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 Statistical Science

 1993, Vol. 8, No. 3, 219-283

 Bayesian Analysis in Expert Systems
 David J. Spiegelhalter, A. Philip Dawid, Steffen L. Lauritzen and Robert G. Cowell

 Abstract. We review recent developments in applying Bayesian probabi-
 listic and statistical ideas to expert systems. Using a real, moderately
 complex, medical example we illustrate how qualitative and quantitative
 kn-owledge can be represented within a directed graphical model, gener-
 ally known as a belief network in this context. Exact probabilistic inference
 on individual cases is possible using a general propagation procedure.
 When data on a series of cases are available, Bayesian statistical tech-
 niques can be used for updating the original subjective quantitative
 inputs, and we present a set of diagnostics for identifying conflicts
 between the data and the prior specification. A model comparison proce-
 dure is explored, and a number of links made with mainstream statistical
 methods. Details are given on the use of Dirichlet prior distributions for
 learning about parameters and the process of transforming the original
 graphical model to a junction tree as the basis for efficient computation.

 Key words and phrases: Graphical models, subjective probability, condi-
 tional independence, local computation, triangulation, junction tree, un-
 supervised learning, Dirichlet distribution, Bayes factors, prequential
 analysis, prediction, monitors.

 1. INTRODUCTION

 The work reviewed in this paper represents the syn-
 thesis of two important developments in the modelling
 of complex stochastic phenomena: first, the introduc-
 tion of formal probabilistic and statistical methodology
 into the area of applied artificial intelligence known
 as expert systems and second, the use of a pictorial
 representation of conditional independence assump-
 tions known as graphical modelling To understand
 why these two strands have come together, it is useful
 to examine briefly the short but eventful history of
 research on uncertainty management in expert sys-
 tems.

 Although no agreed upon definition exists, the term
 expert system is generally applied to a computer pro-
 gram that is able to give some sort of reasoned guid-
 ance on a fairly tightly delineated problem. The
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 boundaries between engineering, decision-science and
 artificial intelligence (AI) become somewhat blurred at

 this point. Traditionally expert systems have been seen
 as a branch of AI, for which a central tenet has been
 that of symbolic reasoning; logic was used as a tool

 for representing knowledge and solving problems, and
 such qualitative reasoning was seen as the antithesis
 of quantitative methods using techniques such as
 differential equations. When a fully deterministic repre-
 sentation was unreasonable, attention focussed on

 qualitative ways of handling uncertainty such as non-
 monotonic logic (Reiter, 1987) or novel numerical
 schemes such as fuzzy logic (Zadeh, 1983), certainty
 factors (Shortliffe and Buchanan, 1975) or Shafer-
 Dempster belief functions (Gordon and Shortliffe,
 1985). Probability theory was held to be epistemologi-

 cally inadequate and computationally infeasible. The
 latter claim arose from two realisations. First, that com-
 plex applications would require the specification of huge

 joint distributions. Second, that what was known as
 "evidence propagation" within a logical framework
 would require the efficient computation of probabilities
 of certain events of interest, conditional on arbitrary
 configurations of other variables which constituted the
 observed evidence. See the papers collected by Shafer

 and Pearl (1990) for a wide-ranging discussion of these
 issues.

 While research into the alternative representations

 of uncertainty continued to be vigorously pursued,
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 probability theory made a comeback. Naive methods

 for calculating marginal and conditional distributions
 were clearly impractical, but it was perceived that
 exploitation of conditional independence assumptions,
 implicit in the qualitative structure of the expert
 knowledge, might reduce the problem of specification
 and evidence propagation to a feasible level. It was

 noted that evidence propagation techniques within al-

 ternative formalisms clearly made use of some form of
 implicit conditional independence in their use of "local"
 propagation schemes.

 One branch of statistical modelling had emphasised
 such qualitative structure over quantitative specifica-
 tion and further had provided a pictorial scheme that
 directly translated into conditional independence state-
 ments. Models using directed graphs had been intro-

 duced by Wright (1934) in the context of path analysis,
 while Darroch, Lauritzen and Speed (1980) had rep-
 resented particular classes of log-linear models by
 undirected graphs; they also took the vital step of
 exploiting the representation to use graph-theoretic
 proofs of probabilistic properties of particular models.
 As Wermuth and Lauritzen (1983) were exploring the

 relationship between undirected and directed graphs,
 Pearl (1982) and Kim and Pearl (1983) were introducing

 simple computational schemes that showed probabilis-
 tic reasoning was quite feasible when the computations
 were governed by the conditional independencies ex-
 pressed by particular simple directed graphical struc-
 tures. Remarkably similar schemes had previously
 been developed by mathematical geneticists working in
 pedigree analysis (Cannings, Thompson and Skolnick,
 1978), although the connections with this area were
 not to be made for another decade.

 Contributions then came from two apparently unre-
 lated areas of work. First, the issue of triangulation of
 undirected graphs had been carefully studied in the
 context of relational data bases (Tarjan and Yanna-
 kakis, 1984) and was found to be essential in reducing
 the problem faced with general graphical structures
 to one of local computation between communicating
 entities. Second, the axiomatic approach to conditional
 independence (Dawid, 1979a) was used to show that
 much of the proposed scheme extended far beyond
 probabilistic reasoning, and that the basic ideas, and
 hence even the same software, could be used for han-
 dling the forms of nonprobabilistic reasoning that had
 been developing in parallel. Thus the challenge of intro-
 ducing rigorous probabilistic methodology has had the
 exciting consequence of providing a unifying frame-
 work for all forms of reasoning-that exploit conditional
 independence.

 In this paper we shall concentrate on new develop-
 ments since Lauritzen and Spiegelhalter (1988), empha-
 sizing statistical rather than expert system issues:

 for tutorial introductions to the basic ideas, see Pearl
 (1988), Neapolitan (1990) or Henrion, Breese and Hor-
 vitz (1991). In the next section the construction of
 directed graphical models is explored informally, with
 particular reference to an application in the diagnosis
 of congenital heart disease. Section 3 discusses how
 such a model might be used as a basis for an expert
 system, and the algorithm used for evidence propaga-
 tion is displayed pictorially using a preliminary version
 of a network representing a set of congenital conditions
 leading to a "blue" baby. Aspects such as "explanation"
 and software are also covered. We then deal with the
 statistical, rather than probabilistic, aspects. Section
 4 describes how we can use accumulating data both to
 revise the initial quantitative inputs and to provide
 diagnostic checks on the quality of any proposed
 model, and the choice between alternative qualitative
 structures is covered in Section 5.

 Three more technical sections follow, intended for
 those interested in investigating these procedures in
 some detail. Section 6 discusses the conditional inde-
 pendence properties of directed graphical models, and
 how such models can be transformed into an undirected
 form more suitable for computation. The resulting gen-
 eral algorithm underlies the propagation procedure
 shown in Section 3. Section 7 covers the use of Dirichlet
 prior distributions when carrying out batch or sequen-
 tial parameter estimation, and Section 8 deals with the
 issue of ensuring priors within alternative qualitative
 structures cohere in a reasonable way. Finally we dis-
 cuss the trend of this work, emphasising the increasing
 links with mainstream statistical modelling.

 2. MODELLING THE DOMAIN

 We can divide the construction of a model into three
 distinct components. The first qualitative stage consid-
 ers only general relationships between the variables of
 interest, in terms of the relevance of one variable to
 another under specified circumstances. This naturally
 leads to a graphical representation of conditional inde-
 pendence, but one that is not restricted to a probabilis-
 tic interpretation. The next probabilistic stage intro-
 duces the idea of a joint distribution defined on the
 variables in the model and relates the form of this joint
 distribution to the structure of the graph. The final
 quantitative step requires the numerical specification
 of the necessary conditional probability distributions.

 2.1 Qualitative Modelling

 In this paper we shall use a running example that
 forms part of a study with the Great Ormond Street
 Hospital for Sick Children in London. The hospital
 (here abbreviated to GOS) acts as a referral centre for
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 newborn babies with congenital heart disease, and
 since early appropriate treatment is essential, a prelimi-
 nary diagnosis must be reached using information re-

 ported over the telephone; this data may concern
 clinical signs, blood gases, electrocardiogram (ECG)
 and x-ray. An algorithm to help the junior doctor at

 GOS has already been developed and evaluated on 400
 cases (Franklin et al., 1991). The results suggested that
 use of a formal decision aid could be of substantial
 benefit, with the algorithm having a diagnostic accu-
 racy of 76%, compared with 64% for the doctor in

 GOS and 45% for the referring paediatrician.
 This algorithmic formation is attractive in its sim-

 plicity and transparency, but suffers from problems of

 observer variability and missing data. There is strong
 interest in developing a probabilistic system that will
 be more forgiving of limitations in the data but also
 can exploit the available accumulated data on nearly
 600 babies. Such a probabilistic system needs to be
 based on considering the true disease and possible

 clinical findings as a set of random variables and re-
 quires the specification of a full joint distribution over
 these variables to represent clinical understanding of
 the disease process. It is tasks of this nature that have
 been considered challenging to constructors of expert
 systems.

 The framework of a graphical model allows experts

 to concentrate on building up the qualitative structure

 of a problem, before even beginning to address issues
 of quantitative specification. As emphasised by Pearl
 (1988), such models are intended to encode natural
 judgements of relevance and irrelevance and can be
 formed prior to any probabilistic considerations. Nodes
 in the graph represent variables; missing links in the
 graph represent the irrelevance properties. Loosely, a
 directed edge is put between two variables to represent
 a direct influence. To avoid inconsistencies, we must

 not permit a sequence of directed edges which returns
 to its starting node: the graph is thus a direct acyclic
 graph or DAG. (Generalisations allow undirected edges
 to represent associations that cannot be explained by
 introducing a common "cause'; see Section 9.)

 For any node, once the direct influences on it are
 known, all other potential influences become irrelevant.
 Such irrelevance judgements may be made intuitively,
 taking account of one's understanding of causal struc-
 ture; they do not require probabilistic modelling (al-
 though, in its presence, they may be represented as
 assertions of probabilistic conditional independence be-
 tween a node and its remaining potential influences,
 given its direct influences). Terms such as influence
 diagrams, causal networks and relevance diagrams are
 sometimes used to describe such graphical representa-
 tions: we shall use directed graphical model and belief
 network interchangeably, and we will refer to aprobabi-

 Disease?

 Feature1? Feature2? Feature3? Fre

 FIG. 1. Directed graphical model representing conditional inde-
 pendence of feature variables within each disease class -the 'idi-
 ot's Bayes" model.

 listic expert system when such a structure is used for

 diagnosis.
 As a very simple example, Figure 1 may be regarded

 as expressing the view that, once the disease class is
 known, information about one set of feature variables
 is of no further relevance to predicting the values of

 some other disjoint set. Initial experiments with such
 a naive network were disappointing (Franklin et al.,
 1989), and a "deeper" model appears particularly appro-

 priate in a domain such as congenital heart disease

 in which the basic physiological mechanisms are well
 understood.

 Figure 2 shows a preliminary network for part of
 the spectrum of diseases, specifically the node Disease?
 includes six possible conditions, assumed mutually ex-
 clusive and exhaustive, that lead to particularly "blue"

 babies; its elicitation is described later. We shall call
 this particular model the CHILD network. The graph
 represents, for example, that the level of oxygen in the
 lower body (node 16) is directly related to the underly-

 ing level when breathing oxygen (node 11) and whether
 the hypoxia is equally distributed around the body
 (node 10). In turn, the level when breathing oxygen
 depends on the degree of mixing of the blood in the
 heart (node 6) and the state of the blood vessels (paren-
 chyma) in the lungs (node 7). It is these intermediate
 variables that are directly influenced by the underlying
 disease (node 2). When we reach the next stage of
 assessing the detailed probabilistic structure associ-
 ated with a graphical model, such qualitative judge-
 ments translate into algebraic properties of the overall
 joint distribution.

 The aim of the CHILD network is to provide a
 mechanism so that both clinical expertise and available
 data can be properly exploited to produce a reasonably
 transparent diagnostic aid. In practice, however good
 the diagnostic ability of such a system, implementation
 would be severely limited by the lack of appropriate
 computing facilities currently available. Experience
 suggests that systems will only be used when they
 form part of an established clinical information system,
 such as planned for GOS hospital. In the meantime
 the CHILD system is intended to serve as a demonstra-
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 Disasehxa n) gea

 n4: LVH n5 Duct ) n6 Cardiac )(n7: Lung n n: Lung n9:Sik ,J X ~~~flow? ) mixing? parencjma? )
 (n 10: Hyoi n n1 C02? n 7 n3. Chest n nfin;

 distribution? in t) X-ray7

 n 15: L'v n1 Lower ) n1 Right n n1 8: CO2 n19: X-ray ) n20: rnig
 reot? body 02?) up. qud reot0 reort? ) report?)

 FIG. 2. Directed acyclic graph representing the incidence and presentation of six possible diseases that would lead to a "blue" baby.
 L VH, left ventricular hypertrophy.

 tor of the technical possibilities and possibly as an

 educational tool.

