
Applications of HUGIN to Diagnosis and

Control of Autonomous Vehicles

Anders L. Madsen1 and Uffe B. Kjærulff2

1 HUGIN Expert A/S, Gasværksvej 5, DK-9000, Aalborg, Denmark
2 Aalborg University, Department of Computer Science, Fredrik Bajers Vej 7E,

DK-9220, Aalborg, Denmark

Abstract. We present an application of HUGIN to solve problems related to diag-
nosis and control of autonomous vehicles. The application is based on a distributed
architecture supporting diagnosis and control of autonomous units. The purpose of
the architecture is to assist the operator or piloting system in managing fault detec-
tion, risk assessment, and recovery plans under uncertainty. To handle uncertainty,
we focus on the use of probabilistic graphical models (PGMs) as implemented in
the HUGIN tool.

We describe the application of PGMs to three problems of diagnosis and con-
trol of autonomous vehicles. Based on the HUGIN tool, limited memory influence
diagrams (LIMIDs) are used to represent and solve complex problems of diagnosis
and control of autonomous ground and underwater vehicles. In particular, we de-
scribe how battery monitoring and control problems related to an underwater and
a ground vehicle are solved and how to solve the problem of assessing the quality
of a sonar image related to an underwater vehicle.

1 Introduction

The HUGIN tool [1,5,13] supports construction and deployment of complex
statistical models known as probabilistic graphical models (PGMs) for rea-
soning and decision making under uncertainty. We describe how a particular
kind of PGMs, known as limited memory influence diagrams (LIMIDs), have
been applied to solve complex reasoning and decision making problems re-
lated to autonomous ground vehicles and autonomous underwater vehicles.

The ADVOCATE project (acronym for Advanced On-board Diagnosis and
Control of Autonomous Systems), which was formed in 1997 under the IST
program of the European Commission, had as one of its objectives to increase
the performance of unmanned underwater vehicles in terms of availability, ef-
ficiency, and reliability of the systems and in terms of safety for the systems
themselves as well as for their environments. The aim of the follow-up project,
ADVOCATE II, was partly to design and develop a general-purpose software
architecture for Autonomous Underwater Vehicles (AUVs) and Autonomous
Ground Vehicles (AGVs) and partly to develop software-based systems to in-
crease the degree of automation, efficiency, and reliability of the vehicles. The
interest of such a concept from the market point of view was demonstrated
by a market study.



2 Anders L. Madsen and Uffe B. Kjærulff

The latter objective was reached by adding artificial intelligence (AI)
into existing and new control software to diagnose and recover from any
dysfunction or failure situation of the system. To improve the management
of uncertainty in AUVs and AGVs it was decided that the ADVOCATE II
architecture should allow for easy incorporation and merging of different AI
techniques in a highly modular fashion.

Three end-user partners were involved in the ADVOCATE II project:
University of Alcalá designs piloting modules for AGVs for surveillance ap-
plications, Ifremer designs AUVs for scientific applications, and ATLAS Elek-
tronik designs AUVs and semi-AUVs for industrial applications. Each end-
user partner presented diagnosis and control problems related to a single
vehicle. Several such problems were presented for each vehicle involving dif-
ferent kinds of dysfunctions and failures:

• Thruster or motor failure diagnosis and recovery in case of abnormal
behaviour of the vehicle due to thrusters or motors.

• Sensor malfunction diagnosis and recovery on sensor state in order to
account for failure situations in case of corrupt sensor signals due, for
instance, to noise.

• Power consumption diagnosis and recovery monitoring the level of re-
maining energy in a vehicle battery in order to avoid mission abortion.

• Motion diagnosis and recovery monitoring and assessing the motion char-
acteristics of a vehicle.

Three different AI techniques have been applied for solving these diag-
nosis and control problems, namely probabilistic graphical models (PGMs),
neuro-symbolic systems (NSSs), and fuzzy logic (FL). In this chapter, we
focus on the development and application of PGMs for a selected set of the
problems. We discuss how LIMIDs have been used to represent and solve
complex problems of diagnosis and control of AGVs and AUVs. In partic-
ular, we describe how battery monitoring and control problems related to
an AUV and an AGV are solved and how a sonar image quality assessment
problem related to an AUV is solved.

In Sect. 2, we briefly present the HUGIN tool used for constructing and
executing the LIMIDs. Section 3 introduces the problem domain of semi-
autonomous ground and underwater vehicles. The ADVOCATE II commu-
nication architecture is described in Sect. 4. Section 5 presents some pre-
liminaries and notation on the LIMID representation used to model and
solve the diagnosis and control problems. The knowledge extraction process
and method developed as part of the ADVOCATE II project is described in
Sect. 6. Section 7 describes the models developed to solve the diagnosis and
control problems, while in Sect. 8 we discuss how the developed LIMIDs are
solved. Section 9 describes model integration and validation, and presents the
results of real world trials. Finally, Sect. 10 ends the chapter with a discussion
of our work.



