of 
the system ordinarily specified at this stage. 
If this practice were followed, embedded 
within the project requirements would be 
a statement of work aimed at enhancing 
the quality of the completed software. 

A major difficulty with any proposal such 
as the above, however, is that we have 
neither the means of accurately measuring 
the effectiveness of validation methods nor 
the means of determining "how valid" the 
software should be. We assume that it is 
not possible to produce a "perfect" software 
system and take as our goal getting as close 
to perfect as can be reasonably (given these 
constraints) required. In addition, what 
constitutes perfect and how important it is 
for the software to be perfect may vary 
from project to project. Some software sys- 
tems (such as those for reactor control) 
have more stringent quality requirements 
than other software (such as an address 
label program). Defining "perfect" (by 
specifying which quality attributes must be 
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met) and determining its importance 
should be part of the validation require- 
ments. However, validation mechanisms 
written into the requirements do not guar- 
antee "perfect" software, just as the use of 
a particular development methodology 
does not guarantee high-quality software. 
The evaluation of competing validation 
mechanisms will be difficult. 

A further difficulty is that validation 
tools do not often exist in integrated pack- 
ages. Since no one verification tool is suffi- 
cient, this means that the group performing 
the verification must acquire several tools 
and learn several methods that may be 
difficult to use in combination. This is a 
problem that must receive careful thought 
[ADRI80, BRAN81a],  for, unless the combi- 
nation is chosen judiciously, their use can 
lead to costs and errors beyond that nec- 
essary to acquire them in the first place. 
The merits of both the tool collection as a 
whole and of any single tool must be con- 
sidered. 

The efforts described in Section 2.9 to 
integrate verification techniques are very 
important. At present the key to high qual- 
ity remains the disciplined use of a devel- 
opment methodology accompanied by ver- 
ification at each stage of the development. 
No single technique provides a magic solu- 
tion. For this reason, the integration of tools 
and techniques and the extension of these 
to the entire life cycle is necessary before 
adequate validation and verification be- 
comes possible. 

The current research on software support 
systems and programming environments 
[BRAN81b, BARS81a, BARS81b, WAss81a, 
WASS81b] can have major impact on vali- 
dation and verification. The use of such 
environments has the potential to improve 
greatly the quality of the completed soft- 
ware. In addition, such systems may pro- 
vide access by the user/customer to the 
whole process, providing a mechanism for 
establishing confidence in the quality of the 
software [CHER79b, CHER80]. 

Clearly, research is still necessary on the 
basic foundations of verification, on new 
tools and techniques, and on ways to inte- 
grate these into a comprehensive and au- 
tomated development methodology. More- 
over, given the increasing cost of software, 
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both absolutely and as a proportion of total 
system cost, and the increasing need for 
reliability, it is important that  management 
apply the needed resources and direction 
so that verification and validation can be 
effective. 

4. GLOSSARY 

Audit. See DOD Development Reviews. 
Black Box Testing. See Functional  
Testing. 
Boundary Value Analyses. A selection 
technique in which test data are chosen to 
lie along "boundaries" of input domain (or 
output range) classes, data structures, pro- 
cedure parameters, etc. Choices often in- 
clude maximum, minimum, and trivial val- 
ues or parameters. This technique is often 
called stress testing. (See Section 2.4.) 
Branch Testing. A test method satisfy- 
ing coverage criteria that require that  for 
each decision point each possible branch be 
executed at least once. (See Section 2.5.) 
Cause-Effect Graphing. Test data se- 
lection technique. The input and output 
domains are partitioned into classes and 
analysis is performed to determine which 
input classes cause which effect. A minimal 
set of inputs is chosen that  will cover the 
entire effect set. (See Section 2.4.) 
Certification. Acceptance of software by 
an authorized agent usually after the soft- 
ware has been validated by the agent, or 
after its validity has been demonstrated to 
the agent. 
Cri t ical  Design Review. See DOD De- 
velopment Reviews. 
Complete Test Set. A test set contain- 
ing data that causes each element of a 
prespecified set of Boolean conditions to be 
true. Additionally, each element of the test 
set causes at least one condition to be true. 
(See Section 2.2.) 
Consistent Condition Set. A set of Bool- 
lean conditions such that  complete test sets 
for the conditions uncover the same errors. 
(See Section 2.2.) 
Cyclomatic Complexity. The cyclo- 
matic complexity of a program is equivalent 
to the number of decision statements plus 
1. (See Section 2.5.) 
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DD (decision-to-decision) Path. A path 
of logical code sequence that begins at an 
entry or decision statement and ends at a 
decision statement or exit. (See Section 
2.5.) 
Debugging .  The process of correcting 
syntactic and logical errors detected during 
coding. With the primary goal of obtaining 
an executing piece of code, debugging 
shares with testing certain techniques and 
strategies, but  differs in its usual ad hoc 
application and local scope. 
Design-Based Functional  Testing.  
The application of test data derived 
through functional analysis (see Func-  
t ional  Testing) extended to include design 
functions as well as requirement functions. 
(See Section 2.4.) 