 2.2 Probabilistic Modelling

 A probabilistic expert system functions by providing

 a representation of the joint distribution for all the

 variables, with underlying algorithms that allow fast

 calculation of the distribution for any node, conditional
 on any configuration of observed data. We therefore
 need to relate the qualitative structure described above

 to a formal expression for a joint distribution: the
 computational schemes for calculating conditional
 probabilities will be displayed in Section 3 and dis-

 cussed in detail in Section 6.
 Let the nodes in the graph represent a set of discrete

 random variables Xv, v E V. The state space for each
 of the variables in the CHILD network can be seen in

 Figure 3. For A c V, we let XA denote {Xv, v eA},
 although generally we rather loosely use v to stand for

 Xv in formulae. If we interpret the general idea of
 irrelevance in terms of probabilistic conditional inde-

 pendence, then the directed acyclic graph is a pictorial
 means of specifying the formal assumption that the

 joint distribution of Xv can be expressed as a product
 of the conditional distributions of each node given its

 direct influences (parents) in the graph. Hence, letting
 pa(v) denote the parents of node v, the graph implies
 that the joint distribution p(V) has the form

 (1) p (V) = ll p (vlpa(v))
 veV

 This is also known as a recursive model with respect

 to a DAG S). Thus, for example, the model for Figure
 1 is equivalent to

 p (Disease, Featurei,... , Feature.)
 m

 = p (Disease) II p (FeaturejlDisease).
 i=1

 This joint distribution requires as numerical inputs

 only the prior distribution over the diseases and the
 distribution of each of the features in each of the
 disease categories. Calculating the posterior probabil-
 ity of each disease on the basis of observed findings is
 extremely straightforward: this simple model has been
 termed naive or even idiot's Bayes (Titterington et al.,
 1981).

 In discussing the precise conditional independence

 properties that such a factorisation of the joint density
 implies, it is first helpful to extend the use of "parent"
 to more distant relations such as "ancestor" and "de-
 scendant"-the natural use of this language reflects
 the fact that pedigree analysis and genetic counselling
 provide some of the best examples of the use of condi-
 tional independence graphs. The factorisation (1) then
 implies that, given the values of the parents of a node
 v, Xv is independent of all other nodes in the graph
 that are not descendants of v. In the CHILD network
 we have, for example, that given values of n7: Lung
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 Birth Asphyxia?

 yes 8 E
 no 92

 Disease? Age?
 PFC 2 1
 TGA 16 0-3 3days 73
 Fallot 14_ 4-1OLdays 16 _

 PASVS 64 11-30_days 11
 TAPVD 2 1
 _UM 2

 L Duct flow? Cardiac mixing? Lun stmnh? Lass flow? Sick?

 ILto Rt 78 None 331Nna 7 oml 1
 yno 137 None 17 Complete 75~ Abeonal 6 17 Hiow 68 no 70

 no .13m RttoLt 5u Tran. 15 noa70

 Hyp Distrib? Hypoxia in 02? C02 ? Chest X-ray? Gnsti _

 Now 11 a Nonnal 73 ~~~~~Nornsl 20
 Equasi 93 Moderate 59 Lo 9K G ligaesnic 47 2
 UnNul 7|0 Sevem 31 High 1 m 9*Plethoric 14m yes Grd. Glass 7N non 80

 Asy/Patchy 13m

 LVHRe? LowerBod 02? C02Repon? X-rs Repor? GruntingReport?

 <5 35~~~~~~~~ <5 34 ~~~~~~~~~~ ~Nones! 24
 yes loo. 1 ~~5-12 50 5-12 51~ <7.5 76 Oligaeenic 39 ~ ye 24

 no 125 14 | 12 5 | 1S75 24_ Plethdric 15_ no 76 12+ 14 12+ is ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Grd Glass 7 K
 -j ~~~~~~~~~~~~~~~~~~Asy/Patchy 15M

 FIG. 3. Conditional probability distributions on all nodes after propagation of evidence LVH-report = yes. The numbers and the length
 of the bars represent the current probability: for example, 64% belief that PAIVS is the true diagnosis, compared to a prior 22% belief
 For observed evidence, that is, LVH-report = yes, the bar is hollow.

 parenchyma? and n8: Lung flow?, the node n13: Chest
 x-ray? is independent of all other nodes except n19:
 X-ray report? Pearl (1986) described an exhaustive set
 of conditional independence relations on a DAG D in
 terms of the concept of d-separation. However, in any
 particular instance this condition is often difficult to
 verify, and a simpler tool was derived by Lauritzen et
 al. (1990). To use this we need to consider undirected
 graphs, and this step is discussed in Section 6.

 2.3 Quantitative Modelling

 The preceding discussion implies that the expert

 must also provide sufficient conditional probabilities
 to specify fully the joint distribution. For example,
 Table 1 gives the assessments for the Disease? --
 LVH? link and the LVH? -a LVH-report? link: the
 elicitation of these assessments is discussed later. The

 judgements show that LVH (left ventricular hypertro-
 phy found on an ECG) is essentially a feature of
 PAIVS, although on fairly rare occasions it can appear
 with other conditions, and that there is an estimated
 5% false positive and a 10% false negative rate in
 reporting. Criticism and revision of these quantitative
 assumptions are dealt with in Section 4. In total, for
 the 20 variables, 114 distributions were assessed for a
 mean of 3 states each, requiring the specification of
 230 independent numerical assessments.

 There has been research into incomplete specification

 of the full joint distribution, say using upper and lower

 probabilities (Walley, 1990), in which resulting proba-
 bilities may be computed only up to an interval using

 linear or nonlinear programming techniques (van der

 Gaag, 1991). Alternatively, if the number of assess-

 TABLE 1

 Subjective assessments of conditional probability tables
 assessed by expert for links n2 - n4 and n4 - n15

 n4: LVH?

 n2: Disease? Yes No

 PFC 0.10 0.90

 TGA 0.10 0.90

 Fallot 0.10 0.90

 PAIVS 0.90 0.10

 TAPVD 0.05 0.95

 Lung 0.10 0.90

 n15: LVH-report?

 n4: LVH? Yes No

 Yes 0.90 0.10

 No 0.05 0.95

 Diseases are persistent foetal circulation (PFC), transposition of
 the great arteries (TGA), tetralogy of Fallot, pulmonary atresia
 with intact ventricular septum (PAIVS), obstructed total anoma-
 lous pulmonary venous connection (TAPVD) and lung disease.
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 ments made is insufficient to specify a joint distribution

 uniquely, it has been suggested that the distribution
 be completed by maximum entropy arguments (Nils-

 son, 1986).

 2.4 Practical Issues in Model Specification

 2.4.1 The CHILD network

 The network in Figure 2 is adapted from one shown

 in Spiegelhalter and Cowell (1992), which was elicited

 using the technique of similarity graphs described by
 Heckerman (1990). This procedure is useful when there
 is a (possibly very large) set of diseases to discriminate.

 The expert first identifies sets of diseases that are

 similar and hence typically constitute a diagnostic prob-

 lem- such a subset is known as a differential diagnosis.

 The directed graphical structure appropriate to each

 differential diagnosis is then elicited, by first asking

 the clinician about underlying physiological features
 that distinguish between the relevant diseases and
 then exploring the clinical consequences of those fea-

 tures. Links are informally interpreted as direct causa-

 tion, which clinicians find a useful and intuitive idea,

 and absent links are confirmed by asking whether
 knowledge of the parent nodes does render other non-

 descendants irrelevant. By an iterative process a graph
 is built up for each differential diagnosis, and these
 graphs are finally superimposed. Software is available

 for this exercise (Heckerman, 1990), although the CHILD
 network was elicited on paper.

 A series of changes has been made in response to

 the analysis of fictitious cases and scrutiny of the
 model. First, in the original network a link existed
 between nlO and n17: this not only is unrealistic, since
 hypoxia distribution should not influence upper body

 oxygen, but it was also found that the assessed condi-
 tional probabilities did not actually show a quantita-
 tive dependence. Second, Age at presentation? was

 originally a parent of Disease?, since it was felt fairly
 natural to think of different incidence rates for different

 ages at presentation. After discussion, this link was
 reversed and a dependence on Sick? introduced, as an
 attempt to model the referral behaviour of distant
 paediatricians. This issue of modelling the selection
 process deserves deeper analysis -ideally the network
 should reflect unselected cases, and a node Case se-
 lected? introduced as a child of variables that would

 influence the decision to refer. Conditioning on the case
 being selected would then give the appropriate joint
 distribution over the remaining nodes.

 Finally, some conditional probability tables were ad-
 justed to give the system reasonable behaviour when
 "archetypal" cases were put through the system. Of
 the 114 distributions, 13 (11%) were altered at this
 stage.

 We note that, apart from the somewhat anomalous

 Age at presentation?, the graph naturally falls into

 a set of five "blocks," representing, respectively, risk

 factors, underlying physiological anomaly (disease),
 physiological disturbances caused by the disease, clini-

 cal signs as elicited by specialist staff in GOS and

 reported signs as obtained over the telephone from a

 paediatrician who is not a specialist in cardiology.

 Many other clinical problems appear to follow a similar
 structure, although sometimes the direction of an

 arrow is not clear. For example, birth asphyxia is a
 possible cause of PFC (persistent foetal circulation),

 but a possible effect of the other diseases. This sug-

 gests an undirected link (see Section 9).
 Subjective probabilities of the type shown in Table

 1 may be elicited using a range of standard techniques.
 If we view these as estimates of frequencies, then it is

 natural to place some imprecision on these assess-

 ments -this not only makes the expert feel less threat-

 ened but also provides a basis for empirical learning
 (see Section 4). It is helpful if the expert is familiar
 with thinking in terms of frequencies of events.

 2.4.2 Applications and software

 Historically, the idiot's Bayes model in Figure 1 was
 first used by Warner et al. (1961), coincidentally for

 the diagnosis of congenital heart disease. Later applica-
 tions of this model are too numerous to list, but a
 notable example is the acute abdominal pain system

 dating from de Dombal et al. (1972), that has been
 implemented in a number of hospitals and remote sites

 such as submarines and is claimed to have a significant
 impact on care and resources (Adams et al., 1986).

 It has long been argued that in most applications

 the assumptions underlying such a model are blatantly
 inappropriate, but only recently have computational
 techniques and computing environments allowed more
 realistic representations of substantive knowledge:
 Henrion, Breese and Horvitz (1991) give the back-
 ground to a number of large applications. Although
 many of these implementations are at an early stage,

 some extremely challenging problems are being tack-
 led: a reconstruction of the QMR/INTERNIST system
 (Miller, Pople and Myers, 1982) as a probabilistic model
 involves 4,500 nodes and over 40,000 links (Shwe et
 al., 1991), while the MUNIN network representing part
 of the muscles and nerves necessary for interpreting
 electromyographic data (Andreassen et al., 1987) al-
 ready has over 1,000 nodes each with up to 27 states.
 The PATHFINDER system for the diagnosis of lymph
 node pathology concerns over 60 diseases and required
 the specification of over 75,000 subjective probabilities
 (Heckerman, Horvitz and Nathwani, 1992); it has been
 successfully converted to a commercial system, IN-
 TELLIPATH.

 In such large systems there are so many numerical
 assessments required that it is unreasonable to expect
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 each to be individually specified. A variety of simpli-
 fying models for the conditional probabilities has been

 exploited: these include assuming an underlying con-

 tinuous mathematical model (MUNIN), two-stage
 assessments in which large sets of conditional probabil-

 ities are first assessed to be equal and then a single

 common value elicited (PATHFINDER) and "noisy-

 or gates" (QMR). In QMR, up to 80 diseases may be

 parents of a symptom, but it is assumed that any

 single one of the diseases is sufficient to cause the

 symptom, and this causation occurs independently of
 other diseases present. The conditional distribution
 in this "competing-risk" model then only requires the

 specification of as many parameters as there are parents.
 A number of distinct application areas share repre-

 sentational and computational issues. The first area is

 broadly diagnostic, which includes the medical exam-
 ples discussed above, as well as causality assessment
 in drug safety (Spiegelhalter et al., 1991a), legal reason-

 ing, forensic science and fault diagnosis in complex

 systems. The second area is essentially spatial, in
 which networks can be constructed for high-level vision
 problems (Jensen, Christensen and Nielson, 1992).

 Third, dynamic problems, involving prediction, mon-
 itoring and smoothing, seem ideally suited to this

 approach (Kjoerulff, 1992b): examples that involve

 dynamic restructuring of the graph include plan recog-
 nition in text understanding (Charniak and Goldman,
 1989) and monitoring in drug therapy (Berzuini et al.,

 1992).

 Increasingly developments are being made either on
 commercial tools or programs available for research,
 all of which use a version of the algorithm described
 in Section 6. Commercial programs include HUGIN
 (Hugin Expert Ltd) and ERGO (Noetic Systems Inc),

 while freely available software includes BAIES (Cow-
 ell, 1992) and IDEAL (Srinivas and Breese, 1990).

 3. BAYESIAN NETWORKS AS EXPERT SYSTEMS

 3.1 Principle of Local Computation

 Once the model has been established, the tasks be-
 come computational. Thus in the CHILD problem, we
 might obtain information on a new case that Lower
 body 02 < 5 and X-ray report = plethoric and wish to
 know what we can deduce about the disease. This
 question could be answered, in principle, by calculating

 the conditional probabilities p(Disease? I Lower body
 02< 5, X-ray report = plethoric) generated from the full
 multivariate distribution for all the variables, which is
 implicit in our graphical description and quantitative
 inputs. However, the state space of all possible config-
 urations of values for all variables has dimensionality
 20, there being more than a billion such configurations
 altogether. A naive approach to calculating the re-

 quired conditional probabilities would require, first the

 explicit computation of the probability of each config-

 uration, and then the construction, for each disease
 d, of a ratio in which the numerator summed these
 probabilities over the approximately 11 million config-
 urations for which disease = d, lower body 02 iS < 5
 and the X-ray report is plethoric, while the denomina-

 tor further summed these answers over d. Calculations

 such as these can rapidly outrun the capabilities of
 large computers. A natural question is whether it

 might not be possible to exploit the qualitative struc-
 ture expressed in the graphical model so as to simplify
 and streamline such computations.