Applications of HUGIN 3

2 The HUGIN Tool

The HUGIN tool [1,5,13] is a general purpose tool for constructing and de-
ploying probabilistic graphical models (PGMs) such as Bayesian networks
and influence diagrams.

In the HUGIN tool, inference in PGMs is performed through message
passing in a secondary computational structure known as a junction tree [7].
The junction tree is constructed from the PGM through processes known as
moralization and triangulation [12]. The nodes of a junction tree are some-
times referred to as cliques. To each clique (containing a subset of the variables
of the PGM) is associated tables representing joint probability and utility
functions over variables of the clique. The messages passed between cliques
represent joint probability and utility functions over variables common to
both the sending and the receiving clique.

The HUGIN tool consists of a graphical user interface (HUGIN Graphi-
cal User Interface) and an inference engine (HUGIN Decision Engine). The
HUGIN Decision Engine has Application Programming Interfaces (APIs) for
four different programming languages: C, C++, Java, and Visual Basic for
Applications.

The core functionality of the HUGIN Decision Engine is implemented
in the C programming language according to the ANSI C standard. This
makes the HUGIN Decision Engine highly efficient and portable. Interfaces
for C++, Java and Visual Basic for Applications are constructed on top of the
core implementation. The HUGIN Graphical User Interface is implemented
in Java, which makes it highly portable.

The HUGIN Decision Engine has been deployed on a large number of
different platforms ranging from PDAs to multiprocessor mainframes.

3 Problem Domain

The transition of autonomous vehicles from experimental research tools to
real applications increases the need for reliable and safe performance of the
vehicles. This includes detection, avoidance, and recovery from any dysfunc-
tion.

Both the AGVs and the AUVs considered in the ADVOCATE II project
are supplied with energy from batteries. This poses the problem of monitoring
the remaining energy level of the battery and providing diagnosis and recovery
actions in order to manage the mission parameters related to the energy
consumption and to avoid unnecessary mission aborts. One AUV is equipped
with an advanced object detection and avoidance system. This system works
well in situations where obstacles can be detected by sonar. Hence, it is
important to assess the quality of the sonar image and to suggest recovery
actions to improve the sonar image quality or to suggest reductions in speed
in case of poor image quality.



4 Anders L. Madsen and Uffe B. Kjærulff

The ADVOCATE II consortium consisted of eight partners from five dif-
ferent European countries. Each partner served different roles in the consor-
tium. The roles were robot manufactures and end-users, technology providers,
marketing and communication specialists, and project coordinator. HUGIN
Expert A/S served the role as technology provider and developer of intelligent
modules.

3.1 The DeepC AUV

ATLAS Elektronik is developing a new type of underwater vehicle operating
with autonomous mission durations of up to 60 hours. This vehicle is referred
to as DeepC (see Fig. 1).

The long mission durations impose the need for advanced AI techniques
to detect, avoid, and recover from any dysfunction. All end-users and ATLAS
Elektronik in particular were faced with problems, which could not easily be
solved by existing systems. The current approach to handle mission faults is
to abort the mission, which is, however, very expensive.

Fig. 1. The DeepC underwater vehicle

As a fully autonomous system, the DeepC vehicle has to rely on its sensors
to survive operationally. The DeepC is equipped with an advanced object
detection and avoidance system. The object detection system consists of a
mechanically scanning, forward looking sonar and its control electronics. This
system works well when the sonar image is of sufficient quality. The problem
considered is to construct a model for assessing the sonar image quality and
for suggesting actions to avoid object collisions.

3.2 The VORTEX AUV

Ifremer has developed the remotely operated underwater vehicle VORTEX
(see Fig. 2), which for our purpose is functionally considered as an AUV, as
it allows programming of autonomous complex missions.

The motivation for equipping the vehicle with AI technology is much the
same as for the DeepC, including optimization of the mission plan, diagnosis



Applications of HUGIN 5

Fig. 2. The VORTEX underwater vehicle

of abnormalities, recovery planning in case of abnormalities, avoidance of
mission abortion (which is very expensive), and avoidance of vehicle loss.

3.3 The BART AGV

To put the ADVOCATE II concept into practice also for autonomous ground
vehicles, University of Alcalá was deploying a telesurveillance application
using the BART AGV (see Fig. 3). Two independent actuators powered by
an on-board battery drive the vehicle.