DOD D e v e l o p m e n t  Rev iews .  A series 
of reviews required by DOD directives. 
These include 

(1) The Systems Requirements Review is 
an examination of the initial progress 
during the problem definition stage and 
of the convergence on a complete sys- 
tem configuration. Test planning and 
test documentation are begun at this 
review. 

(2) The System Design Review occurs 
when the system definition has reached 
a point where major system modules 
can be identified and completely speci- 
fied along with the corresponding test 
requirements. The requirements for 
each major subsystem are examined 
along with the preliminary test plans. 
Tools required for verification support 
are identified and specified at this 
stage. 

(3) The Preliminary Design Review is a 
formal technical review of the basic de- 
sign approach for each major subsys- 
tem or module. The revised require- 
ments and preliminary design specifi- 
cations for each major subsystem and 
all test plans, procedures, and docu- 
mentation are reviewed at this stage. 
Development and verification tools are 
further identified at this stage. Changes 
in requirements will lead to an exami- 
nation of the test requirements to main- 
tain consistency. 

(4) The Critical Design Review occurs just 
prior to the beginning of the construc- 
tion stage. The complete and detailed 
design specifications for each module 
and all draft test plans and documen- 
tation are examined. Again, consistency 
with previous stages is reviewed, with 
particular attention given to determin- 
ing if test plans and documentation re- 
flect changes in the design specifica- 
tions at all levels. 

(5) Two audits, the Functional Configu- 
ration Audit  and the Physical Config- 
uration Audit  are performed. The for- 
mer determines if the subsystem per- 
formance meets the requirements. The 
latter audit is an examination of the 
actual code. In both audits, detailed 
attention is given to the documenta- 
tion, manuals and other supporting ma- 
terial. 

(6) A Formal Qualification Review is per- 
formed to determine through testing 
that the final coded subsystem con- 
forms with the final system specifica- 
tions and requirements. It is essentially 
the subsystem acceptance test. 

Dr iver .  Code that sets up an environ- 
ment and calls a module for test. (See Sec- 
tion 1.3.) 
D y n a m i c  Analys is .  Analysis that is per- 
formed by executing the program code. 
(See Section 2.7.) 
D y n a m i c  Asser t ion .  A dynamic analy- 
sis technique that inserts assertions about 
the relationship between program variables 
into the program code. The truth of the 
assertions is determined as the program 
executes. (See Section 2.7.) 
E r r o r  Guess ing .  Test data selection 
technique. The selection criterion is to pick 
values that seem likely to cause errors. (See 
Section 2.4.} 
E x h a u s t i v e  Test ing.  Executing the pro- 
gram with all possible combinations 
of values for program variables. (See Sec- 
tion 2.1.) 
E x t r e m a l  Test Data. Test data that is 
at the extreme or boundary of the domain 
of an input variable or which produces re- 
sults at the boundary of an output domain. 
(See Section 2.4.) 
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Forma l  Qual i f icat ion Review. See 
DOD Deve lopment  Reviews.  
Functional Configuration Audit .  See 
DOD Deve lopment  Reviews.  
Functional Testing. Application of test 
data derived from the specified functional 
requirements without regard to the final 
program structure. (See Section 2.4.) 
Infeasible Path .  A sequence of program 
statements that can never be executed. (See 
Section 2.5.) 
Inspection. A manual analysis tech- 
nique in which the program {requirements, 
design, or code) is examined in a very for- 
mal and disciplined manner to discover er- 
rors. (See Section 2.2.) 
Instrumentation. The insertion of ad- 
ditional code into the program in order to 
collect information about program behavior 
during program execution. (See Section 
2.7.) 

