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ABSTRACT
Twitter, a popular microblogging service, has received much
attention recently. An important characteristic of Twitter
is its real-time nature. For example, when an earthquake
occurs, people make many Twitter posts (tweets) related
to the earthquake, which enables detection of earthquake
occurrence promptly, simply by observing the tweets. As
described in this paper, we investigate the real-time inter-
action of events such as earthquakes, in Twitter, and pro-
pose an algorithm to monitor tweets and to detect a target
event. To detect a target event, we devise a classifier of
tweets based on features such as the keywords in a tweet,
the number of words, and their context. Subsequently, we
produce a probabilistic spatiotemporal model for the tar-
get event that can find the center and the trajectory of the
event location. We consider each Twitter user as a sensor
and apply Kalman filtering and particle filtering, which are
widely used for location estimation in ubiquitous/pervasive
computing. The particle filter works better than other com-
pared methods in estimating the centers of earthquakes and
the trajectories of typhoons. As an application, we con-
struct an earthquake reporting system in Japan. Because
of the numerous earthquakes and the large number of Twit-
ter users throughout the country, we can detect an earth-
quake by monitoring tweets with high probability (96% of
earthquakes of Japan Meteorological Agency (JMA) seis-
mic intensity scale 3 or more are detected). Our system
detects earthquakes promptly and sends e-mails to regis-
tered users. Notification is delivered much faster than the
announcements that are broadcast by the JMA.

1. INTRODUCTION
Twitter, a popular microblogging service, has received

much attention recently. It is an online social network used
by millions of people around the world to stay connected to
their friends, family members and co-workers through their
computers and mobile phones [18]. Twitter asks one ques-
tion, ”What are you doing?” Answers must be fewer than
140 characters. A status update message, called a tweet, is
often used as a message to friends and colleagues. A user
can follow other users; and her followers can read her tweets.
A user who is being followed by another user need not nec-
essarily have to reciprocate by following them back, which
renders the links of the network as directed. After its launch
on July 2006, Twitter users have increased rapidly. They are
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currently estimated as 44.5 million worldwide1. Monthly
growth of users has been 1382% year-on-year, which makes
Twitter one of the fastest-growing sites in the world2.

Some studies have investigated Twitter: Java et al. an-
alyzed Twitter as early as 2007. They described the social
network of Twitter users and investigated the motivation
of Twitter users [13]. B. Huberman et al. analyzed more
than 300 thousand users. They discovered that the relation
between friends (defined as a person to whom a user has
directed posts using an ”@” symbol) is the key to under-
standing interaction in Twitter [11]. Recently, boyd et al.
investigated retweet activity, which is the Twitter-equivalent
of e-mail forwarding, where users post messages originally
posted by others [5].

Twitter is categorized as a micro-blogging service. Mi-
croblogging is a form of blogging that allows users to send
brief text updates or micromedia such as photographs or au-
dio clips. Microblogging services other than Twitter include
Tumblr, Plurk, Emote.in, Squeelr, Jaiku, identi.ca, and so
on3. They have their own characteristics. Some examples
are the following: Squeelr adds geolocation and pictures to
microblogging, and Plurk has a timeline view integrating
video and picture sharing. Although our study is applicable
to other microblogging services, in this study, we specifically
examine Twitter because of its popularity and data volume.

An important common characteristic among microblog-
ging services is its real-time nature. Although blog users
typically update their blogs once every several days, Twit-
ter users write tweets several times in a single day. Users
can know how other users are doing and often what they are
thinking about now, users repeatedly return to the site and
check to see what other people are doing. The large num-
ber of updates results in numerous reports related to events.
They include social events such as parties, baseball games,
and presidential campaigns. They also include disastrous
events such as storm, fire, traffic jam, riots, heavy rainfall,
and earthquakes. Actually, Twitter is used for various real-
time notification such as that necessary for help during a
large-scale fire emergency and live traffic updates. Adam
Ostrow, an Editor in Chief at Mashable, a social media news
blog, wrote in his blog about the interesting phenomenon of
the real-time media as follows4:

1http://www.techcrunch.com/2009/08/03/twitter-reaches-
44.5-million-people-worldwide-in-june-comscore/
2According to a report from Nielsen.com.
3www.tumblr.com, www.plurk.com, www.emote.in,
www.squeelr.com, www.jaiku.com, identi.ca
4http://mashable.com/2009/08/12/japan-earthquake/



Japan Earthquake Shakes Twitter Users ...
And Beyonce: Earthquakes are one thing you can
bet on being covered on Twitter (Twitter) first,
because, quite frankly, if the ground is shaking,
you’re going to tweet about it before it even reg-
isters with the USGS and long before it gets re-
ported by the media. That seems to be the case
again today, as the third earthquake in a week has
hit Japan and its surrounding islands, about an
hour ago. The first user we can find that tweeted
about it was Ricardo Duran of Scottsdale, AZ,
who, judging from his Twitter feed, has been trav-
eling the world, arriving in Japan yesterday.