Fig. 3. The BART autonomous ground vehicle

In order to increase the probability of mission success in case of energy
problems or in case the vehicle gets stalled, the overall mission of the vehicle
as well as other navigational issues can be managed using ADVOCATE II
technology. The ADVOCATE II system provides the AGV with intelligent
diagnosis capabilities and ability to recommend optimal recovery actions re-
sulting in more reliable and safer operations. The diagnosis and recovery
capabilities are concerned with aspects of navigation, energy system, sensors,
actuators, etc.



6 Anders L. Madsen and Uffe B. Kjærulff

4 ADVOCATE II Architecture

The ADVOCATE II architecture is a distributed architecture based on a
generic communication protocol. The architecture is modular and easy to
evolve and adapt to future piloting systems.

The purpose of the architecture is to assist the operator or piloting sys-
tem in managing fault detection, risk assessment, and recovery plans under
uncertainty. The generic communication protocol is based on SOAP/XML
technology implementing HTTP for communication between different types
of modules (see Fig. 4).

Directory

Module

Decision

Module

Robot Piloting

Module

Intelligent

Module

Intelligent

Module

Http − Soap/XML documents

Fig. 4. The communication architecture

The architecture is generic, open, and modular consisting of a set of inter-
acting modules including a decision module and a set of intelligent modules.
The decision module communicates with the intelligent modules to request
and obtain diagnosis and recovery action proposals based on data obtained
from the robot piloting module.

The architecture is designed to allow easy integration of different AI tech-
niques into preexisting systems. The decision to support the simultaneous use
of multiple AI techniques was made to allow these techniques to collaborate
on the task of reasoning and making decisions under uncertainty. This raises
the question of how to most efficiently integrate different AI techniques into
new and existing systems. We have found that this is most efficiently done
through an open and generic architecture with a sophisticated communica-
tion interface.

The architecture consists of four different types of modules.



Applications of HUGIN 7

4.1 Robot Piloting Module

The robot piloting module manages mission plans and communicates directly
with the sensors and actuators of the vehicle. This module also implements
recovery plans received from the decision module into actions on the vehicle.

Each end-user partner of the ADVOCATE II project was responsible for
the piloting module corresponding to the end-user vehicle.

4.2 Decision Module

The decision module manages the diagnosis and recovery action process. This
includes integration of information provided by different intelligent modules,
user validation of diagnosis and recovery actions when required by the system,
and translation of recovery actions into recovery plans.

The decision module communicates with the intelligent modules receiving
diagnoses and recovery actions, the robot piloting module, and the user.

4.3 Intelligent Module

The role of an intelligent module is to provide possible diagnoses, suggestions
for recovery actions, or both. An intelligent module encapsulates a knowledge
base to a specific problem domain and an inference engine.

A diagnosis on an operational vehicle corresponds to identification of sys-
tem state while a recovery action corresponds to performing a sequence of
actions on the vehicle (e.g., to avoid collision or to recover from any dysfunc-
tion).

The intelligent module communicates with the robot vehicle piloting mod-
ule and the decision module. The robot vehicle piloting module supplies the
intelligent module with data. These data are used in conjunction with the
knowledge base to generate diagnoses and recovery actions. The diagnosis or
recovery action is communicated to the decision module.

There may be multiple intelligent modules connected to the ADVOCATE II
architecture. Multiple intelligent modules may consider the same or different
problems related to the vehicle. Each intelligent module implements the com-
munication protocol defined for the ADVOCATE II architecture.

In each application considered, the HUGIN Decision Engine is used for
both reasoning and decision making under uncertainty, i.e., both to make a
diagnosis and to generate recovery actions.

4.4 Directory Module

The architecture is organized around the directory module. The directory
module is the central point of communication in the sense that it maintains
a list of registered and on-line modules.



8 Anders L. Madsen and Uffe B. Kjærulff

5 Limited Memory Influence Diagram

Limited memory influence diagrams are used to represent and solve the se-
lected set of diagnosis and recovery action problems. An influence diagram [3]
is a compact and intuitive probabilistic graphical model for reasoning about
decision making under uncertainty. It is a graphical representation of a deci-
sion problem involving a sequence of interleaved decisions and observations.
In essence, an influence diagram is a Bayesian network [2,6,14,15] augmented
with decision variables and preference (or utility) functions.

An influence diagram N = (X ,G,P ,U) over random variables XC and
decision variables XD such that X = XC ∪XD consists of an acyclic, directed
graph G = (V, E) over nodes V , connected by directed links E ⊆ V × V , a
set of conditional probability distributions P , and a set of utility functions
U . The nodes V of G represent the random variables, decision variables, and
utility functions of N .

Each decision variable, D, represents a specific point in time under the
model of the problem domain where the decision maker has to make a deci-
sion. The decision options or alternatives are the finite set of states (d1, . . . , dn)
of D where n is the size of the state space of D. The usefulness of a decision
option di is measured by local utility functions associated with D or one of
its descendants in G.