Invalid Input (Test Data for Invalid 
Input Domain).  Test data that lie out- 
side the domain of the function the program 
represents. (See Section 2.1.) 

Life-Cycle Test ing.  The process of ver- 
ifying the consistency, completeness, and 
correctness of the software entity at each 
stage in the development. (See Section 1.) 

Metric-Based Test Data Genera- 
tion. The process of generating test sets 
for structural testing based upon use of 
complexity metrics or coverage metrics. 
(See Section 2.5.) 

Mutation Analysis .  A method to deter- 
mine test set thoroughness by measuring 
the extent to which a test set can discrimi- 
nate the program from slight variants (mu- 
tants) of the program. (See Section 2.6.) 

Oracle.  A mechanism to produce the 
"correct" responses to compare with the 
actual responses of the software under test. 
(See Section 2.1.) 

P a t h  Express ions .  A sequence of edges 
from the program graph which represents 
a path through a program. (See Section 
2.5.) 

Path Testing. A test method satisfying 
coverage criteria that each logical path 
through the program be tested. Often paths 
through the program are grouped into a 
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finite set of classes; one path from each 
class is then tested. (See Section 2.5.) 
Preliminary Design Review. See DOD 
Development Reviews. 
P r o g r a m  Graph.  Graphical representa- 
tion of a program. (See Section 2.5.) 
P r o o f  of  Correc tness .  The use of tech- 
niques of mathematical logic to infer that 
a relation between program variables as- 
sumed true at program entry implies that 
another relation between program variables 
holds at program exit. (See Section 2.2.) 

Regression Testing. Testing of a pre- 
viously verified program required following 
program modification for extension or cor- 
rection. (See Section 1.4.) 
Simulation. Use of an executable model 
to represent the behavior of an object. Dur- 
ing testing the computational hardware, the 
external environment, and even code seg- 
ments may be simulated. (See Section 2.2.) 
Self-Validating Code. Code which 
makes an explicit attempt to determine its 
own correctness and to proceed accord- 
ingly. (See Section 2.7.) 
Special Test Data. Test data based on 
input values that are likely to require spe- 
cial handling by the program. (See Section 
2.4.) 

Statement Testing. A test method sat- 
isfying the coverage criterion that each 
statement in a program be executed at least 
once during program testing. (See Section 
2.5.) 

Static Analysis ,  Analysis of an program 
that is performed without executing the 
program. (See Section 2.7.) 

Stress Testing. See Boundary Value 
Analysis. 
Structural Testing. A testing method 
where the test data are derived solely from 
the program structure. (See Section 2.5.) 
Stub. Special code segments that, when 
invoked by a code segment under test, will 
simulate the behavior of designed and spec- 
ified modules not yet constructed. (See Sec- 
tion 1.3.) 

Symbol ic  Execut ion.  A static analysis 
technique that  derives a symbolic expres- 
sion for each program path. (See Section 
2.7.) 
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System Design Review. See DOD De- ALLE74 
velopment Reviews.  
System Requirements Review. See 
DOD Deve lopment  Reviews.  ALLE76 

Tes t  Da ta  Set. Set of input elements 
used in the testing process. (See Section AMBL78 
2.1.) 
Tes t  Driver .  A program that  directs the 
execution of another program against a col- 
lection of test data sets. Usually the test 
driver also records and organizes the output 
generated as the tests are run. (See Section 

1.3.) ANDR81 
Tes t  Harness .  See Test  Driver.  
Test ing.  Examination of the behavior of 
a program by executing the program on 
sample data sets. 
Valid Input (test data for a valid input 
domain). Test data that  lie within the ANSI78 
domain of the function represented by the 
program. (See Section 2.1.) 

APTSI Validation. Determination of the cor- 
rectness of the final program or software 
produced from a development project with 
respect to the user needs and requirements. BAKE72 
Validation is usually accomplished by ver- 
ifying each stage of the software develop- 
ment life cycle. 
Verif icat ion.  In general, the demonstra- 
tion of consistency, completeness, and cor- 
rectness of the software at each stage and 
between each stage of the development life 
cycle. 

Walk -Through .  A manual analysis tech- BELL77 
nique in which the module author describes 
the module's structure and logic to an au- 
dience of colleagues. (See Section 2.2.) 
Whi te  Box Test ing.  See S t ruc tu r a l  BOEH77 
Testing. 
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