This post well represents the motivation of our study. The
research question of our study is, ”can we detect such event
occurrence in real-time by monitoring tweets?”

This paper presents an investigation of the real-time na-
ture of Twitter and proposes an event notification system
that monitors tweets and delivers notification promptly. To
obtain tweets on the target event precisely, we apply se-
mantic analysis of a tweet: For example, users might make
tweets such as ”Earthquake!” or ”Now it is shaking” thus
earthquake or shaking could be keywords, but users might
also make tweets such as ”I am attending an Earthquake
Conference”, or ”Someone is shaking hands with my boss”.
We prepare the training data and devise a classifier using a
support vector machine based on features such as keywords
in a tweet, the number of words, and the context of target-
event words.

Subsequently, we make a probabilistic spatiotemporal model
of an event. We make a crucial assumption: each Twitter
user is regarded as a sensor and each tweet as sensory infor-
mation. These virtual sensors, which we call social sensors,
are of a huge variety and have various characteristics: some
sensors are very active; others are not. A sensor could be
inoperable or malfunctioning sometimes (e.g., a user is sleep-
ing, or busy doing something). Consequently, social sensors
are very noisy compared to ordinal physical sensors. Regard-
ing a Twitter user as a sensor, the event detection problem
can be reduced into the object detection and location es-
timation problem in a ubiquitous/pervasive computing en-
vironment in which we have numerous location sensors: a
user has a mobile device or an active badge in an environ-
ment where sensors are placed. Through infrared commu-
nication or a WiFi signal, the user location is estimated
as providing location-based services such as navigation and
museum guides [9, 25]. We apply Kalman filters and parti-
cle filters, which are widely used for location estimation in
ubiquitous/pervasive computing.

As an application, we develop an earthquake reporting
system using Japanese tweets. Because of the numerous
earthquakes in Japan and the numerous and geographically
dispersed Twitter users throughout the country, it is some-
times possible to detect an earthquake by monitoring tweets.
In other words, many earthquake events occur in Japan.
Many sensors are allocated throughout the country. Fig-
ure 1 portrays a map of Twitter users worldwide (obtained
from UMBC eBiquity Research Group); Fig. 2 depicts a
map of earthquake occurrences worldwide (using data from
Japan Meteorological Agency (JMA)). It is apparent that
the only intersection of the two maps, which means regions
with many earthquakes and large Twitter users, is Japan.
(Other regions such as Indonesia, Turkey, Iran, Italy, and
Pacific US cities such as Los Angeles and San Francisco also
roughly intersect, although the density is much lower than

in Japan.) Our system detects an earthquake occurrence
and sends an e-mail, possibly before an earthquake actually
arrives at a certain location: An earthquake propagates at
about 3–7 km/s. For that reason, a person who is 100 km
distant from an earthquake has about 20 s before the arrival
of an earthquake wave.

We present a brief overview of Twitter in Japan: The
Japanese version of Twitter was launched on April 2008. In
February 2008, Japan was the No. 2 country with respect to
Twitter traffic5. At the time of this writing, Japan has the
11th largest number of users (more than half a million users)
in the world. Although event detection (particularly the
earthquake detection) is currently possible because of the
high density of Twitter users and earthquakes in Japan, our
study is useful to detect events of various types throughout
the world.

The contributions of the paper are summarized as follows:

• The paper provides an example of integration of se-
mantic analysis and real-time nature of Twitter, and
presents potential uses for Twitter data.

• For earthquake prediction and early warning, many
studies have been made in the seismology field. This
paper presents an innovative social approach, which
has not been reported before in the literature.

This paper is organized as follows: In the next section, we
explain semantic analysis and sensory information, followed
by the spatiotemporal model in Section 3. In Section 4, we
describe the experiments and evaluation of event detection.
The earthquake reporting system is introduced into Section
5. Section 6 is devoted to related works and discussion.
Finally, we conclude the paper.