Mathematically, an influence diagram is a compact representation of a
joint expected utility (EU) function:

EU(V ) =
∏

X∈XC

P (X |π(X))
∑

u∈U

u,

where π(X) denotes the immediate predecessors (or parents) of variable X

in N .
To solve an influence diagram N is to determine an optimal strategy for

the decision maker to follow. The strategy consists of one decision policy
δD for each decision variable D ∈ XD. A policy δD is a mapping from the
requisite past of D (i.e., past observations that may impact the choice of
decision option for D) to the state space of D ∈ XD .

In the graphical representation of an influence diagram, random variables
are represented as ovals, decision variables as rectangles, and utility func-
tions as diamond-shaped nodes. A link into a node representing a random
variable represents a probabilistic dependence relation, a link into a utility
node identifies a domain variable of the corresponding utility function, and
a link into a node representing a decision variable specifies that the parent is
observed prior to the decision is made. Links into decision nodes are referred
to as informational links.

An influence diagram supports the representation and solution of sequen-
tial decision problems under the no-forgetting assumption (i.e., assuming
perfect recall of all observations and decisions made in the past that are in-
fluential in a given decision situation). A LIMID [11] is an influence diagram



Applications of HUGIN 9

relaxing the no-forgetting assumption to a limited memory assumption. This
implies that all information available to the decision maker must be specified
using informational links for each decision. This is contrary to an influence
diagram where some informational links may be implicitly assumed present.

Figure 5 shows a LIMID representation of a simple decision problem in-
volving two decisions D1 and D2.

X1 X2

D1 U1

X3 U2

D2

Fig. 5. A decision problem with two decisions

If the graph in Fig. 5 is interpreted as an influence diagram, then the
domain of the decision policy for D2 will consist of X1, D1, and X2 (due to
the no-forgetting assumption). If, on the other hand, the graph in Fig. 5 is
interpreted as a LIMID, then the domain of the decision policy for D2 will
consist only of X2. In a LIMID, all informational links are shown explicitly.

In the HUGIN tool, an influence diagram is solved by message passing in
a so-called strong junction tree [4]. A LIMID, on the other hand, is solved by
message passing in an ordinary junction tree. The difference in computational
complexity between a strong junction tree and an ordinary junction tree can
be tremendous [11].

An OO LIMID is an extension of a LIMID with support for object-oriented
constructions [10], considering a LIMID as a class of which instances can exist
in several other classes (LIMIDs). Thus, in addition to the elements of a
LIMID, an OO LIMID contains instance nodes. An instance node represents
an instantiation (or realization) of one LIMID class within another LIMID
class following the object-oriented paradigm. In graphical representations of
LIMIDs, instance nodes are represented using box-shaped nodes with rounded
corners. The interface of a class is its input and output variables (indicated as
nodes with a gray outer part, where input nodes have a dashed black border);
see Fig. 9 for an example.

6 Knowledge Extraction Methodology

Unfortunately, the construction of a PGM can be a labour intensive task
with respect to both knowledge acquisition and formulation. LIMIDs are not
exceptional in this respect. The knowledge acquisition and formulation pro-
cess associated with building the three LIMID models in the ADVOCATE II
project involved knowledge engineers and domain experts located in four dif-
ferent countries. The knowledge engineers and domain experts had limited



10 Anders L. Madsen and Uffe B. Kjærulff

Fig. 6. Cause hierarchy for the BART AGV energy problem

possibilities for face-to-face meetings and the domain experts had limited
knowledge of LIMIDs. Therefore, a knowledge acquisition scheme had to be
developed that did not rely on familiarity with terminology of probabilistic
graphical models and direct contact with the knowledge engineers.

The scheme is based on building a problem hierarchy for an overall prob-
lem. The problems (or causes) of the hierarchy relate to the states of the
different parts of a vehicle and its environment.

Figure 6 shows such a cause hierarchy related to the energy problem of
the BART AGV. The causes of the hierarchy are grouped into causes that
qualify as satisfactory explanations of the overall problem and causes that do
not. The first group of causes are referred to as permissible diagnoses. The
subset of these that can actually be identified based on available information
are referred to as possible diagnoses. Possible diagnoses are marked with a
“+” in Fig. 6, and permissible diagnoses that are not possible are marked
with a “−”.