 A crucial feature of a graphical model is that it

 describes a joint distribution as built up out of local
 relationships within groups of variables-such as a

 node and its parents. This suggests a general strategy
 of "divide and conquer" whereby, instead of tackling
 the whole collection of variables simultaneously, we
 seek first to break it down into subgroups -which we
 may call belief universes (Jensen, Olesen and Andersen,

 1990)-in such a way that the naive computations

 described above need only be performed within each
 belief universe. If we can do such a breakdown so as
 to obtain belief universes which are relatively small, the
 calculations then become manageable. Additionally,
 to ensure that we obtain the correct answers when

 considering all the variables together, we need to de-
 velop ways for the belief universes to communicate
 with each other, so that (for example) the effect of
 conditioning on a variable in one universe can be felt

 by those in another.
 While - as we shall see - the above strategy is indeed

 implementable, this turns out to be somewhat less
 straightforward in general than might be expected,
 although Pearl (1986) describes some efficient tech-
 niques for tree-structured graphs. In particular, the
 appropriate belief universes are not always easily iden-
 tified from a brief inspection of the graphical structure.
 Instead, a fairly complex chain of transformations of
 both the qualitative and the quantitative inputs is
 needed: a process which we may term "compilation."
 Although such compilation can be computationally de-
 manding, it only needs to be performed once: after we
 have identified the appropriate belief universes and the
 ways in which they are to communicate with each
 other, all probabilistic calculations can then make use
 of this compiled structure to mi'nimise the computa-
 tional burden.

 In Section 6 we describe in detail the process of
 identifying and organising the belief universes, initial-
 izing the quantities held on those universes and algo-
 rithms for propagating the effects of observed evidence.
 All these procedures are invisible to the user of a system,
 and so here we jump to an example of the use of a
 prototype system implemented on available software.
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 3.2 Propagation Example on CHILD

 Figures 3-5 show a sequence of screen dumps, taken

 from the HUGIN system (Andersen et al., 1989), illus-
 trating the propagation algorithm in use on CHILD.
 Figure 3 shows the status of the network after observ-
 ing the evidence L VH-report = yes. After two more

 findings have been added, X-ray report = oligaemic and
 Lower body 02 < 5, the posterior probability that the
 disease is PAIVS is 0.76 (Figure 4). The status of
 the intermediate nodes gives some explanation of the
 findings: the X-ray shows oligaemia because of the low

 lung flow, although the lung vessels appear normal.
 There is likely to be complete cardiac mixing, with
 left-to-right (aorta-to-pulmonary artery) flow in the ar-

 terial duct providing the only source of blood to the
 lungs. Such depiction of the effects of changing evi-

 dence are particularly valuable for rapid sensitivity
 analysis.

 3.3 Expert System Aspects

 Here we only give an indication of developments
 related to handling particular cases, which is of prime

 importance if systems are to have a practical role. For
 further details we refer to the series of proceedings for
 the workshops on Uncertainty in Artificial Intelligence
 which have been held annually since 1985, for a wide
 range of case studies and ideas.

 First, explanation facilities have received attention

 both with regard to quantitative techniques, primarily

 based on weights of evidence [see, e.g., Heckerman,
 Horvitz and Nathwani (1992) for a description within

 PATHFINDER], and qualitative methods (Sember and
 Zuckerman, 1989). Pearl (1988) described how an ad-

 justment to the propagation algorithm could lead to
 straightforward identification of the joint configuration
 of the variable with the highest probability. This has

 been found to be an attractive feature, since it can be
 thought of as providing a plausible explanation for the
 observed findings. Figure 5 shows the implementation
 of this idea within HUGIN, based on the algorithm
 described in subsection 6.6. The node bars display
 normalized conditional "profile probabilities," that is,

 the maximal obtainable probabilities, compatible with

 the given state and conditional on the evidence, normal-
 ized to have maximum 100. The configuration with high-

 est probability can be read off by picking out the bars
 of length 100.

 A related topic is the sensitivity of the probabilistic
 conclusion to both additional findings and imprecision
 in the parameter estimates. Spiegelhalter (1989) sug-

 gested a unified approach, which requires a decomposi-
 tion of the total variance of the predictive distribution
 of the posterior probability of interest. Sensitivity
 leads naturally into selection of questions, which has
 again been discussed at length in the PATHFINDER
 project. Finally, conflict in evidence is an extremely
 useful finding in that it may lead to doubt about the

 Birth Asphyxia?

 yes 8
 no 92 in

 Disease? Age?
 PEC 21
 TGA 5 _ 0-3_days 73
 Fallot 15 _ 4-1Odays 16_
 PAIVS 76 11-30_days 11 m
 TAPVD 01
 ILung 1 1

 LVH? Ductnow? Cardiac mixing? Lone parench? Lune flow? Sic ?

 I| to Rt 90 d | | Normal 90 n Nonmal 3 2
 yes Didtnb 2 I Low 93 0 I a yea 29 yea 92 None sComplete 8 Anonnal e 1 Lw 1 tno 71 0RtoLt 3 Transpi 7 1 1 7

 Hyp Distrib? Hypoxia in 02? C02 ? Chest X-ray? Gintingt7

 Non es4100=| 112+ L2+ 12 No|r|d.S 7 9_ 2 g it loo=|Normal 3 2
 Equal 91 Noneae 41 Now mia r Oligaemic 95 y 14 M
 Uneqoal 9u Modeerae 35 Lowh tO3 Flethoric ii yeao 186

 Severe 35 High 13m O~~~~~~~~~~~~~~~~rd.Glass 0 It t
 Asy/Fatchty 1Ii

 LVH Report Lower Body 02? RUQ 02? C02 Report? X-ray Rep)ort? Guantine Report?

 <s too. <5 36 Normsal -
 yea too 5-2 -5-2 5 4.5 79 in Oligannic 100 yes 20
 n0 - -2512+ 52 Ow lesX1c -no t r 12 12- -12M >=7.5 21 O rd Glass no-

 ________ _______ _______ Asy/Fatchy -

 FIG. 4. Status after propagation of additional evidence X-ray report = oligaemic and Lower body 02 < 5.
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 Birth Asphyxia?

 yes 7 E
 no 100

 Disease? Age?
 PPC 0 1

 TGA 1I 0-3-days 100
 Fallot 6E 4-L0jdays 19
 PAIVS 100 11-30_days 6 n
 TAPVD 01
 I Lung 01

 LVH? Duct flow? Cardiac mixing? L panch? Lne flow? Sick?

 IYeC 100 _| |LtLto Rt 100 None 01 Normal 100 Normal I I
 yea 0 None 2 1 Mild 2 1 j Oedlema ii Low 100 yea 36~
 no 31i RIto-Lt 0 1 Coinplete 100 IAboonimal I11 High 0 I no 100

 Tramp. 33 a

 Hyp Distib? Hypoxia in 02? Co? Chest X-ray? GrUI

 FAPMI 100 Moderate 100 LOW 12M Ol~~~~~~~~isgaemic 100 ys s
 Unequal 9|SeVele 40 H t1Egh 12 | bPleshoric 0I ye 103 Hi1h 12m OrdGlass 01 no 10

 Asy/Patchy 01I

 LVH f.ort? Lower Body 02? RUQ 02? C02 Report? X-ra R t? | Gruntm Report?

 <5 100 r- <5 50 ~~~~~~~~~Normal -
 yea 100. 1.5 100 Oligaemic 100L. yea lu*
 no 12 512 10 - 7.5 12 M P eioicno 100

 Grd Glass-
 _________________ ~~~~~~~~~Asy/Patchy -

 FIG. 5. Profile probabilities of variables after entering evidence, identifying the most likely configuration. The probabilities have been
 normalised by the probability of this configuration which is 0.0029.

 conclusions of the system, as would be appropriate
 were a case with a bizarre combination of features to

 be observed. Jensen et al. (1991) show the value of
 identifying the source of conflict with relation to the

 junction tree; this being just one use of the normalisa-
 tion factors that fall out of the propagation algorithm
 (Jensen, 1991).

 4. USING DATA TO REFINE MODELS

 4.1 Random Probabilities and Learning from

 Experience

 Up to now we have made the strong assumption that
 all conditional probability distributions are precisely

 specified. This is clearly unrealistic, regardless of whether
 the distribution is derived from analysis of data or
 from subjective assessment, and in this section we relax

 this assumption and allow the conditional probabilities
 themselves to be unknown quantities. Initially speci-
 fied distributions over these quantities can then be
 updated as data on patients accumulate. Hence we are
 extending the discussion from Bayesian probabilistic
 reasoning to Bayesian statistical reasoning. In this
 section we only deal with a simple situation in which
 complete data are observed. Section 7 deals with the
 general situation.

 Spiegelhalter and Lauritzen (1990) introduce the nat-
 ural extension of considering the conditional probabili-

 ties of the system as being generated by parameters 60,
 which are components of an overall parameterisation 0.

 Thus (1) becomes

 p(VI0) = II p (vIpa(v), Ov)
 VEV

 An attractive assumption is that of global indepen-

 dence, that is, the parameters {6u, v e V} are assumed
 a priori independent random variables and so p(O) =

 ILvp(Ov). This assumption leads to the joint distribution
 of case-variables V and parameters 0 being expressed
 as

 (2) p(V, 0) = llp(vlpa(v), Ov) p (Ov).
 v

 From (2) it is clear that Ov may be considered, formally,
 as another parent of v in an extended network, such

 as that shown in Figure 6. Thus, for example, OLVH? iS

 a random quantity whose realisation would provide the

 conditional probability distribution p(LVH?IDisease?),
 that is, the incidence of LVH in each disease category.

 When processing a new case we require the joint
 distribution of the potentially observable quantities V,
 which from (2) is given by

 p(V) =p(V, )do

 (3)
 = /llp(vIpa(v),Ov)p(6U)dOv = flp(vlpa(v))
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 OLVH? n2: Disease?

 0LVH-report?/ LVH=Yes n4: LVH 0 LVH-repore?/ LVH=No

 (niS: LVH
 report?)

 FIG. 6. Part of CHILD network with supplementary "parame-

 ter" nodes, representing marginally independent random quanti-
 ties 6,9, v E V whose realisations specify the conditional
 probability tables for the network. In addition, for LVH-report?,
 the parameter nodes are shown to be locally independent.

 where

 p(vIpa(v)) = p(vIpa(v), Ov)p (Ov)dOv

 is the expectation of the conditional probability table

 for v. Hence we can simply use the current "mean
 probabilities" within the standard evidence propaga-

 tion techniques assuming known parameters.
 A further simplification is obtained if we are willing

 to assume local independence, by which we mean that

 Ov breaks into components corresponding to the differ-
 ent configurations of pa(v), which are then assumed

 mutually independent random quantities. For example,

 Figure 6 shows OLVH-report? broken into OLVH-report?ILVH=yes

 and OLVH-report?[LVH=no9 assumed to be marginally inde-
 pendent variables specifying the respective conditional
 probability distributions.

 A number of alternative parametrisations of the con-

 ditional probability tables are possible, but the most
 intuitive appears to be to assume a Dirichlet distribu-
 tion, reducing to a beta distribution for binary vari-
 ables. Let v have K states. Then for a particular parent

 configuration pa(v)*, we assume a parametrisation

 p(v lpa(v)*, Ovipa(v)*) = Ovlpa(v)*, with Ovlpa(v)* having a Di-
 richlet distribution O[ai, ... , aK]. We can think of the
 ak as representing counts of past cases which are stored
 as a summary of our experience. For the next case, the
 conditional probability used for the kth category is
 from (3)

 p(Vklpa(v)*) = E[Ovlpa(v)*]k = ak/a

 where a = Zj?=1aj is the current "precision" underlying
 our beliefs concerning Ovipa(v)*.

 If we observe v to be in thejth state, and pa(v) to take

 configuration pa(v)*, we have by standard conjugate
 Bayesian updating that

 OvIpa(v)*IVi,pa( U )* O[l , . . 4,a + 1, . . .,-K]

 a Dirichlet distribution denoted by Oj. Hence if both
 pa(v) and v are observed, we have a simple accumula-
 tion of cases gradually revising our point estimates of

 the conditional probabilities underlying the system.

 However, in general we may find that neither v nor

 its parents are observed with certainty, and this is

 discussed in Section 7.

 4.2 A Numerical Example

 When eliciting subjective judgements one can view
 the above discussion as allowing imprecise specifica-

 tion of the conditional probabilities. For example, Table

 1 only displayed the point estimates obtained from the

 expert, who in fact provided additional ranges to reflect
 the perceived imprecision. These are shown in Table
 2. The judgements shown in Tables 1 and 2 can be

 thought of as representing prior beliefs concerning

 unknown frequencies, and we need to transform these
 to parametric prior distributions. Our (somewhat sim-
 plistic) current procedure is as follows. The point values
 given in Table 1 are taken as the prior means. The

 range for each response is assumed to represent a one

 standard error interval [other values have been tried
 but good predictive performance has been found with
 this assumption (Spiegelhalter et al., 1991b)]. So, for
 example, we assume the range 0.05-0.20 given for

 p(LVH = yesIPFC) = 0.10 in Table 1 corresponds to
 a standard error of 0.075 for a mean of 0.10. This would

 be obtained with a beta distribution with parameters
 (1.50,13.50). Similarly the range 0.70-0.99 for p(LVH =

 nolPFC) = 0.90 translates to a beta (0.33, 2.95) distri-
 bution. We take the minimum precision over the list
 of responses to decide the overall precision of the beta

 TABLE 2

 Subjective assessments of conditionalprobability tables, with
 expressed imprecision, and their translation into implicit
 samples underlying a beta(al,a2) distribution (parameters

 given to one decimal place)

 LVH?

 Yes No

 Disease? Range a1 Range a2

 PFC 0.05-0.20 0.3 0.70-0.99 3.0
 TGA 0.05-0.20 0.3 0.70-0.99 3.0
 Fallot 0.05-0.20 0.3 0.70-0.99 3.0

 PAIVS 0.70-0.99 3.0 0.05-0.20 0.3
 TAPVD 0.02-0.08 1.2 0.90-0.99 21.3

 Lung 0.05-0.20 0.3 0.70-0.99 3.0

 LVH-report?