2. EVENT DETECTION
In this paper, we target event detection. An event is an ar-

bitrary classification of a space/time region. An event might
have actively participating agents, passive factors, products,
and a location in space/time [21]. We target events such as
earthquakes, typhoons, and traffic jams, which are visible
through tweets. These events have several properties: i)
they are of large scale (many users experience the event),
ii) they particularly influence people’s daily life (for that
reason, they are induced to tweet about it), and iii) they
have both spatial and temporal regions (so that real-time
location estimation would be possible). Such events include
social events such as large parties, sports events, exhibi-
tions, accidents, and political campaigns. They also include
natural events such as storms, heavy rainfall, tornadoes,
typhoons/hurricanes/cyclones, and earthquakes. We des-
ignate an event we would like to detect using Twitter as a
target event.

2.1 Semantic Analysis on Tweet
To detect a target event from Twitter, we search from

Twitter and find useful tweets. Tweets might include men-
tions of the target event. For example, users might make
tweets such as ”Earthquake!” or ”Now it is shaking”. Con-
sequently, earthquake or shaking could be keywords (which
we call query words). but users might also make tweets such
as ”I am attending an Earthquake Conference”, or ”Some-
one is shaking hands with my boss”. Moreover, even if a

5http://blog.twitter.com/2008/02/twitter-web-traffic-around-
world.html



Figure 1: Twitter user map.

Figure 2: Earthquake map.

tweet is referring to the target event, it might not be appro-
priate as an event report; for example a user makes tweets
such as ”The earthquake yesterday was scaring”, or ”Three
earthquakes in four days. Japan scares me.” These tweets
are truly the mentions of the target event, but they are not
real-time reports of the events. Therefore, it is necessary to
clarify that a tweet is actually referring to an actual earth-
quake occurrence, which is denoted as a positive class.

To classify a tweet into a positive class or a negative class,
we use a support vector machine (SVM) [14], which is a
widely used machine-learning algorithm. By preparing pos-
itive and negative examples as a training set, we can pro-
duce a model to classify tweets automatically into positive
and negative categories.

We prepare three groups of features for each tweet as fol-
lows:

Features A (statistical features) the number of words
in a tweet message, and the position of the query word
within a tweet.

Features B (keyword features) the words in a tweet6.

Features C (word context features) the words before and
after the query word.

To handle Japanese texts, morphological analysis is con-
ducted using Mecab7, which separates sentences into a set
of words. In the case of English, we apply a standard stop-
word elimination and stemming. We compare the usefulness
of the features in Section 4. Using the obtained model, we
can classify whether a new tweet corresponds to a positive
class or a negative class.

6Because a tweet is usually short, we use every word in a
tweet by converting it into a word ID.
7http://mecab.sourceforge.net/

2.2 Tweet as a Sensory Value
We can search the tweet and classify it into a positive class

if a user makes a tweet on a target event. In other words, the
user functions as a sensor of the event. If she makes a tweet
about an earthquake occurrence, then it can be considered
that she, as an ”earthquake sensor”, returns a positive value.
A tweet can therefore be considered as a sensor reading.
This is a crucial assumption, but it enables application of
various methods related to sensory information.

Assumption 2.1 Each Twitter user is regarded as a sen-
sor. A sensor detects a target event and makes a report
probabilistically.

The virtual sensors (or social sensors) have various char-
acteristics: some sensors are activated (i.e. make tweets)
only about specific events, although others are activated to
a wider range of events. The number of sensors is large;
there are more than 40 million sensors worldwide. A sen-
sor might be inoperable or operating incorrectly sometimes
(which means a user is not online, sleeping, or is busy do-
ing something). Therefore, this social sensor is noisier than
ordinal physical sensors such as location sensors, thermal
sensors, and motion sensors.

A tweet can be associated with a time and location: each
tweet has its post time, which is obtainable using a search
API. In fact, GPS data are attached to a tweet sometimes,
e.g. when a user is using an iPhone. Alternatively, each
Twitter user makes a registration on their location in the
user profile. The registered location might not be the current
location of a tweet; however, we think it is probable that a
person is near the registered location. In this study, we
use GPS data and the registered location of a user. We
do not use the tweet for spatial analysis if the location is
not available (We use the tweet information for temporal
analyses.).

Assumption 2.2 Each tweet is associated with a time and
location, which is a set of latitude and longitude.