The cause hierarchy acts as a road-map for describing the relevant diag-
nostic information and the possible recovery actions. A cause of a sub-tree of
the cause hierarchy that does not contain any possible diagnoses is unlikely to
provide relevant diagnostic information or error recovery information. Thus,
if there are no observable manifestations of the cause strong enough to iden-
tify a possible diagnosis for the cause, we need not worry about it when
eliciting the diagnostic and error recovery information. In particular, none of
the causes below the dotted line in Fig. 6 contain any possible diagnoses. The
domain expert provides the relevant diagnostic information and the recovery
actions in matrix form with one row for each cause “above the dotted line”



Applications of HUGIN 11

and one column for each kind of diagnostic information (i.e., background
information and symptoms) and one column for possible recovery actions.

The qualitative knowledge elicited following such a scheme provides a
sufficient basis for a knowledge engineer to construct the structure of a PGM,
on the basis of which the quantitative knowledge can then be elicited.

For a detailed description of the knowledge acquisition scheme, we refer
the reader to [9].

7 Models

Using the knowledge extraction method described in Sect. 6, one LIMID
model for each of the vehicles has been developed in collaboration with the
end-user. For reasons of space limitations, we include only a subset of the
cause hierarchies and models developed.

7.1 The VORTEX AUV

The purpose of the PGM intelligent module of the VORTEX is to assess the
status of the energy consumption of the actuators and the payload systems
of the AUV. The payload systems consist of various sensors for scientific
investigations. More concretely, the task of the module is to compute the
probabilities of the various possible root causes of unexpected high energy
consumption and the expected utilities of the various recovery actions given
the information available.

There are two different aspects (or sub-causes) of “Energy consumption
problem”, namely “High energy consumption” indicating that the current
level of energy consumption is significantly higher than recommended, and
“Low state of charge (SOC)” indicating either an abnormally high level of
cumulative energy consumption or a poor state of the battery (SOB). These
two aspects relate to, respectively, the present energy consumption and the
cumulative energy consumption. The present energy consumption is defined
as the average consumption over the last 10 seconds.

To identify the cause of low SOC as a high cumulative energy consump-
tion, the model should either be dynamic, capable of representing phenom-
ena evolving over time, or rely on a measurement of the cumulative total
consumption and an indication of the recommended cumulative total con-
sumption at any given point of the mission. We decided to go with the latter
approach, as a dynamic model would result in serious computational complex-
ity problems. Also, given that periodic requests are issued from the decision
module to the VORTEX intelligent module, determining that the cumulative
energy consumption is high is a straightforward task that might as well be
performed by the decision module itself.

Figure 7 shows the resulting LIMID. There are four groups of random
variables in Fig. 7: Ten diagnosis variables, eleven background information



12 Anders L. Madsen and Uffe B. Kjærulff

Fig. 7. The VORTEX LIMID

variables, nine symptom variables, and eighteen auxiliary variables. The ten
diagnosis variables represent the following distinct root causes of an energy
consumption problem of the VORTEX: Old battery, Long-term heavy work-
ing conditions, Poor SOB, Cold battery, High cumulative energy consumption,
Obstructing object, Strong currents, Fast acceleration, Actuator problem, and
Unhealthy payload. The posterior probability distributions for these diagnoses
are computed on the basis of information provided through the twenty evi-
dence variables (symptom measurements and background information).

The domain experts identified a group of nine different actions that can
be performed in response to energy problems: Mission action (e.g., “Con-
tinue”, “Reduce velocity”, “Abort mission”, etc.), Test SOB, Replace battery,
Back/forth manoeuvre (i.e., to escape from an obstructing object), Check pay-
load sensors, etc.

Except that Replace battery must be preceded by a Test SOB action
there are no natural orderings among the actions. Also, observations will
be provided for all twenty evidence variables (symptom measurements and
background information) before any decisions are going to be made. These
two facts imply that the model is not naturally represented as an influence
diagram. Also, it would make exact inference absolutely intractable.

The LIMID framework therefore offers an ideal representation of this com-
bined diagnosis and decision problem. In fact, the size of the junction tree for
the network in Fig. 7 is only about 30K (measured as the sum of the sizes of
the clique tables). We should note, however, that the “limited memory” as-
pect of the model contributes significantly to this fact, as there are observed



Applications of HUGIN 13

variables that belong to the “relevant past” [16] of some decision variables
that do not appear as parents of these variables. For example, according to
the model in Fig. 7 the observed variables RPM of actuators and Velocity
appear to be relevant for the Mission action decision, but there are no in-
formation links from these variables to the decision variable, as the Actuator
consumption and the Ground velocity variables are assumed to cater for their
influences.

Despite the “limited memory” aspect of the model in Fig. 7, preliminary
evaluations of the model provided satisfactory results.