 Yes No

 LVH? Range al Range a2

 Yes 0.80-0.99 18.3 0.02-0.15 2.0
 No 0.01-0.10 1.2 0.90-0.99 21.3
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 or Dirichlet distribution, and so adopt the parameters
 shown in Table 2- these are thought of as implicit
 sample sizes. Our approach is clearly quite conserva-
 tive -we want to use the expert's judgements to give
 our system a "headstart," but we want to ensure that
 accumulating data will be able to adapt those judge-
 ments reasonably rapidly if necessary.

 The actual data available for learning comprise 168
 cases of the six diseases of interest which were referred
 to GOS in 1988 and 1989. For each case information
 is generally available on nodes nl, n2, n3, n9, n15, n16,
 n17, n18, n19, n20, that is, the data that are reported
 over the telephone, plus the final diagnosis as estab-
 lished at GOS. It is, however, feasible that data on the
 "internal" nodes might become available if the hospital
 records of the patients were retrieved.

 4.3 Model Criticism

 4.3.1 Batch and sequential monitors

 In systems that heavily exploit prior information it
 seems essential that not only should there be a capacity
 for learning, but the initial assumptions should also be
 critically examined in the light of data obtained [see,
 for example, Box (1980, 1983) for an exposition of the
 importance of this iterative process]. Here we concen-
 trate on sequential techniques for such model diag-
 nostics, but first make some comments on batch
 monitoring of assumptions.

 The issue of testing the compatibility of a batch of
 data with an assumed model is general to the whole
 of statistical science, and we do not deal with this in
 detail here. If we observe complete data then the prob-
 lem is fairly straightforward within a significance test-
 ing framework. The prior assessments for conditional
 probabilities can be directly compared to the observed
 counts, and the techniques suggested by Box used to
 derive significance tests (Spiegelhalter et al., 1991b).
 Structural assumptions of conditional independence
 can also be directly assessed using significance tests.

 With incomplete data the classical approach runs
 into problems with deriving an appropriate sampling
 distribution. However, we shall see that a Bayesian
 approach is invariant to the order of the data, and
 hence there is no difference between batch and those
 sequential techniques discussed below that have a
 Bayesian derivation.

 Three types of diagnostic monitors will be described;
 a parent-child monitor is a direct check on the ade-
 quacy of the prior beliefs in the conditional probability
 distribution of a node given its parents, a node monitor
 checks how well each node is predicted given all other
 available evidence on a case, and a global monitor
 assigns an overall degree of support for a particular
 directed graphical model. Explicit comparison of global
 monitors then forms the basis for the discussion in

 Section 5 on comparing different graphical structures.
 Many other types of monitor can be envisaged, but
 they all share a common foundation of a standardised
 check on how well the system is predicting the incom-
 ing data. Hence we are following the prequential ap-
 proach of Dawid (1984) in basing our criticisms solely
 on the quality of the predictions made sequentially. See
 Cowell, Dawid and Spiegelhalter (1993) for an empirical
 investigation of the behaviour of these monitors using
 simulated data.

 Each monitor can be thought of as a measure of the
 "surprise" felt when the data are observed. A formalisa-
 tion of this concept is provided by scoring rules, which
 are a general procedure for evaluating the quality of
 probability statements concerning events that are then
 observed and have been widely used in areas such as
 probabilistic weather forecasting (Murphy and Win-
 kler, 1984). The basic idea is that a penalty is incurred
 if a low probability is given to an event that actually
 occurs. When the scoring rule obeys certain properties
 the forecaster is encouraged to provide an honest as-
 sessment of their uncertainty: examples of such proper
 scoring rules include the Brier score, that is essentially
 a quadratic penalty, and the logarithmic score which
 we have used in our monitors.

 In general, let Y denote a discrete random variable
 which can take on values yk, k = 1,..., K, and let

 pi(Y) denote the probability distribution for Y after
 i - 1 cases have been analysed [pi(Y) may differ from
 pi-l(Y) if sequential updating of probabilities is oc-
 curring]. Suppose that Y = y* occurs in the ith case.
 Then we associate with the ith observation of Y a

 logarithmic score, Si, given by

 Si = -logpi(y*) .

 By accumulating over a series of N cases we obtain a
 total penalty S = EN=Si, which is the negative loga-
 rithm of the overall probability of all the data observed,
 and is thus invariant to the order in which the data
 have been observed.

 For a Dirichlet prior O[al, ..., aA], Ekak = a and
 observed data (ni, . . ., nK), Yknk = n we have that the
 total logarithmic penalty is

 (4) S =-log r(a) llrkj(ak+nk)]
 L=jlF(ak) F(a+n)

 The problem is to decide whether the total observed
 penalty is a cause for alarm or not, and to do this we
 require some standardising technique. Two approaches
 are possible. The relative, Bayesian approach explicitly
 sets up an alternative predictive system, which we
 shall term a reference system, that gives rise to a total
 penalty Sref. The sign of Sref - S determines the better
 predictor, and we shall show that the size of Sref - 5
 has a direct probabilistic interpretation.
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 The second, absolute standardisation takes place
 without any consideration of an alternative predictive
 system and as such fits into the general significance
 testing framework. We form a standardised test statis-
 tic for the null hypothesis that the observed events
 are in fact occurring with the probability stated by the
 system. Under this hypothesis, before Y is observed
 the penalty to be incurred is a random quantity with

 expectation Es and variance Vi given by

 K

 Es = - Z Pi(Yk) log Pi(Yk),
 k=1

 K

 Vi = Z Pi(Yk) log1p2(yk) - El.
 k=1

 From these we may calculate a standardised test statis-
 tic,

 ZN Si N
 z zi=lSi Zi=rEi

 ZN= N

 which will have approximate mean 0 and variance 1
 under the null hypothesis that we are making appro-
 priate predictions [see Cox (1958) for an early investiga-
 tion of this form of test of predictive probabilities]. If
 Y is not observed in the ith case, then Si, Es and Vi
 are defined to be zero. It can be shown that under
 broad conditions ZN is asymptotically standard normal
 when the assumed model holds (Seillier-Moiseiwitsch
 and Dawid, 1993).

 4.3.2 Parent-child monitors

 These monitors are intended to detect discrepancies

 between prior beliefs in p(vlpa(v)*), for a particular
 parent configuration pa(v)*, and the observed distribu-
 tion of v when pa(v)* obtains. Hence the monitor is
 only applicable when a node and its parents are ob-
 served, and so pa(v)* will no longer be explicitly men-
 tioned. Spiegelhalter et al. (1991b) explore a variety
 of sequential and nonsequential approaches to this
 problem.

 Consider the node Disease? for the parent configura-
 tion Birth asphyxia = yes. Table 3 shows the initial
 prior estimates and ranges and their transformation
 to a Dirichlet distribution. These were used to process
 the 31 cases (of 168) who had birth asphyxia. The
 relative approach is to contrast the total penalty S
 with the penalty Sref that would have been obtained
 had the expressed prior opinion been irrelevant to v,
 and instead a "reference" prior assumed: Sref - S is the
 log(Bayes factor) for testing the null hypothesis that
 the expert's prior is appropriate, since

 exp (Sref-S) = p(all datalexpert's prior)
 p(all data I reference prior)

 Using a reference prior ~D[1 I1K, ... ., 1 I1K] results in a

 TABLE 3

 Raw and transformed prior assessments for

 p(Disease? I Birth asphyxia = yes)

 Prior Prior Dirichlet

 Disease estimate range parameter ak

 PFC 0.20 0.05-0.30 0.85
 TGA 0.30 0.10-0.50 1.28
 Fallot 0.25 0.15-0.35 1.06
 PAIVS 0.15 0.10-0.30 0.64

 TAPVD 0.05 0.02-0.10 0.21
 Lung 0.05 0.02-0.10 0.21

 1.00 4.25

 statistic which was examined in detail in Spiegelhalter
 et al. (1991b). Figure 7 shows the accumulating refer-
 ence penalty, in which the reference predictions ini-
 tially have smaller penalty than those based on the
 expert prior. However, allowing the priors to be
 adapted by the data finally gives S = 42.8, Sref = 43.8,
 providing a Bayes factor of 2.7 in favour of the prior
 provided by the expert, over a reference prior. Figure
 7 also shows the substantially higher penalty incurred
 by using the initial prior estimates without learning
 from the observed data.

 Alternatively, the frequentist absolute standardisa-
 tion gives the following results. By the time the first
 case with birth asphyxia arrived, indirect evidence had
 slightly revised the initial distribution to (0.196,0.295,
 0.263,0.147,0.049,0.049), from which we can calcu-
 late that the penalty has expectation E1 = 1.609 and
 variance V1 = 0.272. In fact the true disease of this
 first case was PFC, which leads to a penalty Si =
 - log 0.196 = 1.628. Thus Z1 = 0.035. The second
 case with birth asphyxia had disease TAPVD, which
 received a penalty of 3.281, giving Z2 = 2.25. Figure
 7 shows the accumulating standardised parent-child
 penalty with and without learning; if no learning is
 allowed the prior assessments remain constant and the
 standardised penalty increases, while with learning the
 predictions adapt to the data after a while and the
 standardised penalty eventually stabilises around 0.
 In fact, as may be seen from Table 4, the observed
 data showed PFC and lung disease were both consider-
 ably more common in cases with birth asphyxia than
 expected.

 In general the Bayesian relative approach gives simi-
 lar results to the significance tests: in 3 of 21 parent-
 child monitors the reference prior would have given
 better predictions, and these had Z statistics of 2.44,
 1.84 and 2.30. The highest Z was for the assessment
 of the proportion of those with lung disease that would
 be sick: a prior assessment of 0.70 (range 0.50-0.90) was
 made, translating to a beta(3.0, 1.25) distribution, while
 in fact only 6/16 cases were reported as sick. This gave
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 indications of poor predictions which are eventually overcome by accumulating data.

 Z = 2.44 and Sref - S = -0.02, showing only marginal
 preference for the reference beta(0.5, 0.5) prior.

 Although we have concentrated on sequential moni-
 toring, it is also possible to consider batch monitors
 which are calculated simply on the basis of the ob-
 served counts such as shown in Table 4.

 First, we note that since the statistic Sref - S is
 invariant to the order of the data, the sequential Bayes-

 ian monitor also acts as a batch monitor. In contrast,
 from a frequentist perspective we need to calculate the
 chance of getting such an extreme value of S, given
 the null hypothesis that the initial prior assessment is
 appropriate. Spiegelhalter et al. (1991b) show how this
 is essentially the proposal of Box (1980) for comparing
 prior with likelihood, and that the test can be approxi-
 mated by an adjusted Pearson's x2 statistic. Specifi-
 cally, we may calculate the expected counts under the
 point prior estimates, as shown in Table 4. We then
 calculate a x2 statistic based on the observed and ex-
 pected counts, which in our example gives x2 = 54.14
 on 5 degrees of freedom. To allow for the prior impreci-
 sion, this must be discounted by a factor (a + 1)I(a +

 n) = (4.25 + 1)/(4.25 + 31) = 0.149 in our case. The

 final test statistic is then 54.14 X 0.149 = 8.07, which
 on 5 degrees of freedom gives P = 0.17. There is
 therefore slight evidence against the expert's prior: the

 contrast between this and the small Bayesian support

 for the null hypothesis is an example of Lindley's para-
 dox (Lindley, 1957).

 TABLE 4

 Observed frequency distribution for Disease? when Birth
 asphyxia = yes, with counts expected under the initial

 prior estimates

 Observed Observed Expected
 Disease count proportion counts

 PFC 19 0.61 6.20
 TGA 3 0.10 9.30
 Fallot 1 0.03 7.75
 PAIVS 2 0.06 4.65
 TAPVD 0 0.00 1.55
 Lung 6 0.20 1.55

 31 1.00 31
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 4.3.3 Node monitors

 Two types of monitors exist for each node in the

 graph and are intended to identify parts of the network

 in which the modelling is poor. Unconditional monitors

 simply assess the marginal distribution given to each
 node, in that if node v is observed to have value v*

 for case i, then the unconditional penalty for node v is
 increased by -logpi-i(v*). The cumulative penalties

 may be absolutely standardised by calculating the
 mean and variance as before-a relative standardisa-

 tion against a reference prior may also be carried out

 but is not reported here.
 Conditional monitors are concerned with the quality

 of the predictions on each node observed, conditional

 on all other current evidence on that case. Formally,

 we calculate total and standardised scores based on

 p(v* IFi\v*), where 8i denotes the total evidence on
 case i. The idea is to rapidly identify nodes of the

 graph that are not well predicted by what else is known

 on that case. This is also valuable for identifying poor
 prior assessments when incomplete data are observed

 and the parent-child monitors are ineffective.

 At first sight it may seem that if a case has evidence

 about M nodes, then up to M propagations would be

 necessary to evaluate the conditional node monitors,
 a process which could be quite time consuming. How-
 ever, as mentioned in Section 6.6 the standard evidence
 propagation algorithm can be modified to provide for
 the necessary "fast retraction."

 Table 5 shows unconditional and conditional stan-

 dardised monitors for all observed nodes in the graph.
 Examining the unconditional nodes it is clear that the
 overall incidence of Birth asphyxia? and Disease? are
 poorly modelled, even after learning. Conditional moni-
 tors for Lower body 02? and RUQ 02? suggest the
 assessments in this part of the graph should be care-
 fully examined. The remaining conditional monitors
 appear reasonable, although the monitors without learn-
 ing suggest that this is due to the considerable prior
 imprecision and hence the rapid adaptation of the

 conditional probabilities. The considerable number of

 negative Z statistics suggests that if anything the
 probability assignments have been rather conserva-

 tive, in that the observed penalty has been much less
 than that expected, indicating the lower scoring (most
 likely) events are occurring more often than predicted.