By regarding a tweet as a sensory value associated with
a location information, the event detection problem is re-
duced to detecting an object and its location from sensor
readings. Estimating an object’s location is arguably the
most fundamental sensing task in many ubiquitous and per-
vasive computing scenarios [7].

Figure 3 presents an illustration of the correspondence
between sensory data detection and tweet processing. The
motivations are the same for both cases: to detect a target
event. Observation by sensors corresponds to an observa-
tion by Twitter users. They are converted into values by a
classifier. A probabilistic model is used to detect an event,
as described in the next section.

3. MODEL
In order for event detection and location estimation, we

use probabilistic models. In this section, we first describe
event detection from time-series data. Then, we describe
the location estimation of a target event.

3.1 Temporal Model
Each tweet has its post time. When a target event oc-

curs, how can the sensors detect the event? We describe the
temporal model of event detection.

First, we examine the actual data. Figures 4 and 5 re-
spectively present the numbers tweets for two target events:



Figure 3: Correspondence between event detection
from Twitter and object detection in a ubiquitous
environment.

an earthquake and a typhoon. It is apparent that spikes
occur on the number of tweets. Each corresponds to an
event occurrence. In the case of an earthquake, more than
10 earthquakes occur during the period. In the case of ty-
phoon, Japan’s main population centers were hit by a large
typhoon (designated as Melor) in October 2009.

The distribution is apparently an exponential distribu-
tion. The probability density function of the exponential
distribution is f(t; λ) = λe−λt where t > 0 and λ > 0.
The exponential distribution occurs naturally when describ-
ing the lengths of the inter-arrival times in a homogeneous
Poisson process.

In the Twitter case, we can infer that if a user detects an
event at time 0, assume that the probability of his posting
a tweet from t to Δt is fixed as λ. Then, the time to make
a tweet can be considered as an exponential distribution.
Even if a user detects an event, therefore, she might not
make a tweet right away if she is not online or doing some-
thing. She might make a post only after such problems are
resolved. Therefore, it is reasonable that the distribution
of the number of tweets follows an exponential distribution.
Actually the data fits very well to an exponential distribu-
tion; we get λ = 0.34 with R2 = 0.87onaverage.

To assess an alarm, we must calculate the reliability of
multiple sensor values. For example, a user might make a
false alarm by writing a tweet. It is also possible that the
classifier misclassifies a tweet into a positive class. We can
design the alarm probabilistically using the following two
facts:

• The false-positive ratio pf of a sensor is approximately
0.35, as we show in Section 4.1.

• Sensors are assumed to be independent and identically
distributed (i.i.d.), as we explain in Section 3.3.

Assuming that we have n sensors, which produce positive
signals, the probability of all n sensors returning a false-

Figure 4: Number of tweets related to earthquakes.

Figure 5: Number of tweets related to typhoons.

alarm is pn
f . Therefore, the probability of event occurrence

can be estimated as 1 − pn
f . Given n0 sensors at time 0

and n0e
−λt sensors at time t. Therefore, the number of

sensors we expect at time t is n0(1 − e−λ(t+1))/(1 − e−λ).
Consequently, the probability of an event occurrence at time
t is

poccur(t) = 1 − p
n0(1−e−λ(t+1))/(1−e−λ)
f .

We can calculate the probability of event occurrence if we
set λ = 0.34 and pf = 0.35. For example, if we receive n0

positive tweets and would like to make an alarm with a false-
positive ratio less than 1%, we can calculate the expected
wait time twait to deliver the notification as

twait = (1 − (0.1264/n0))/0.7117 − 1.

Although many works describing event detection have been
reported in the data mining field, we use this simple ap-
proach utilizing the characteristics of the classifier and the
distribution.

3.2 Spatial Model
Each tweet is associated with a location. We describe how

to estimate the location of an event from sensor readings.
To define the problem of location estimation, we consider

the evolution of the state sequence {xt, t ∈ N} of a target,
given xt = ft(xt−1, vt−1), where ft : Rn

t × Rn
t → Rn

t is a
possibly nonlinear function of the state xt−1. Furthermore,
vt−1 is an i.i.d process noise sequence. The objective of
tracking is to estimate xt recursively from measurements
zt = ht(xt, nt), where ht : Rn

t × Rn
t → Rn

t is a possibly
nonlinear function, and where nt is an i.i.d measurement
noise sequence. From a Bayesian perspective, the tracking
problem is to calculate recursively some degree of belief in
the state xt at time t, given data zt up to time t.