7.2 The BART AGV

The purpose of the PGM intelligent module of the BART AGV is very similar
to that of the VORTEX AUV. The fact that the BART carries no payload
systems and the obvious difference that the BART is an AGV and the VOR-
TEX an AUV, give rise to some differences in the two models, but for the
most part, the BART model shown in Fig. 8 constitutes a subset of the VOR-
TEX model. After some adjustments of the model, a preliminary evaluation

Fig. 8. The BART LIMID

of the model showed an almost complete agreement between expert diagnoses
and recommendations and those provided by the model.

7.3 The DeepC AUV

The purpose of the PGM intelligent module of the DeepC is to assess the
quality of the sonar image and in the case of bad sonar image quality to



14 Anders L. Madsen and Uffe B. Kjærulff

suggest appropriate actions to avoid damage to the vehicle or even loss of
vehicle.

The assessment of the sonar image quality is based on the computation of
three sonar image quality indicators. The quality indicators are determined
by the robot piloting module and fed into the model as evidence. The sonar
image quality indicators are pixel entropy, pixel mean value, and pixel sub-
stance, see [8] for details. From the above description of the problem domain,
it is clear that the amount of disturbance in the sonar image and the presence
of objects is time dependent.

The main modeling challenges were to capture the dynamics of the process
(how the quality indicators relate to the position and behaviour of the vehicle,
the noise sources, and the quality of the image), to address the inherent
infinite horizon problem, and to maintain a computationally efficient model
(small cliques and policies).

We model the problem as a discrete time, finite horizon partially observed
Markov decision process. The model is dynamic in the sense that it models the
behaviour of the system over (discrete) time. The state of the system at any
given point in time is partially observed as sensor readings are available, but
not all entities of the problem domain are observed. The process is represented
as an OO LIMID.

Fig. 9. The generic time-slice model for sonar image assessment

The top-level LIMID class N contains three instantiations, Mi, Mi+1,
and Mi+2, of the class M shown in Fig. 9; see Fig. 10 where Mi has label T i.
The input variables are located at the top of Fig. 9, while the output variables
are located at the bottom. In N , the output variables of Mi are connected
to the input variables of the subsequent time-slice Mi+1, and similarly for
Mi+1 and Mi+2.



Applications of HUGIN 15

T0 T1 T2

Fig. 10. The top-level LIMID class for sonar image assessment is a time-sliced
model of three instances of the model (class) shown in Fig. 9

Each instantiation of M represents the system at a given point in time.
The model N represents the system at three consecutive time steps with an
8 seconds interval, which is the time the image analysis component needs to
analyze a single sonar image.

To avoid combinatorial explosion and thereby maintain computational
efficiency, the model specifies that Altitude, Depth, Pitch, and Speed are ob-
served prior to the decision Recovery Action, but not the image quality indi-
cators. The values computed for the image quality indicators are inserted as
evidence and subsequently policies are recomputed. Hence, the policy for the
decision in the next time-slice will only depend on the most recent observa-
tions on Altitude, Depth, Pitch, and Speed. Since the image quality indicators
are observed each time a sonar image is analyzed, we need to resolve the
LIMID with the observations on the image quality indicators entered as evi-
dence.

The decision has a potential impact on speed, altitude, and depth of the
vehicle. Deciding on a recovery action changing any of these properties will
impact the quality of the next sonar image. The probability of a collision is
modeled in the class instance Speed.

The instance Sonar Image Analysis, which is an instance of the network
class shown in Fig. 11, models the sonar image assessment process. The three
image quality indicators are represented in this class by the variables Entropy,
Mean, and Substance. The quality indicators are influenced by the presence
of disturbance or objects in the sonar image. Disturbance may be caused by
reverberation or noise.

The hierarchical construction of the LIMID enforced by the object-oriented
paradigm has simplified the knowledge acquisition phase considerably as it is
easy to focus on well-defined subparts of the LIMID in isolation. Using class
instances, it is a simple task to create and maintain multiple instances of the
same LIMID class. Furthermore, it is a simple task to change the class of an
instance to another class. This is particularly useful in the knowledge acqui-
sition phase where each LIMID class has been revised and updated multiple
times.

For further details on the DeepC model, see [8].

8 Solving Models

A LIMID is solved using a message passing procedure in a junction tree as
briefly described in Sect. 5. This procedure proceeds by iteratively passing



16 Anders L. Madsen and Uffe B. Kjærulff

other Noise (1)

Own Noise (1)

Bottom
reverberation (1)

Surface 
reverberation (1)

Entropy

Image Quality

Pitch

Objects

Substance

Mean

Own Noise

other Noise

bottom
conditions

surface
conditions

Reverberation

Bottom
reverberation

Surface 
reverberation

BRO

SRO

RO

Noise

Payload Active

Acoustic active

other own Noise

Objects

Altitude

Depth

Fig. 11. The model (class) representing the sonar image assessment process

messages in a junction tree representation of the LIMID. The procedure for
solving LIMIDs differs from algorithms solving influence diagrams [4,11]. The
procedure for solving a LIMID is an iterative procedure working on a junction
tree representation.