 The diagnostics shown in Table 5 are only the first
 step in the improvement of the system. Since errors
 at prior specification at the top of the graph may filter

 through to affect all the unconditional monitors, it is
 appropriate to adjust the priors in sequence to identify
 additional poor assessments. When reasonable uncondi-
 tional monitors are obtained then aberrant conditional
 monitors should better reflect poor structure. We do not

 report this further iterative development here.

 4.3.4 Global monitors

 We define the contribution of the ith case to the
 global monitor of a model to be the logarithmic score

 of the probability of the evidence observed, that is,
 -log pi(8i), when i - 1 cases have been processed, and
 pi(8i) is the probability of the ith evidence 8i. As pointed
 out in subsection 6.4, this probability is simply the
 normalisation of any clique table in the junction tree

 after the evidence ?i has been propagated.
 If we let the total global monitor be G = t- log pi(8i),

 we have that

 G = -log IIpi(8i) =-log llp(8i ' 81,**.
 t t

 = -logp(8&,... , 8i) = -logp(8),

 the marginal or integrated likelihood of all the evidence
 E that has been observed.

 With complete data observed on case i we obtain

 pi(8i) = pi(xv) =-, log pi (v Ipa(v))
 veV

 by the factorisation (1), and hence the contribution to
 the global monitor is simply the sum of the contribu-
 tion to the individual parent-child penalties for each
 node. Hence the total G is the sum over all nodes and

 TABLE 5

 Final conditional and unconditional standardised monitors for observed nodes, both with and without parameter learning

 With learning Without learning

 Node N Conditional Uncond. Conditional Uncond.

 nl: Birth asphyxia? 120 0.38 1.96 1.55 5.78
 n2: Disease? 168 0.64 2.61 1.39 5.93
 n3: Age at presentation? 165 1.41 -0.59 0.47 -3.39
 n9: Sick? 168 1.47 0.02 -0.18 0.48
 n15: LVH-report? 141 -1.17 0.06 -3.01 -4.11
 n16: Lower body 02? 45 -2.13 -0.98 -2.26 -1.39
 n17:RUQ 02? 120 -1.91 0.36 -1.22 1.96
 n18: C02? 146 -1.25 -1.55 -5.10 -5.57
 n19: X-ray report? 168 -0.98 0.99 -2.74 -1.89
 n20: Grunting report? 165 -0.52 -0.62 -3.99 -3.79
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 BAYESIAN ANALYSIS IN EXPERT SYSTEMS 233

 all parent configurations of the parent-child penalty
 formula derived from (4).

 The calculation of Ei, Vi and the reliability statistic
 Zi of the global monitor is in general quite laborious,
 except for the two cases of complete data, for which a
 local propagation scheme exists or for models having
 small total state space. However, a relative approach
 to global monitors may be used to compare the overall
 predictive quality of competing models, and this is
 considered in the next section.

 5. MODEL COMPARISON

 Although it may be reasonable to start off with the
 structure provided by the expert we should use the
 data to monitor the conditional independence assump-
 tions the graph expresses. In particular, we need to be
 able to compare two or more candidate structures. As
 an example, in this section we shall compare the
 CHILD structure given in Figure 2 with the naive
 structure of Figure 1; the latter model only incorpo-
 rates those observed nodes listed in Table 5.

 5.1 Bayes Factors

 The Bayesian view is straightforward, being based
 on Bayes factors which are simply contrasts of global
 monitors. If for two possible models we obtain global
 monitors G1 and G2, then their difference is

 A12 = - = logpl(&) - logp2(8) = logP2()

 The Bayes factor to compare these two models is thus
 simply exp(A12). If we are willing to assign a prior

 log-odds 512 on model I versus model 2, then the poste-
 rior log-odds on model 1 is just A12 + 512.

 It is not in general feasible, nor indeed appropriate,
 to require separate prior elicitation for each possible
 model. In particular we would like the priors in nested
 models to be compatible, in the sense of being obtain-
 able by appropriate marginalisations. In Section 8 we
 describe a procedure for obtaining such compatible
 priors by a process we term expansion and contraction.

 5.2 Global Monitors for CHILD Network

 We now take as our baseline model the CHILD
 network, with the expert's priors and parameter learn-
 ing, so that pl(8) is the marginal probability of the
 observed evidence under this assumed model. We con-
 trast it with the naive network, using the priors derived
 from the process of expansion and contraction de-
 scribed in Section 8. Additional comparisons are made
 with the naive network with reference priors (no expert
 input) and the CHILD network with no learning (keep-
 ing to the expert's point estimates). Figure 8 shows
 the log(Bayes factors) for the three alternative models
 versus the baseline model.

 It is apparent from Figure 8 that the ability to

 learn about the parameters starts showing benefit after

 about 25 cases, and thereafter the no-learning model

 is clearly inferior. The naive model is initially poor, but

 with learning it becomes better than CHILD without
 learning after about 52 cases, although it becomes

 increasingly inferior to the more structured baseline

 model. The naive model that starts from reference
 priors almost catches up the model with the expert

 "headstart" after about 120 cases. Overall, it is appar-

 ent that the data strongly support the more structured

 model, particularly in view of Jeffreys' rule-of-thumb
 (Jeffreys, 1961, p. 432) that a log(Bayes factor) more

 than 4.6 (i.e., logio Bayes factor = 2) constitutes "deci-
 sive" evidence, which occurs after only 11 cases. Of
 course, further comparison with more local structural
 adjustments should now be investigated using these
 techniques.

 5.3 Diagnostic Comparisons

 The above model comparison has used the ability of

 each model to predict the totality of data that is ob-

 served, whereas it may be more appropriate to place
 more weight on a model's success in predicting the

 disease node. Table 6 summarises the diagnostic accu-
 racy of the four models being examined. The condi-
 tional monitor S is the total logarithmic penalty given

 to the node Disease? conditional on all other evidence,

 and hence exp(S/N) is the geometric-mean posterior
 probability of true disease. The diagnostic accuracy
 is simply the number of cases for which the disease
 receiving the highest posterior probability was the true
 disease.

 It is apparent that from the perspective of a proper
 scoring rule the baseline model is superior. However,
 this benefit of additional quantitative and structural
 input is not fully manifested into increased diagnostic
 accuracy. Further analysis reveals this is primarily due
 to the evidence being somewhat attenuated by the
 conservative probability assignments in CHILD and
 hence becoming insufficient to push the rarer diseases
 into first place. It is also important to note that all the
 models in Table 6 do considerably worse, in terms of
 simple accuracy, than a simple algorithmic approach:
 the algorithm in Franklin et al. (1991) obtains an accu-
 racy of 132. The clinicians at GOS had an accuracy
 of 114, with the referring paediatricians 76. Thus a
 probabilistic system in the process of learning matches
 the quality of the middle-level paediatric cardiologists
 at GOS, but clearly more work is required into ex-
 ploiting the interactions that the algorithmic approach
 incorporates. For an evaluation of a fully trained net-
 work, see subsection 5.4 below. It is also important to
 consider the relative importance of diagnostic errors,
 and to this end a loss function has already been elicited
 (Franklin et al., 1991).
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 Baseline: CHILD network, expert prior, with learning
 -- CHILD network, expert prior, without learning
 -- Narve network, expert pnor, with learning

 o _ - Naive network, reference prior, with learning

 E
 00

 0,

 -o

 .0

 CD
 0~~~~~~~~~~~~~~~~~~~~~~~~

 0.~~~~~~~~~~~~~~~~~~~~~~~~~0

 0 50 100 150

 total sample size

 FIG. 8. Global monitors for three alternative models compared to a baseline assumption. The ordinate also expresses the log(Bayes
 factor) in favour of the baseline model (CHILD network with learning).

 5.4 Statistical Model Selection

 An approach that takes model comparisons to its

 full consequence is to induce the network directly from
 data using statistical model selection methods, ignor-
 ing the prior structural and quantitative information
 available. There is a number of different areas in which
 these ideas have been investigated. The statistical liter-
 ature in general exploits strategies based on signifi-
 cance testing to construct log-linear models which have
 an undirected graphical representation: see, for exam-
 ple, Wermuth (1976), Edwards and Havr6nek (1985,

 1987) and Andersen, Krebs and Andersen (1991). The

 program BIFROST (Hojsgaard, Skj0th and Thiesson,
 1992), exploits a contingency table program CoCo (Bads-
 berg, 1991) to build networks in a systematic fashion

 using some prior structural information. Currently the
 methods are limited to being applied to complete data.
 Hence, in our example, the structure of the model must

 be lost to some extent, since it can be based only upon
 a limited number of nodes.

 The performance of a system constructed by these

 methods has been investigated by Lauritzen, Thiesson

 and Spiegelhalter (1992). In a prospective test, the best

 automatically generated networks had an accuracy of
 63 of 87 correctly diagnosed cases, compared to 64 of
 87 for a fully trained version of the CHILD network.

 These accuracies (73-74%) are comparable to the sim-
 ple algorithmic approach.

 A second literature is founded more in the social

 sciences and seeks to investigate causality by building

 TABLE 6

 Measures of the diagnostic accuracy of four models

 Conditional Mean posterior Accuracy
 Model penalty S prob. (eS/N) in 168 cases

 Baseline: CHILD, expert priors, learning 156.3 0.40 110
 CHILD, expert priors, no learning 197.4 0.31 99
 Naive network, expert priors, learning 172.4 0.36 113
 Naive network, reference priors, learning 176.4 0.35 111
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 BAYESIAN ANALYSIS IN EXPERT SYSTEMS 235

 directed graphical models from data: see, for example,

 Spirtes, Glymour and Scheines (1993). Finally, the AI
 or machine learning -community is concentrating on
 construction of belief networks from data, both as a
 theoretical (Pearl and Verma, 1991) and a practical

 task (Cooper and Herskovits, 1992). The latter ap-
 proach relies on complete data and uses the global

 monitors (Bayes factor) approach described below, but

 assuming uniform priors (ai = 1) throughout. We note
 that the "machine learning" literature is primarily con-

 cerned with classification, rather than the construction

 of a model for the underlying process.

 6. GRAPHICAL ALGORITHMS AND EVIDENCE
 PROPAGATION

 In this more technical section we give details of the
 graphical and algebraic procedures that underlie the

 evidence propagation displayed in Section 3. We begin
 by making a transformation from a directed to an
 undirected graphical model: this process is useful both
 in checking conditional independence statements made
 on a DAG and as a first step in the eventual re-represen-
 tation of the graph in terms of locally communicating
 belief universes.

 6.1 From a Directed to an Undirected Graph

 Undirected graphs have been used increasingly in
 the specification of statistical models for analysis of
 multivariate data: see, for example, Lauritzen (1989)

 and Whittaker (1990). In such a graphical model g
 nodes are again random variables but are linked by
 undirected edges. The factorisation property analogous
 to (1) is that the joint distribution is expressed as a

 product of terms defined on the cliques of the graph,

 which are the maximal sets of nodes that are all joined
 to each other. This implies that the joint distribution

 is Markov with respect to S, in the following sense.
 Let A, B and C be sets of variables such that any path

 in S from a node in A to one in B must pass through C.

 Then A I I B I C, that is, the sets A, B are conditionally
 independent of each other given the variables in C.

 To establish the connection between a DAG O and an

 undirected graphical model, we first note thatp(v Ipa(v))
 can trivially be considered as a function, denoted by

 b, defined on family(v), where family represents a node
 and its parents. Hence (1) can be written in the form

 (5) p(V) = Il b (family(v)).
 veV

 If S is chosen to have cliques which are the families

 of D, we have fulfilled the condition for an undirected
 graphical model S since the joint density p is expressed
 as a product of terms (5) defined on the cliques of S.