Presuming that p(xt−1|zt−1) is available, the prediction
stage uses the following equation: p(xt|zt−1) =

R
p(xt|xt−1)

p(xt−1|zt−1) dxt−1. Here we use a Markov process of order
one. Therefore, we can assume p(xt|xt−1, zt−1) = p(xt|xt−1).
In update stage, the Bayes’ rule is applied as p(xt|zt) =
p(zt|xt)p(xt|zt−1)/p(zt|zt−1), where the normalizing constant
is p(zt|zt−1) =

R
p(zt|xt)p(xt|zt−1)dxt.

To solve the problem, several methods of Bayesian filters
are proposed such as Kalman filters, multi-hypothesis track-
ing, grid-based and topological approaches, and particle fil-
ters [7]. For this study, we use Kalman filters and particle
filters, both of which are widely used in location estimation.

3.2.1 Kalman Filters
The Kalman filter assumes that the posterior density at

every time step is Gaussian and that it is therefore param-
eterized by a mean and covariance. We can write it as
xt = Ftxt−1 + vt−1 and zt = Htxt + nt. Therein, Fk and
Hk are known matrices defining the linear functions. The
covariants of vk−1 and nk are, respectively, Qt−1 and Rk.

The Kalman filter algorithm can consequently be viewed
as the following recursive relation:

p(xt−1|zt−1) = N (xt−1; mt−1|t−1, Pt−1|t−1)

p(xt|zt−1) = N (xt; mt|t−1, Pt|t−1)

p(xt|zt) = N (xt; mt|t, Pt|t)

where mt|t−1 = Ftmt−1|t−1, Pt|t−1 = Qt−1 + FtPt−1|t−1F
T
t ,

mt|t = mt|t−1 + Kt(zt − Htmt|t−1), and Pt|t = Pt|t−1 −
KtHtPt|t−1, and where N (x; m, P ) is a Gaussian density
with argument x, mean m, covariance P , and for which the
following are true: Kt = Pt|t−1H

T
t S−1

t , and St = HtPt|t−1H
T
t +

Rt. This is the optimal solution to the tracking problem if
the assumptions hold. A Kalman filter works better in a
linear Gaussian environment.

When utilizing Kalman filters, it is important to construct
a good model and parameters. In this paper, we implement
models for two cases as follows.

Case 1: Location estimation of an earthquake center.
In this case, we need not take into consideration the time-
transition property, thus we use only location information
x(dx, dy). We set xt = (dxt , dyt)

t where dxt is the longitude
and dyt is the latitude; zt = (dxt , dyt), F = I2, H = I2, and
ut = 0. We assume that errors of temporal transition do not
occur, and errors in observation are Gaussian for simplicity:
Qt = 0, Rt = [σ2], and nt = N (0; Rt).

Case 2: Trajectory estimation of a typhoon. We need
to consider both the location and the velocity of an event.
We apply the Newton’s motion equation as follows: xt =
(dxt , dyt , vxt , vyt)

t where vxt is the velocity on longitude,
and vyt is the velocity on latitude. We set zt = (dxt , dyt)

t,

F =

0
B@

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

1
CA, H =

„
1 0 0 0
0 1 0 0

«
, ut =

(
axt
2

Δt2,
ayt
2

Δt2, axtΔt, aytΔt)t where axt is the accelera-
tion on longitude, and ayt is the acceleration on latitude.

Similarly as in Case 1, we assume that errors of temporal
transition do not occurr, and errors in observation are Gaus-
sian for simplicity: Qt = 0, Rt = [σ2], and nt = N (0; Rt).

3.2.2 Particle Filters
A particle filter is a probabilistic approximation algorithm

Algorithm 1 Particle filter algorithm

1. Initialization: Calculate the weight distribution Dw(x, y)
from twitter users geographic distribution in Japan.

2. Generation: Generate and weight a particle set, which
means N discrete hypothesis.

(1) Generate a particle set S0 =
(s0,0, s0,1, s0,2, . . . , s0,N−1) and allocate them on the
map evenly: particle s0,k = (x0,k, y0,k, weight0,k),
where x corresponds to the longitude and y corre-
sponds to the latitude.

(2) Weight them based on weight distribution Dw(x, y).

3. Re-sampling

(1) Re-sample N particles from a particle set St using
weights of each particles and allocate them on the
map. (We allow to re-sample same particles more than
one.)