The complexity of solving a LIMID depends heavily on the structure of
the junction tree, i.e., the sizes of cliques in the junction tree. The structure
of the junction tree is determined by the connectivity of the graph of the
LIMID, which in turn is determined by the number of nodes and links of the
graph. The state space sizes of variables and the number of links determine
the number of parameters of the model. Table 1 shows the number of chance
and decision variables as well as the number of parameters to be specified in
the three LIMID models constructed. For the DeepC model the number of
variables in the instantiated network is shown.

Table 1. Number of variables and parameters of the three models

Model Chance variables Decision variables Total Parameters

DeepC 121 3 124 3, 556

VORTEX 57 9 66 3, 475

BART 49 6 51 901

From Table 1 it can be seen that the DeepC model contains the largest
number of variables while the VORTEX and BART models have approx-
imately the same number of variables. The VORTEX model has a higher
number of parameters though.



Applications of HUGIN 17

Table 2 shows the total clique state space of the optimal junction trees
used for solving each LIMID where the optimality criterion is clique state
space size. The total clique state space size is defined as

∑
C∈C

∏
X∈C

‖X‖,
where C denotes the set of cliques of the junction tree and ‖X‖ denotes the
number of states of variable X .

Table 2. Total clique state space size of the three models

Model Influence Diagram LIMID

DeepC > 232
− 1 108, 841

VORTEX > 232
− 1 26, 099

BART 14, 017, 742 39, 322

Table 2 also shows the total clique state space size when each model is
solved as an influence diagram. The table shows that the DeepC and VOR-
TEX models when considered as influence diagrams cannot be solved on a
standard 32 bits PC platform (each vehicle is equipped with a standard 32 bits
PC platform running either Windows or Linux operating systems). Thus, ap-
plying probabilistic graphical models to diagnosis and control of autonomous
vehicles would be infeasible without the use of LIMIDs.

9 Integration, Validation, and Real-World Trials

Each LIMID model is encapsulated in an intelligent module of the ADVO-
CATE II architecture (see Fig. 4). The intelligent module takes care of the
communication with the decision module and robot piloting modules. Module
integration was performed using a special-purpose integration tool, which has
greatly simplified the integration process as it allows developers to integrate
their modules into an architecture consisting of a mix of mock-up modules,
man-machine interfaces, and real modules. This was very helpful as module
developers were located in different countries with different working hours
and with limited possibilities for face-to-face meetings.

The validation of each module is equivalent to validation of the knowledge
bases (models). The validation of a model was performed by a careful inves-
tigation of the performance and behaviour of the system based on a selected
set of test scenarios.

Extensive prototyping has helped to ensure appropriate performance and
behaviour of each module. The test cases used to validate and measure the
performance of a model covers all important, critical situations that possibly
can occur in realistic operations. Finally, domain expert(s) and the knowledge
engineers have evaluated the model against the test cases iteratively.



18 Anders L. Madsen and Uffe B. Kjærulff

The usefulness of each LIMID was evaluated by a sequence of trials where
each LIMID was deployed as an intelligent module as part of the ADVO-
CATE II architecture on the vehicles described above. In each trial the LIMID
was deployed in an instantiation of the architecture consisting of a directory
module, a decision module, a robot piloting module, and an intelligent mod-
ule.

The DeepC model had an 88.4% accuracy on image quality assessment on
the test set consisting of 1048 sonar images. The sonar images were recorded
at the ATLAS test pond in Bremen where the real sea trials were performed.

The BART model had a 93.4% accuracy on 36 selected test cases. The test
cases where hand generated to reflect operation of BART at the University
of Alcalá campus.

No real trial data was available for the VORTEX model. Preliminary re-
sults on simulated data were promising, but the data is of insufficient quality
for a proper validation.

10 Discussion

We have presented an application of HUGIN to solve reasoning and deci-
sion making problems under uncertainty related to diagnosis and control
of autonomous vehicles. The application is based on the ADVOCATE II
architecture. The ADVOCATE II architecture is a distributed architecture
supporting diagnosis and control of autonomous vehicles.

The main objective of the ADVOCATE II project was to develop an
architecture to allow the implementation of intelligent modules for AGVs
and AUVs in order to increase their reliability and efficiency.

The performance of the ADVOCATE II architecture is constrained by
(soft) real-time requirements. This implies that the performance of the com-
munication protocol and the intelligent modules needs to be very high. This
has implied a high focus on computational performance in the model con-
struction.