 Such a graph S is obtained by placing a link between
 co-parents in O that are not currently connected and
 dropping directions on the links. For CHILD, the re-
 sulting "moral" graph (originally named as it married
 unmarried parents) is shown in Figure 9 and is in

 general denoted by Om.
 We have therefore shown that a distribution p(V)

 that is recursive with respect to a DAG D must be
 Markov with respect to Dm. In particular, if A, B and

 C are subsets of V such that C separates A from B in

 Dm, then A IL BI C. Still further conditional indepen-
 dencies will often be obtained on observing that, if W
 c V is an ancestral set, that is, it contains its own
 ancestors, then the restriction of p to W is recursive

 ~~~~~~~1:
 > (nl1: ~~~ashypxiaa ?n3 hs (l:rni

 distribution? in X-ray0

 n15: LVH n 6: Lower nl7: Right nl8: C02 nl9: X-ray n20: Grunting
 report? body 02? up. quad. 02? report? ) I report? report?

 FIG. 9. Moral graph formed from CHILD network by joining unconnected parents and dropping directions. The joint distribution of
 the variables is Markov with respect to this graph.
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 with respect to Ow, and hence Markov with respect

 to M.
 For (a somewhat contrived) example, we might ask

 whether, if we were to know the true disease (n2) and
 have measured the hypoxia when breathing oxygen

 (nil), would knowing the CO2 report (n18) tell us any-
 thing additional about the distribution of hypoxia
 (nlO)? Figure 10 shows the moral graph of the ancestral
 set of the variables of interest. It is clear that a path
 exists between n18 and nlO that bypasses n2 and nll.
 Hence nl8 would be informative, essentially since it
 would tell us more about n7: lung parenchyma?, and

 hence whether the observed hypoxia level (nll) is ex-
 plained by the state of the lungs. If not, this changes

 our belief in n6: Cardiac mixing?, which finally feeds
 down to nlO. It is a crucial feature of these directed

 structures that they allow reasoning about joint causes
 through effects being "explained away," as is nll by n7.

 It may be shown (Lauritzen et al., 1990) that this
 technique of forming the moral graph of ancestral sets
 will reveal all the conditional independence properties
 logically implied by p(V) being recursive with respect
 to D. However, we shall here be content with the
 re-representation of p(V) as graphical over Om. Under
 this transformation, some of the conditional indepen-
 dence properties displayed in the original DAG D, such
 as that between n5 and n6 given n2 in Figure 2, may
 lose their representation in graphical form. They still
 hold, but are effectively buried in the quantitative
 component of the model. Only those conditional inde-
 pendences that retain a graphical representation in Dm

 can be utilised for further simplification of the analysis.
 Having carried out this initial specification and the

 construction of the moral graph, the tasks involved in
 deriving the evidence propagation procedure illus-
 trated in Section 3 may be listed as follows:

 * Identification and organisation of belief universes
 * Initialization
 * Propagation

 These are described in successive subsections using
 CHILD as an example. We then describe how slight
 adaption of the basic propagation algorithm provides
 additional tools, and finally we discuss a basic axiom-
 atic approach that extends the algorithm to nonproba-
 bilistic conditional independence.

 6.2 Identification and Organisation of
 Belief Universes

 We now identify the belief universes introduced
 above as the cliques e of a suitably chosen undirected
 graph S. For computational reasons we will need to

 organise the cliques e of S into a tree 3, the junction
 tree, with the property that, for any veV, the collection
 of all CeC containing v forms a (connected) sub-tree of
 35; this ensures that communication from any node to

 n: 1.Bi,th

 asphxa

 n2: Dease

 n:Dct n6 Cardiac n7:. Lun
 flow? mixing? parenchema?

 0: n : lypoxianl2: C02 ?

 report?

 FIG. 10. Moral graph formed from ancestral set of nodes
 {n2, nlO, nll, n18}. From the Markov property, n18 and nlO are
 not conditionally independent given {n2, nll}, since there is a
 path in this graph between n18 and nlO that is not blocked by
 {nZ nll}.

 another is via a unique path. It may be shown that

 this is possible if and only if S is triangulated (Jensen,
 Olesen and Andersen 1990); this means that we cannot
 find a cycle of length 4 or more without a chord (if

 there is more than one such junction tree, any one will
 serve for further manipulations).

 We have already shown how to construct an undi-
 rected (moral) graph from our original DAG, but this
 may not be triangulated. In the case of CHILD, the
 moral graph in Figure 9 is not triangulated although

 at first sight it may appear so: the cycle (n2, n7, nll,
 nlO, n5, n2) is such that there is no edge between two
 nonconsecutive nodes. It may be rendered triangulated

 by adding suitable further edges, that is, between n5
 and n7 and between n5 and nll, as shown in Figure
 11. This will alter the cliques of the graph: thus

 (n2, n5, n6, n7), (n5, n6, n7, nll) and (n5, n6, n1O, nll)
 are cliques of the new graph, but not of the old. Equa-
 tion (5) represents the joint density as Markov on 5m.
 It will likewise be Markov on any graph S over V
 which is obtained by adding further edges to 5m, and
 hence our initial joint distribution will have the inde-

 pendence properties appropriate to this triangulated
 graph.

 In general we would like the triangulated graph S
 obtained by adding edges to m)m to have cliques that are
 small, say in the sense of their state space. However,
 any formalisation of this task leads to a difficult optimi-
 zation problem [in fact one that is T(P-complete (Coo-
 per, 1990)]. Various heuristic algorithms have been
 proposed (Kjaerulff, 1992a), and research into good tri-
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 angulation methods continues -this issue also arises
 in the context of relational databases (Tarjan and Yan-
 nakakis, 1984). There exist however good algorithms
 for checking whether a given undirected graph is trian-
 gulated. Having chosen a suitable triangulated graph
 9 as an extension of Om, all further computations are
 based on 9-we note that, as in going from D to Dm,
 some conditional independencies have become implicit
 in the numerical assignments rather than being explicit
 in the graph 9.

 The simple maximum cardinality search (MCS) algo-
 rithm will simultaneously check whether 9 is triangu-
 lated and, if it is, construct a junction tree. It consists

 of a sequence of stages as follows.
 At stage 1, select any node of V and label it 1. At

 the start of a later stage i, i - 1 nodes will already
 have been labelled. The node to receive label i is that
 which has the most labelled neighbours. The stage
 is successful if those labelled neighbours of i are all
 neighbours of each other, that is, form a complete
 subgraph. It can be shown that all stages will be
 successful if and only if 9 is triangulated, thus provid-
 ing a check for this condition.

 Now suppose that all n stages have been successful.
 The graph 9 is then triangulated, and the labelled
 nodes form what is known as a perfect numbering;
 that is, for any node, the neighbours with lower number
 are all connected. Figure 11 shows the additional edges
 added to make the graph triangulated and the result
 of a maximum cardinality search starting at n18: C02
 report?. For example, after n7 and n2 have been la-
 belled 3 and 4 respectively, any of nodes n5, n6, n8 or
 n9 could be chosen, as each has two already labelled
 neighbours. However, once n5 is arbitrarily chosen to
 have label 5, the next niode to be labelled must be n6,
 since it is the only node with three currently labelled
 neighbours. Thus each clique is completed before pro-
 ceeding to the next.

 n 1

 ni~~~~~~~~~~

 16 n 5 6 6 7 3 8 l9

 nC 8 n12 2 n13 13 X14 1

 dn15 17 n16 14 n17 18 1 20 19

 FIG. 11. A perfect ordering of the nodes in CHILD arising from
 maximum cardinality search.

 Starting from the above perfect numbering, we can
 identify the cliques of S. The highest labelled node
 within each clique is noted, and this produces an order-
 ing of the cliques. Figure 12 shows each clique as a
 node in a tree- the number in the top right hand corner

 of each clique is its highest constituent label, and the

 corresponding clique ordering C( to C17 is shown.
 The links in the tree are obtained as follows. The

 perfect ordering generated by maximum cardinality

 search leads to a clique ordering with the following

 running intersection property: let Sj be the nodes in
 the intersection of clique Cj and lower numbered cliques
 C, ... , Cj-1. Then there exists (at least) one clique in
 C, ... , Cj-1 that contains Sj. Placing a link between
 that clique and Cj leads to a tree such as Figure 12.
 For example, clique C8 has S8 = {n2, n7}, which is
 contained in either C3 or C6; the former has been (arbi-

 trarily) chosen to link C8 with the preceding cliques.

 Note that, if a graph possesses a junction tree, this
 need not be unique. Any junction tree will serve our

 purposes. The tree has the property that if a node v is

 contained in any two cliques Ci and Cj, then it is
 contained in all the cliques in the unique path between

 Ci and Cj. For example, n2: Disease? is contained in
 C3, C6, C7, C8, C12 and C13, which form a connected
 sub-tree. As we shall see, the general idea is that

 evidence on any node can then be passed to the rest

 of the network by a unique path.

 6.3 Initialisation

 For any v, family(v) is complete in S, and so it is

 contained in at least one clique. Assign v to just one

 such C, and for each Cee define ac(C) to be the product
 of p(vlpa(v)) for all v assigned to C (or 1 if none are
 assigned). Then (5) becomes

 (6) p(V) = Ilac(C)
 CeC

 C12 15 C7 10

 nl n2 n2 n3 n9

 C3 6 CG

 n2n5n6n7 n2 n7 n9

 C8 11

 n2n7nS

 C13 1 C5 8 C4 C2 3 co 13 C19 12

 n2 n4 n5n6nlOnll n5n6n7nll n7 n12 n7n8n13 n7n9n14

 C14 17 c11 14 C15 18 Cl 2 C17 20 C16 19

 N nl nlOnlInl6 nil n17 n12 n18 n13 n19 n14 n20

 FIG. 12. Junction tree of cliques derived from perfect ordering
 of the CHILD nodes. The members of each clique are shown, the
 highest label among the members is shown in the top right-hand
 corner, while the corresponding ordering of the cliques is shown
 in the top left-hand corner.
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 which defines the numerical specification of p(V) in

 turns of the functions {ac} on the cliques of S.

 There are many ways, other than the above, of choos-

 ing functions {ac} to satisfy (5), and indeed this very

 freedom forms the basis of the computational algo-

 rithms to be described. In fact, it turns out to be useful

 to generalise (5) to allow still more freedom, as follows.

 Let Ci and Cj be adjacent cliques of the junction
 tree. Then we associate with the edge joining them the

 set S = Cj f C3 of nodes of S. This is called a separator,
 and we shall denote the family of all separators by S.

 (Distinct edges may yield the same separator-in this

 case we shall have repetitions in S.) As well as having

 a function ac for each clique C, we suppose that we

 have a function bs for each separator S, such that we

 can express

 (7) p(V)= llceeac(c)
 llsegbs(S)

 (The right-hand-side of (7) is interpreted as 0 whenever

 its denominator is 0.) The individual a and b functions

 are called potential functions, and equation (7) is a

 potential representation for p. Initially we take bs
 1 and the a's as described above.

 The computational algorithms proceed by modifying

 the individual potential functions in a sequence of

 steps, but in such a way that (7) holds at all times.
 After all steps have been completed, the final potential

 functions will have a special form containing the de-
 sired information. Thus the propagation algorithm dis-

 cussed below finishes with every potential function

 being the marginal density for the relevant set of vari-
 ables. With this choice, (7) defines the marginal repre-

 sentation of p, which may be written

 (8) p( llsegp(S)

 From the clique marginals it is then trivial to margin-

 alise to the marginal distribution on each node.

 6.4 Incorporation of New Evidence

 Suppose that we observe "evidence" 8: XA = xA.
 Define a new function p* by

 (9) p*(x) = { ), if XA XAg
 (* otherwise.

 Then p*(x) = p(x, 8) = p(8)p(x I), where p(. 8) is the
 density of the conditional distribution given 8. We can
 rewrite (9) as

 P= p III(v),
 veA

 where l(v) is 1 if xv = x*, 0 otherwise. Thus l(v) is the
 likelihood function based on the partial evidence Xv =
 XTC

 If we have any representation of the form (6) or (7)

 for p, we immediately obtain such a representation for

 p*, by associating each v E A with any one clique
 containing v, and replacing each a(C) by

 (10) a(C) = a(C)llhl(v):v is assigned to C

 (taking an empty product as unity).
 The fact that p* is proportional to, rather than equal

 to, a probability density function is of no consequence
 and can in fact be turned to advantage. In particular,
 if we apply a routine for finding the marginal represen-

 tation directly top*, it will give usp*(U) = p(&)p(Ul8)
 for any clique or separator U. Then the normalising

 constant for any such U [i.e., the sum of all the values
 of p*(U)] will be just p(&). This provides a means of
 calculating the joint density at specified values of any

 collection of variables, even when the corresponding
 set of nodes is not complete in S. Finally, on performing

 the normalisation, we obtain p(Ul), and so we shall
 have transmitted the effect of the evidence to every

 clique.

 6.5 A Propagation Algorithm

 We now describe an algorithm for calculating the
 marginal representation, starting from any potential
 representation. This proceeds by the propagation of

 simple "flows" through the junction tree. Each such
 flow involves only two adjacent cliques and the associ-
 ated separator, and the crucial feature is that after
 each flow the representation (7) continues to hold.

 6.5.1 Flows between adjacent cliques

 Consider two adjacent cliques from Figure 12:
 C14 = {n4, n15} and C13 = {n2, n4} and their separator
 S = {n4}. Initially the potential tables for these are as
 in Figure 13a; as discussed at the start of subsec-

 tion 6.3, these are given by p(n15 I n4) for C14, and
 p(n4 I n2) for C13. If we incorporate the evidence 8:
 LVH-report = yes, then the potential for C14 changes

 to that shown in Figure 13b. Starting from these modi-
 fied potentials, we now describe the passage of a flow
 from C14, the sender, to C13 the receiver, across S. This
 has two phases:

 (i) Within C14, we sum out over variables not in
 S (n15: LVH-report?) to obtain a new potential
 function over S. This gives the potential shown
 in Figure 13b.

 (ii) The potential over C13 is now modified by multi-
 plying each term by the associated update ratio,
 which is the ratio of the relevant value of the new
 potential over S to that of the old one. In this
 case, the update ratios are just the new potential
 values since the previous potentials were unity,
 and we obtain the potentials on C13 shown in
 Figure 13b.
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 (a) (b) (C) (d) (e)

 Disease LVH? LVH? LVH? LVH? LVH? C13

 Yes No Yes No Yes No Yes No Yes No