(2) Generate a new particle set St+1 and weight them
based on weight distribution Dw(x, y).

4. Prediction: Predict the next state of a particle set St from
the Newton’s motion equation.

(xt,k, yt,k) = (xt−1,k + vx,t−1Δt +
ax,t−1

2
Δt2,

yt−1,k + vy,t−1Δt +
ay,t−1

2
Δt2)

(vx,t, vy,t) = (vx,t−1 + ax,t−1, vy,t−1, ay,t−1)

ax,t = N (0; σ2), ay,t = N (0; σ2).

5. Weighing: Re-calculate the weight of St by measurement
m(mx, my) as follows.

dxk = mx − xt,k, dyk = my − yt,k

wt,k = Dw(xt,k, yt,k) · 1

(
√

2πσ)
· exp

 
− (dx2

k + dy2
k)

2σ2

!

6. Measurement: Calculate the current object location
o(xt, yt) by the average of s(xt, yt) ∈ St.

7. Iteration: Iterate Step 3, 4, 5 and 6 until convergence.

implementing a Bayes filter, and a member of the family
of sequential Monte Carlo methods. For location estima-
tion, it maintains a probability distribution for the loca-
tion estimation at time t, designated as the belief Bel(xt) =
{xi

t, w
i
t}, i = 1 . . . n. Each xi

t is a discrete hypothesis about
the location of the object. The wi

t are non-negative weights,
called importance factors, which sum to one.

The Sequential Importance Sampling (SIS) algorithm is a
Monte Carlo method that forms the basis for particle filters.
The SIS algorithm consists of recursive propagation of the
weights and support points as each measurement is received
sequentially. We use a more advanced algorithm with re-
sampling [1]. We employ weight distribution Dw(x, y) which
is obtained from twitter user distribution to take into con-
sideration the biases of user locations8 The alogorithm is
shown in Algo. 1.

3.3 Information Diffusion related to a Real-
time Event

Some information related to an event diffuses through
Twitter. For example, if a user detects an earthquake and

8We sample tweets associated with locations and get user
distribution proportional to the number of tweets in each
region.



Figure 6: Earthquake informa-
tion diffusion network.

Figure 7: Typhoon information
diffusion network.

Figure 8: A new Nintendo game
information diffusion network.

makes a tweet about the earthquake, a follower of that user
might make tweets about that. This characteristic is impor-
tant because, in our model, sensors might not be indepen-
dent each other, which would cause an undesirable effect on
event detection.

Figures 6, 7, and 8 respectively portray the information
flow network on earthquake, typhoon, and a new Nintendo
DS game9. We infer the network as follows: Assume that
user A follows user B. If user B makes a tweet about an
event, and soon after that if user A makes a tweet about an
event, then we consider the information flows from B to A10.
This is the similar definition to other studies of information
diffusion (e.g., [15, 16]).

We can understand that, in the case of earthquakes and
typhoons, very little information diffusion takes place on
Twitter. On the other hand, the release of a new game
illustrates the scale and rapidity of information diffusion.
Therefore, we can assume that the sensors are i.i.d. when
considering real-time event detection such as typhoons and
earthquakes.

4. EXPERIMENTS AND EVALUATION
In this section, we describe the experimental results and

evaluation of tweet classification and location estimation.
The whole algorithm is shown in Algo. 2. We prepare a

set of queries Q for an target event. We first search for tweets
T including the query set Q from Twitter every s seconds.
We use a search API11 to search tweets. In the earthquake
case, we set Q = {”earthquake” and ”shaking”} and in the
typhoon case, we set Q = {”typhoon”}. We set s as 3 s.
After determining a classification and obtaining a positive
example, the system makes a calculation of a temporal and
spatial probabilistic model. We consider that an event is
detected if the probability is higher than a certain threshold
(poccur(t) > 0.95 in our case). The location information of
each tweet is obtained and used for location estimation of
the event. In the earthquake reporting system explained in
the next section, the system quickly sends an e-mail (usually
mobile e-mail) to registered users.

4.1 Evaluation by Semantic Analysis

9Love Plus, a game that offers a virtual girlfriend experience,
which was recently released in September 3, 2009.

10Because of this definition, the diffusion includes retweet,
which is a type of message that repeats some information
that was previously tweeted by another user.

11search.twitter.com

Algorithm 2 Event detection and location estimation al-
gorithm.