Not only does the communication architecture enable efficient integration
of different AI technologies into new and existing systems, but it also allows
various AI techniques to interact (through the decision module and robot pi-
loting module, though). This option of interactions has been used to dedicate
PGMs to certain types of problems and to have variables in a PGM represent
the output of an NSS intelligent module (e.g., variable “NSS vehicle stalled”
of the BART LIMID; see Fig. 8). In addition, different AI techniques may
be used to solve the same problem. This will often be the case for mission
critical error handling. In our case, this raises the issue of a common scale of
measurement of the usefulness of actions. We have chosen to use normalized
expected utility as the measurement of usefulness of recovery actions.

Even though the framework of PGMs have been available for more than
15 years, it is our experience that the efficient use of these models in certain



Applications of HUGIN 19

domains still requires some research and development. It is often a problem
for the PGM technology that only a few very convincing success stories are
available to the public. Often a PGM captures all or almost all the knowledge
a company has in a particular business area. This implies that the company
is not interested in sharing this model or even sharing the knowledge that
such a model exists. The results of the ADVOCATE II project, however, add
to the increasing number of successful applications of PGMs available to the
public.

One of our key experiences from research and development projects is that
even though graphical models are intuitive, they are difficult to build for in-
experienced domain experts. In the ADVOCATE II project, it was necessary
to develop a new methodology to solve the knowledge acquisition task. We
have developed a knowledge elicitation and formulation method, which is ap-
plicable in general to problems of reasoning and decision making on complex
machinery such as AGVs and AUVs.

The LIMID representation [11] and the object-oriented knowledge rep-
resentation paradigm [10] implemented in the HUGIN tool [1,5] have been
two major cornerstones of the success of Bayesian modeling in the ADVO-
CATE II project. Still a lot of work remains to develop the object-oriented
framework further.

Acknowledgment We acknowledge the partners of ADVOCATE II: Uni-
versity of Alcalá (Spain), Getronics (France), Technical University of Madrid
(Spain), ATLAS Elektronik GmbH (Germany), Ifremer (France), HUGIN Ex-
pert A/S (Denmark), Innova S.p.A (Italy), and e-motive (France). The EU
Commission supported the ADVOCATE II project under grant IST-2001-
34508. Visit the project web-site for more information on ADVOCATE II:

http://www.advocate-2.com

Please visit the company web-site for more information on applications
using HUGIN software:

http://www.hugin.com

References

1. S. K. Andersen, K. G. Olesen, F. V. Jensen, and F. Jensen. HUGIN — a Shell
for Building Bayesian Belief Universes for Expert Systems. In Proceedings of

IJCAI’89, pages 1080–1085, 1989.
2. R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic

Networks and Expert Systems. Springer-Verlag, 1999.
3. R. A. Howard and J. E. Matheson. Influence Diagrams. In The Principles and

Applications of Decision Analysis, volume 2, chapter 37, pages 721–762. 1981.
4. F. Jensen, F. V. Jensen, and S. L. Dittmer. From Influence Diagrams to Junc-

tion Trees. In Proceedings of 10th Conference on UAI, pages 367–373, 1994.



20 Anders L. Madsen and Uffe B. Kjærulff

5. F. Jensen, U. B. Kjærulff, M. Lang, and A. L. Madsen. HUGIN - The Tool for
Bayesian Networks and Influence Diagrams. In Proceedings of PGM’02, pages
212–221, 2002.

6. F. V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag, 2001.
7. F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in causal

probabilistic networks by local computations. Computational Statistics Quar-

terly, 4:269–282, 1990.
8. J. Kalwa and A. L. Madsen. Sonar image quality assessment for an autonomous

underwater vehicle. In Proceedings of ISORA’04, 2004.
9. U. B. Kjærulff and A. L. Madsen. A methodology for acquiring qualitative

knowledge for probabilistic graphical models. In Proceedings of IPMU’04, pages
143–150, 2004.

10. D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In Proceedings of

UAI’97, pages 302–313, 1997.
11. S. L. Lauritzen and D. Nilsson. Representing and solving decision problems

with limited information. Management Science, 47:1238–1251, 2001.
12. S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities

on graphical structures and their application to expert systems. Journal of the

Royal Statistical Society, Series B, 50(2):157–224, 1988.
13. A.L. Madsen, M. Lang, U. Kjærulff, and F. Jensen. The Hugin Tool for Learning

Bayesian Networks. In Proceedings of 7th European Conference on Symbolic and

Quantitative Approaches to Reasoning with Uncertainty, pages 594–605, 2003.
14. R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.
15. J. Pearl. Probabilistic Reasoning in Intelligence Systems. Series in Representa-

tion and Reasoning. Morgan Kaufmann Publishers, 1988.
16. R. Shachter. Efficient Value of Information Computation. In Proceedings of

UAI’99, pages 594–601, 1999.