 PFC 0.100 0.900 0.090 0.045 0.004 0.002 0.004 0.002 0.015 0.007

 TGA 0.100 0.900 0.090 0.045 0.031 0.016 0.031 0.016 0.109 0.055

 Fallot 0.100 0.900 0.090 0.045 0.026 0.013 0.026 0.013 0.091 0.045

 PAIVS 0.900 0.100 0.810 0.005 0.180 0.001 0.180 0.001 0.634 0.004

 TAPVD 0.050 0.950 0.045 0.048 0.002 0.002 0.002 0.002 0.008 0.008

 Lung 0.100 0.900 0.090 0.045 0.004 0.002 0.004 0.002 0.016 0.008

 LVH? LVH? LVH? LVH? LVH? S

 Yes No Yes No Yes No Yes No Yes No

 1.000 1.000 0.900 0.050 0.900 0.050 0.248 0.036 0.872 0.128

 LVH Report? LVH? LVH? iV? LVH? LVH? C14

 Yes No Yes No Yes No Yes No Yes No

 Yes 0.900 0.050 0.900 0.050 0.900 0.050 0.248 0.036 0.872 0.128

 No 0.100 0O.950 0 0 0 0 0 0 0 0

 FIG. 13. Propagation of evidence through cliques C13 and C14 of junction tree: (a) initial potentials, (b) after incorporation of evidence
 LVH-report = yes, (c) after propagation through rest of network and back to C13, (d) final potentials, (e) marginal tables after normalisation.

 The above routine applies when any flow is passed

 between adjacent cliques. The potentials on the separa-
 tor and on the remaining clique are modified, and a
 representation as (7) continues to hold but with equal-
 ity replaced by proportionality.

 To achieve our purpose we need to schedule the flows
 appropriately. Call a flow active if, before it is passed,

 the sender has already received active flows from all
 its neighbouring cliques, with the possible exception

 of the receiver (thus initially only peripheral cliques
 can pass active flows). We can schedule a sequence of
 flows so that eventually an active flow has been passed
 in both directions between each pair of neighbouring

 cliques. In this "equilibrium" state, which is unaffected

 by any further flows, the potential representation ob-
 tained will be the desired marginal representation

 (Dawid, 1992). In CHILD, a suitable sequence of active
 flows would be through clique numbers 14-13-12-6, 7-6,
 16-9-6, 6-3, 17-10-8-3, 1-2-3, 15-11-5-4-3 and then the
 same in reverse order.

 Figure 13c shows the potentials on C13, C14 and S,
 having incorporated the evidence LVH-report = yes

 just prior to the final flow from C13 to C14. Passage of
 the flow now produces the new potential function on
 S shown in Figure 13d and corresponding update ratios

 (0.248/0.900 = 0.276,0.036/0.050 = 0.720). These ra-
 tios are then incorporated, in this case trivially, into

 the potential for C14, yielding Figure 13d as the final
 display after propagation. At this point, for example,

 the potential a13 for C13 satisfies a13(ld ) = p(Disease =
 d; LVH = 1, 8) and so by normalisation of this or any
 other potential table we can find p(6) = 0.284. Dividing
 each term by this marginal probability of the evidence

 observed gives us the final marginal representation (8)
 shown in Figure 13e. We can now see, for example,

 that p(LVH = yes I8) = 0.872.

 6.5.2 Controlling information flow

 There are various ways of constructing a suitable
 schedule of active flows, the differences between them
 lying not in the results but in the control mechanisms
 which are employed. A schedule of the type con-
 structed in 6.5.1 is palindromic: it starts and ends with

 flows out of and into some peripheral clique C, these
 sandwiching a palindromic schedule for the tree with

 C omitted-allowing recursive construction. Jensen,
 Olesen and Andersen (1990) proceed by selecting an
 arbitrary "root-clique" C0, which requests incoming
 flows from its neighbours which in turn pass on similar
 requests to their neighbours, until they can be satisfied.
 After this initial "collection" phase is completed, the
 potential on C0 will be its equilibrium value. Finally
 flows are passed out from C0 towards the periphery.
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 At the end of this "distribution" phase, full equilibrium

 is reached.

 In effect, any schedule of flows can be divided into

 a collection and distribution phase, with root the first

 clique to receive active flows from all its neighbours.
 Where appropriate, flows can be passed simultaneously
 in parallel.

 Once a suitable scheduling sequence has been con-
 structed it can be used repeatedly for various purposes,

 such as recomputation taking new evidence into ac-

 count. However, this may be inefficient: for example,

 starting from equilibrium new evidence entered in a

 single clique C only requires distribution from C as
 root. More efficient is dynamic flow scheduling, handled

 by a production rule associated with each flow, which

 fires when the remaining incoming flows are active and

 at least one has just changed.

 6.6 Generalisations

 Minor variations on the propagation algorithm de-
 scribed above allow us to solve other problems (Dawid,
 1992). For example, suppose that, in phase (i) of the

 passage of a flow, the new potential over S is con-

 structed by maximisation, rather than summing, over

 the remaining variables. Then at equilibrium the poten-
 tial on any clique or separator will be the joint density
 maximised over all other variables. Calculating node

 marginals by further maximisation within cliques will

 yield the "profile probabilities," that is, the probabilities
 (given the evidence) of a state and the remaining vari-

 ables, maximised over the latter. By picking out and

 stringing together the arguments maximising the
 value at each node we can identify the overall configu-
 ration with highest probability, conditional on any

 evidence that is incorporated. Applying this method
 to CHILD yields Figure 5, in which the configuration
 with the highest probability can be thought of as pro-

 viding the best possible explanation for the configura-
 tion of findings observed.

 Another task which can be handled in a similar
 fashion is "fast retraction" of evidence, simultaneously
 for each node (Cowell and Dawid, 1992), which is rele-
 vant for the calculation of conditional node monitors
 (see subsection 4.3.3).

 The essential common structure of all such problems
 could be captured in a set of axioms for abstract propa-

 gation. This line has been followed, although with a

 slightly different structure and emphasis, by Shenoy
 (1989) and Shenoy and Shafer (1990), who also apply
 these ideas to constraint satisfaction and to systems
 where the uncertainty is expressed using other formal-
 isms than standard probability theory - for example,
 belief functions. The expert system shell Pulcinella
 (Saffiotti and Umkehrer, 1991), allows the user to select
 between several ways of representing uncertainty, all
 handled within a common propagation structure.

 The essential strategy of the algorithms discussed
 has been to break down the problem into its cliques

 and restrict calculations to take place within one clique
 at a time. We shall now briefly discuss how this general

 strategy can also apply to more complex problems of
 statistical estimation and model testing, both classical
 and Bayesian.

 6.7 Using the Junction Tree for Inference
 on Decomposable Models

 The Bayesian learning methods described in subsec-
 tion 4.1 are tailored to directed graphical structures.
 There is also a general theory of Bayesian learning for
 undirected graphs (Dawid and Lauritzen, 1993). This
 theory is based on the junction tree representation 3
 of a triangulated graph S, introduced to support the
 theory above, and it bears strong formal similarities
 with that theory.

 If C is any clique of S, there is an unknown joint
 distribution Oc governing the observables Xc =
 {Xv: veC}. Assuming the full distribution 0 to be
 Markov over S, one can show that it is determined by

 {Oc: Cee}, and thus our prior distribution is expressible
 as a joint distribution for these quantities. Now con-
 sider any separator S, and let A and B denote the
 node-sets contained in the two parts of 3 remaining
 when the link through S is removed. The Markov
 property of X implies XA H XBIXS (given 0). There
 is an analogous condition one might impose on the
 prior, namely OA H OBISs. If this holds for all SeS,
 the prior distribution is termed hyper-Markov. This
 often reasonable condition turns out to streamline the
 Bayesian analysis. In particular, if we specify the mar-
 ginal prior distributions for each Oc then (subject to
 certain obvious compatibility conditions) there will be
 exactly one hyper-Markov prior for 0 having these
 marginals -clearly this greatly simplifies prior specifi-
 cation. The posterior distribution (based on complete
 data), will again be hyper-Markov, so that we only
 need to find the marginal posterior for each Oc.

 In general the posterior for Oc will depend on data
 about variables outside, as well as inside, C. However,
 we can strengthen the hyper-Markov property to re-
 quire that OA H OBIS. Under this strong hyper-Markov
 structure, the posterior for Oc will only involve data
 on variables in C, and thus Bayesian analysis is entirely
 localised, proceeding quite independently within each
 clique.

 Bayesian inference in the more general (weak) hyper-
 Markov case can in principle be performed using a
 propagation algorithm similar to those discussed in
 Section 3, which allows information about Oc from data
 outside C to filter via the passage of suitable flows.
 However, this generally involves integrals of compli-
 cated functions and is thus not easy to implement. The
 problem is simplified if the prior can be expressed as
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 a mixture of strong hyper-Markov priors. This prop-
 erty is preserved on observing possibly incomplete
 data, thus allowing Bayesian inference from such data.
 However, the number of terms in the mixture can grow
 exponentially with the sample size, and approximating
 methods are needed. We are currently exploring a sto-
 chastic approximation approach to this problem.

 6.8 Limitations and Alternatives

 The crucial limitations on the schemes described
 above concern the size of the state spaces of the cliques
 obtained after triangulation. With good triangulation
 algorithms remarkably large and dense networks can
 be handled, but there comes a point when computa-
 tional limits are exceeded. This is a particular problem
 in two common contexts. First, when a node represents
 an unknown quantity that influences many nodes in a
 graph, say when the node is a parameter in a model,
 then the triangulation can become infeasible if there
 are many such parameters. If there are only a limited
 number of such nodes, then they can be set at a grid
 of values and the likelihood of the observed data calcu-
 lated for each combination - this relates to the "cut-set"
 proposal of Pearl (1986). This is typically the approach
 within pedigree analysis (Thompson, 1986).

 The second common context is when there is a form
 of regularity in the graphical structure, such as nodes
 forming a lattice (e.g., in image analysis) or repeated
 multiply connected blocks (e.g., complex temporal mod-
 els). Various analytic approximations may be possible,
 but current attention is focussing on simulation
 schemes which are derivatives of those explored in
 image processing (Geman and Geman, 1984). By
 allowing nodes to represent parameters, and repeated
 structures to represent individual cases, a link is pro-
 vided to statistical analysis of data using hierarchical
 conditional independence models. In this context we
 note the recent attention to Gibbs sampling as a gen-
 eral statistical computational technique (Gelfand and
 Smith, 1990), which in fact was predated by the sugges-
 tion of Pearl (1987) for its use in expert systems.

 7. LEARNING FROM INCOMPLETE DATA WITH
 DIRICHLET DISTRIBUTIONS

 In this section we shall expand the general discussion
 of Section 5 to consider the more technical aspects of
 both batch and sequential learning about parameters
 (i.e., the conditional probabilities) of a directed graphi-
 cal model, when the prior distributions are assumed to
 have a Dirichlet form.

 7.1 Batch Learning

 We first consider learning from a batch of data,
 where the usual (non-Bayesian) method for determining
 conditional probabilities from a database is some ver-

 sion of maximum likelihood. As in our running exam-
 ple, one must be able to handle data with a massive

 quantity of missing observations. In Lauritzen (1991)
 it is shown how to exploit the EM algorithm for compu-

 tation of the maximum likelihood estimates of the
 unknown probabilities, assuming that N cases have
 been observed, and that for case i we have observed

 evidence 8j. Specifically, it involves iteratively letting
 at the M step

 (11) p (vj Ipa(v)*) = n (vj, pa(v)*) n (pa(v)*),

 where n are the expected number of observations in

 the marginal table: these expectations are calculated
 in the E step by adding results of a probability propa-

 gation, using the current estimated conditional proba-
 bilities, for each case in the database; for example,

 N

 n(pa(v)*) = >p(pa(v)*Igj).
 i=1

 Experience (Thiesson, 1991) indicates that when
 there are as many missing data as in the CHILD
 example, the likelihood function has a number of local
 maxima and straight maximum likelihood gives results

 with unsuitably extreme probabilities at the unob-
 served intermediate nodes in the network. Hence it
 seems appropriate to exploit prior information and
 penalize the likelihood for deviating from the prior
 assessments, and the EM-algorithm applies almost as
 easily for maximizing various penalized likelihoods
 (Green, 1990). If the likelihood function is multiplied
 by the Dirichlet prior density described in subsection
 4.1, the posterior mode can be found iteratively by
 replacing (11) with

 p(vjpa(v)*) =n (vj, pa(v)*) +aj-1
 n (pa(v)*) +a-k

 provided this remains positive. If any aj are less than
 1, the posterior distribution may not have a mode in the
 interior and the above expression can turn negative. To
 avoid this we increased the precision at places where

 aj < 1 in order to ensure aj 2 1 everywhere.
 A more suitable approach may be to penalize the

 likelihood directly by interpreting the a values as
 counts in a likelihood, leading to the iteration

 (vjlpa(v)*) = n (vj, pa(v)*) +aj
 n (pa(v)*) +a

 The resulting estimates are posterior modes if densities
 are calculated with respect to a suitably chosen (im-
 proper) prior or, alternatively, they are approximately
 equal to posterior means.

 We now come back to the part of the network dis-
 cussed in subsection 4.2, in which the imprecise condi-
 tional probabilities for the links Disease? -- LVH?
 and LVH? -> LVH-report? were translated to Dirichlet
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 priors. Available data on this part of the network

 comprise 141 cases in which an LVH-report and the
 true disease are available: the true LVH status is not
 currently available. The observed frequency of LVH-
 report? = yes in the six diseases was 2/21 (0.095),
 1/49 (0.020), 1/34 (0.029), 12/13 (0.923), 0/11 (0.000) and
 2/13 (0.154). Table 7 shows the results for the batch

 learning procedure using posterior modes and posterior
 means. We note the tendency for the posterior modes

 to be at extreme values, and convergence for these
 estimates was much slower.

 Two extensions are currently being investigated.

 First, from the second derivative of the (penalized)
 likelihood it is possible to obtain approximate expres-
 sions for the precision of the estimated values, which
 will allow standard error estimates for conditional

