

Learning the Structure of Bayesian Networks

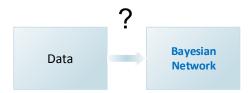
Xiao Lin

Department of Computer Science and Engineering

April 24, 2014

 Xiao Lin
 PC Algorithm
 April 24, 2014
 1 / 13

• Assume that you are given a bunch of cases generated by some unknown Bayesian network N over the universe $\mathcal U$ and you want to reconstruct the Bayesian network. What you will do is to learn the structure of the Bayesian network from the cases.



Constraint Based Learning Methods

 The constraint based methods establish a set conditional independence statements holding for the data, and use this set to build a network with d-separation properties corresponding to the conditional independence properties determined [Jensen and Nielsen, 2007].

Notation for Conditional Independence

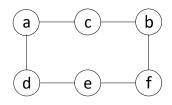
- I(a,b, χ): a is independent from b given χ
- I(a,b): shorthand for $I(a,b,\phi)$
- I(a,b,c): a is independent from b given c

4 / 13

Xiao Lin PC Algorithm April 24, 2014

Notation for PC Algorithm

- A_Cab : the set of nodes adjacent to a or to b in gragh C, except for a and b themselves.
- U_Cab : the set of nodes in graph C on (acyclic) undirected paths between a and b, except for a and b themselves.



$$A_Cab = \{c, d, f\}$$

$$U_Cab = \{c, d, e, f\}$$

$$A_Cab \cap U_Cab = \{c, d, f\}$$

PC Algorithm [Spirtes and Glymour, 1991]

- From the complete undirected graph C on the nodes set V.
- i = 0.

repeat

- For each pair of nodes (a, b) adjacent in C, if $A_Cab \cap U_Cab$ has cardinality greater than or equal to i and a, b are independent conditional on any subsets of $A_Cab \cap U_Cab$ of cardinality less than i, delete a-b from C.
- i = i + 1

until for each pair of adjacent nodes a, b, $A_Cab \cap U_Cab$ is of cardinality less than i.

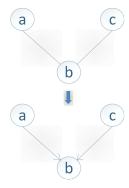
Call the resulting undirected graph F.

③ For each triple of nodes (a, b, c) such that the pair (a, b) and the pair (b, c) are each adjacent in F but the pair (a,c) are not adjacent in F, orient a-b-c as $a \rightarrow b \leftarrow c$ if and only if a and c are dependent on every subset of $A_Fab \cap U_Fab$ containing b. Output all graphs consistent with these orientations.

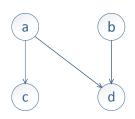
learning skeleton of BN

- i = 0, I(a, b)? If yes, remove the link (a, b)
- i = 1, $I(a, b, \{x\})$? If yes, remove the link (a, b). $\{x\}$ is any subset of $A_Dab \cap U_Dab$ with one node.
- i = 2, $I(a, b, \{x, y\})$? If yes, remove the link (a, b). $\{x, y\}$ is any subset of $A_Fab \cap U_Fab$ with two nodes.
- ... (until the cardinality of $A_Fab \cap U_Fab$ is less than i.)

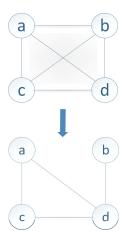
orienting links



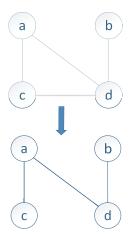
If and only if for every subset S of $A_{Cac} \cap U_{Cac}$ containing b, I(a, c, S) \rightarrow Yes.



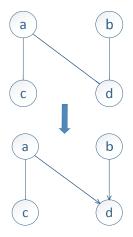
I(a, b)? Yes
I(a, c)? No
I(a, d)? No
I(b, c)? Yes
I(b, d)? No
I(c, d)? No
I(a, c, d)? No
I(a, d, c)? No
I(c, d, a)? Yes



```
i = 0
I(a, b)? Yes. remove (a, b)
I(a, c)? No
I(a, d)? No
I(b, c)? Yes. remove (b, c)
I(b, d)? No
I(c, d)? No
```



```
i = 1
A_Cac \cap U_Cac = \{d\}
I(a, c, d)? No
A_Cad \cap U_Cad = \{c\}
I(a, d, c)? No
A_Ccd \cap U_Ccd = \{a\}
I(c, d, a)? Yes. remove (c, d)
A_Cbd \cap U_Cbd = \phi
```



 $A_Cab \cap U_Cab = \{d\}$ I(a, b, d)? Yes \rightarrow converging connection

- Avoid new converging connection
- Avoid directed cycles

References

Finn V.Jensen and Thomas D.Nielsen (2007)

Bayesian Networks and Decision Graphs Springer: NY, USA, 2007; 230 -236.

Peter Spirtes and Clark Glymour (1991)

An Algorithm for Fast Recovery of Sparse Causal Graphs

Social Science Computer Review 1991, Vol. 9, No.1, 62-72.