 probabilities. Second, the EM algorithm is known to
 converge relatively slowly. A closer look reveals that,
 in suitable parametrisations, the gradient of the likeli-
 hood function can be calculated with essentially the
 same amount of work as is involved in the E-step of
 the EM algorithm. It is therefore conceivable that
 algorithms exploiting gradient information could be
 preferable.

 It seems reasonable to use these batch learning tech-

 niques to initialize a system with conditional probabili-
 ties obtained from a combination of prior information
 and currently available data. Then as more data accu-
 mulate one can proceed with the sequential procedure
 described below.

 7.2 Sequential Learning

 We now consider the situation in which data arrive
 one case at a time, and after observing evidence ? on
 a current case, we wish to revise our beliefs concerning
 (,. Spiegelhalter and Lauritzen (1990) and Spiegel-
 halter and Cowell (1992) discuss this process in detail,
 and so here we provide only a brief summary.

 In subsection 4.1 we noted that if we observe v = Vj
 and pa(v) = pa(v)*, then the updated distribution of

 Ovlpa(v)* is a Dirichlet denoted Dj. Suppose now that
 neither v nor its parents are observed with certainty.
 It is then straightforward to show that, assuming
 local and global independence, the correct posterior

 distribution for OvIpa(v)* is

 P(Ovlpa(v)* I 6) = ZJjp (vjlpa(v)*, 6) p (pa(v)* I 6)
 i

 (12) +?Do (1-p (pa(v)* I)),
 where D0 is the initial distribution D[aj, * * , aK]. Ex-
 pression (12) is a mixture of the posterior distribution
 had v, pa(v)* been observed, plus a term that is the
 unchanged prior weighted by the chance that the rele-
 vant parent configuration had not occurred. This is
 the correct marginal posterior distribution under the
 expressed local and global independence assumptions,
 but with general patterns of missing data (12) will need
 approximation to prevent an explosion of terms. This
 is strongly related to unsupervised learning, and our
 approach follows that of the "probabilistic editor"
 (Titterington, Smith and Makov 1985), in which the
 approximating distribution attempts to match the mo-
 ments of the correct mixture (12). There is a degree of
 arbitrariness in what aspect of the Dirichlet distribution
 is matched-we equate the "average" variance of the
 two distributions (see references for the details). Other
 techniques for approximating a mixture distribution
 could also be used.

 As a fairly simple example, consider the distribution
 0LVHldisease=PAIVS. The first line of Table 8 shows the
 parameters of the prior distribution D0 as derived in
 Table 2, together with its total precision 3.28, its mean
 0.9 and variance 0.021. If we next observe a case with
 PAIVS and LVH = yes, then the posterior distribu-
 tion (D1) has precision increased by 1 and a mean of
 0.923, which will be the value used for p(LVH =

 TABLE 7

 Estimates of conditional probabilities obtained from batch learning (using posterior mode and mean)
 and sequential learning using matching of moments approximation

 Posterior mode Posterior mean Sequential Seq. precision

 LVH? = yes

 Disease?
 PFC 0.056 0.088 0.062 16.4
 TGA 0.000 0.016 0.011 40.1
 Fallot 0.003 0.026 0.020 30.8
 PAIVS 1.000 0.959 0.965 13.1
 TAPVD 0.004 0.035 0.035 32.1
 Lung 0.079 0.139 0.106 11.4

 LVH-report? = yes
 LVH?
 Yes 0.937 0.916 0.913 29.6
 No 0.020 0.018 0.021 112.9
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 TABLE 8

 Exact and approximate distribution of OLVH I disease= PAIVS having observed different evidence on LVH? and Disease?

 Distribution ai a2 a Mean Variance

 Prior (Wo) 2.95 0.33 3.28 0.900 0.0210
 Posterior having observed

 (a) LVH = yes and PAIVS (D1) 3.95 0.33 4.28 0.923 0.0135
 (b) LVH = no and PAIVS (W2) 2.95 1.33 4.28 0.690 0.0405
 (c) LVH-report = yes and PAIVS 3.82 0.32 4.14 0.922 0.0140
 (d) LVH-report = yes and p(PAIVSI8) = 0.765 3.59 0.32 3.91 0.917 0.0155

 The mean of OLVBdiSeaSe = PAIVS is simply the current estimate of p(LVHIPAIVS).

 yes I PAIVS) when the next case is processed. If PAIVS
 and LVH = no is observed, then the mean of the poste-
 rior (?2) drops to 0.690. If we only observe PAIVS
 and LVH-report = yes, then we have that p(LVH =

 yes I) = 0.994, and our true posterior distribution is
 a mixture of (Di) and (?2), with slightly adjusted mean
 0.922 and variance 0.0140. A single beta distribution
 with these moments has parameters shown in row
 (c) of Table 8-we note that we have added evidence

 equivalent to 0.86 (4.14-3.28) of a full case.
 Finally, if we only observe the evidence shown in

 Figure 4, then we have additionally that p(PAIVS 18)
 = 0.765, and we have directly observed neither the
 node of interest nor its parent. Our correct posterior
 distribution is now a mixture of three terms, and its
 mean and variance can be calculated to be 0.917 and

 0.0155. Row d of Table 8 shows the parameters of a
 single beta distribution with these moments, sug-
 gesting that our evidence may be considered roughly
 equivalent to having observed 0.64 of a case of PAIVS
 with LVH.

 Table 7 shows thQe consequences of this learning
 algorithm applied sequentially to the whole dataset.
 We note the similarity of the sequential point estimates
 and the batch posterior means. From Table 2 we may
 calculate total initial precisions aDisease? = 39.0 and

 aLVH? = 42.5, representing the number of implicit cases
 underlying the prior assessments of conditional proba-
 bilities for LVH? and LVH-report?, respectively. The
 final total precisions are seen from Table 7 to be 143.9
 and 142.5. Since 141 cases have -been observed, the

 sequential procedure has essentially obtained around
 80 % of the precision that would have been obtained
 had full data on LVH? been available.

 Spiegelhalter and Cowell (1992) explore this sequen-
 tial learning procedure algebraically and through
 simulation, and show a number of attractive and
 not-so-attractive properties. For example, it is quite
 feasible for the total precision a to decrease on receipt

 of certain incomplete evidence: this seems quite reason-
 able. However, they also show that with systematic
 missing data on intermediate nodes such as in the
 CHILD network, the estimation procedure may be
 inconsistent and strongly reliant on the prior distribu-

 tion. Therefore considerable care is required when spec-
 ifying priors for nodes that are not observed, and it

 may be preferable to marginalise over nodes that are
 not to be observed and learn on this collapsed graph.

 Olesen, Lauritzen and Jensen (1992) report similar ex-
 periments, adding the feature that precision is gradu-
 ally decreased so as to put less weight on early cases.

 8. COMPATIBLE PRIORS IN ALTERNATIVE MODELS

 In Section 6 we introduced the idea of comparing

 alternative models through their predictive ability as-
 sessed by logarithmic penalty (the global monitor),
 which is equivalent to the Bayes factor procedure for
 Bayesian model comparison. Here we address the tech-
 nical problem of assigning Dirichlet prior distributions

 within competing structures.

 It is not generally feasible to reassess subjective

 probabilities for each possible model, and in any case it
 seems desirable for the comparison to be made between
 alternative qualitative structures, uninfluenced by the
 quantitative inputs. We would wish the models to have
 consistent prior beliefs where possible. We therefore
 need a procedure for adapting the initial prior assess-
 ments made on a baseline model to other structures
 that we may wish to entertain. Using evidence propaga-
 tion it is in principle possible to calculate for any
 random variable its conditional probability distribu-

 tion given any set of random variables in the model
 (not necessarily its parents). Hence for any other model
 structure involving the same set of random variables
 (or possibly a subset), it is possible to calculate a
 complete set of conditional probability distributions
 which both specifies the variant model numerically and
 which are compatible with the original model.

 This process becomes more difficult if the baseline
 model is specified numerically by a set of imprecise
 conditional probability tables. This is because the pre-
 cisions within each model should in some sense match,
 but how this should be achieved may not be clear.
 Here we make some basic suggestions.

 Consider a node v which has parent sets pal(v) and
 pa2(v) in two models, where imprecise quantitative as-
 sessments have been obtained for model 1. First, for
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 each configuration pa2(v)*, we can obtain the condi-

 tional probability distribution p(v Ipa2(v)*) appropriate
 for model 2, by simply instantiating evidence pa2(v)*

 and propagating in model 1 to give p1(v lpa2(v)*). Thus
 it is straightforward to derive the point prior probabil-
 ity assessments necessary for any competitor network.

 We now consider the precisions of these assessments
 and essentially obtain them by redistributing the im-
 plicit cases underlying the precisions in model 1. Let
 pal(v)fnpa2(v) = I, pal(v)\I = 0, pa2(v)\I = N, indicat-
 ing the Intersecting, the Old and the New parents of

 v. For any parent configuration pal(v)* let ao*i* be the
 precision of the Dirichlet distribution for p(vlpal(v)*).
 We first expand these "cases" to include the new parent
 nodes N, to give for a particular configuration of 0, I,
 N a precision

 a'O*I*N* = a!O*I*pl(N* 10*I*),

 where pl(N* O*I*) is again obtained using the propaga-
 tion scheme in model 1.

 We now contract out the old parent nodes to give

 aI*N* = aO*I*N* = Zao*I*pl(N* 0*I*).
 0* 0*

 Table 9 shows this process of expansion and contrac-

 tion for the section of the network examined in Sections
 4 and 7, assuming we wish to collapse out the unob-
 served node LVH?. For node LVH-report? there are
 no intersecting parents, 0 = {LVH?}, N = {Disease?}.
 From Table 2 we have that the relevant precisions are

 a'LVH? = (20.3, 22.5). These are redistributed according
 to p(Disease?ILVH = yes) = (0.04,0.13,0.10,0.70, 0.01,
 0.02)), and p(Disease?ILVH = no) = (0.13,0.42,0.30,
 0.03,0.06,0.06)), and then finally summed over LVH?.
 The total precision has -remained constant at 42.9.

 This procedure has some attractive properties. First,
 the total precision remains constant for each node.
 Second, if the estimates are all based on implicit data
 equivalent to a complete sample of size n, then in the
 original network we have the identity a'o*m = np(O*I*).
 It is easily seen that this property is retained in model
 2, since

 a!I*N* = Enp(O*I*)pl(N*I0*I*) np(I*N*).
 0*

 However, the procedure does ignore the imprecision

 associated with the pl(N* O1*I*) and hence could give
 rather precise assessments. At an extreme, if we as-

 sume in model 1 that p(vlpal(v)*) are specified pre-
 cisely, then p(v lpa2(v)*) will also be specified precisely.

 9. OUTLOOK

 The work described can be seen as just one aspect

 in a general development in which complex stochastic
 models are constructed by modular combination of
 components with simple local structure and in which
 analysis is performed between communicating local
 elements. More traditional statistical application areas
 for this approach include image processing, dynamic

 models and general multivariate analysis. In each con-
 text, graphical models are an attractive medium for
 communicating the essentials of a problem between a
 subject matter specialist and a constructor of a formal
 model. It can happen that the graph will be too complex
 to allow the use of the exact techniques described here,
 but we feel these methods for structured probabilistic
 reasoning will prove useful beyond the motivating field
 of expert systems.

 An important development that will be seen in the
 coming years is the extension of the basic methods

 described in the present paper to deal with a variety

 of model types, so that the technique is not limited to
 recursive graphical models for variables with a discrete

 state space.

 Such developments include the ability to deal with
 a more sophisticated dependence structure using the
 Markov property for so-called chain graphs (Fryden-

 berg, 1990). Chain graph models admit undirected links
 and therefore enable the researcher to accommodate

 associations that are of "correlation" rather than "cau-

 sation" type, and to deal with the kind of bidirectional
 links discussed in Section 2. The program BIFROST
 mentioned in subsection 5.4 is based upon exploiting
 a subclass of these models.

 Another line of development is concerned with ad-
 mitting real-valued random variables. When the CG

 (Conditional Gaussian) distributions of Lauritzen and
 Wermuth (1989) are used, the propagation technique
 can be generalised to give fast computation of correct
 means and standard deviations of variables (Lauritzen,
 1992); for a survey of chain graph models based upon

 TABLE 9

 Redistribution of precision associated with p(LVH-report? I LVH?) to new table p(LVH-report? I Disease?)
 upon removal of node LVH?

 Disease?

 PFC TGA Fallot PAIVS TAPVD Lung aLVH?

 aLVH? = yes, Disease? 0.8 2.6 2.0 14.2 0.2 0.4 20.3
 aLVH? = no, Disease? 2.9 9.5 6.8 0.7 1.4 1.4 22.5

 aDisease? 3.7 12.1 8.8 14.9 1.6 1.8
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 CG distributions, see Lauritzen (1989) or Whittaker
 (1990). Naturally, a variety of other distributions in
 graphical models can be introduced if one is willing to

 substitute exact propagation with Monte-Carlo meth-

 ods (Thomas, Spiegelhalter and Gilks, 1992), with both

 approaches playing a role in models that accommodate

 strong spatial and temporal dependencies (see sub-

 section 6.8).
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 Comment: Assessing the Science Behind
 Graphical Modelling Techniques
 A. P. Dempster

 These papers, labelled here CW (Cox and Wermuth)
 and SDLC (Spiegelhalter, Dawid, Lauritzen and Cow-

 ell), are welcome reviews of extensive collaborations.

 CW are the more limited of the pair in their aims,
 making a few points convincingly, most notably (1)

 that covariance-based regression models are conceptu-
 ally distinct from the simultaneous causal models of
 econometrics, even when both varieties are expressed
 through identical linear equations, and (2) that models
 with covariance matrices corresponding to restricted

 A. P. Dempster is Professor of Statistics, Harvard

 University, Statistics Department, Science Center, 1

 Oxford Street, Cambridge, Massachusetts 02138.

 graphical structures often give good fits to empirical

 matrices. The SDLC paper by contrast is a tour de
 force that aims to leave no relevant topic unmentioned.

 Both sets of authors intend their formal models and

 computations to speak to issues of scientific knowledge
 and science-based decision making, and in particular
 both are concerned about the informal scientific under-
 standing that motivates their formal models. CW are
 reluctant to use the term "causal," viewing it as too
 ambiguous, but the authors substitute nonspecific lan-
 guage such as "appropriate subject matter considera-
 tions." SDLC, in contrast, discuss "influence" and
 "relevance" that take "account of one's understanding
 of causal structure." The difference appears to be that

 CW wish to hold to the idea that informal prior knowl-
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