1. Given a set of queries Q for a target event.

2. Put a query Q using search API every s seconds and obtain
tweets T .

3. For each tweet t ∈ T , obtain features A, B, and C. Apply
the classification to obtain value vt = {0, 1}.

4. Calculate event occurrence probability poccur using vt, t ∈
T ; if it is above the threshold pthre

occur, then proceed to step
5.

5. For each tweet t ∈ T , we obtain the latitude and the lon-
gitude lt by i) utilizing the associated GPS location, ii)
making a query to Google Map the registered location for
user ut. Set lt = null if both do not work.

6. Calculate the estimated location of the event from lt, t ∈ T
using Kalman filtering or particle filtering.

7. (optionally) Send alert e-mails to registered users.

For classification of tweets, we prepared 597 positive ex-
amples which report earthquake occurrence as a training set.
The classification performance is presented in Table 112. We
use two query words—earthquake and shaking; performances
using either query are shown. We used a linear kernel for
SVM. We obtain the highest F -value when we use feature
A and all features. Surprisingly, feature B and feature C
do not contribute much to the classification performance.
When an earthquake occurs, a user becomes surprised and
might produce a very short tweet. It is apparent that the
recall is not so high as precision. It is attributable to the
usage of query words in a different context than we intend.
Sometimes it is difficult even for humans to judge whether
a tweet is reporting an actual earthquake or not. Some ex-
amples are that a user might write ”Is this an earthquake or
a truck passing?” Overall, the classification performance is
good considering that we can use multiple sensor readings
as evidence for event detection.

4.2 Evaluation of Spatial Estimation
Figure 9 presents the location estimation of an earthquake

on August 11. We can find that many tweets originate from
a wide region in Japan. The estimated location of the earth-
quake (shown as estimation by particle filter) is close to the
actual center of the earthquake, which shows the efficiency
of the location estimation algorithm. Table 2 presents re-

12We do not show the result for the typhoon case because of
space limitations.
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Table 1: Performance of classification.

(i) earthquake query:

Features Recall Precision F -value
A 87.50% 63.64% 73.69%
B 87.50% 38.89% 53.85%
C 50.00% 66.67% 57.14%
All 87.50 % 63.64% 73.69%

(ii) shaking query:

Features Recall Precision F -value
A 66.67% 68.57% 67.61%
B 86.11% 57.41% 68.89%
C 52.78% 86.36% 68.20%
All 80.56 % 65.91% 72.50%

Figure 9: Earthquake location estimation based on
tweets. Balloons show the tweets on the earthquake.
The cross shows the earthquake center. Red repre-
sents early tweets; blue represents later tweets.

sults of location estimation for 25 earthquakes in August,
September, and October 2009. We compare Kalman filter-
ing and particle filtering, with the weighted average and the
median as a baseline. The weighted average simply takes the
average of latitudes and longitude on all the positive tweets,
and median simply takes the median of them. Particle filters
perform well compared to other methods. The poor perfor-
mance of Kalman filtering implies that the linear Gaussian
assumption does not hold for this problem. We can find
that if the center of the earthquake is in the sea area, it is
more difficult to locate it precisely from tweets. Similarly,
it becomes more difficult to make good estimations in less-
populated areas. That is reasonable: all other things being
equal, the greater the number of sensors, the more precise
the estimation will be.

Figure 10 is the trajectory estimation of typhoon Melor
based on tweets. In the case of an earthquake, the center
is one location. However, in the case of a typhoon, the
center moves and makes a trajectory. The comparison of
the performance is shown in Table 3. The particle filter
works well and outputs a similar trajectory to the actual
trajectory.

5. EARTHQUAKE REPORTING SYSTEM
We developed an earthquake reporting system using the

event detection algorithm. Earthquake information is much

Figure 10: Typhoon trajectory estimation based on
tweets.

more valuable if given in real time. We can turn off a stove
or heater in our house and hide ourselves under a desk or
table if we have several seconds before an earthquake actu-
ally hits. Several Twitter accounts report earthquake occur-
rence. Some examples are that the United States Geological
Survey (USGS) feeds tweets on world earthquake informa-
tion, but it is not useful for prediction or early warning.

Vast amounts of work have been done on intermediate-
term earthquake prediction in the seismology field (e.g. [23]).
Various attempts have also been made to produce short-
term forecasts to realize an earthquake warning system by
observing electromagnetic emissions from ground-based sen-
sors and satellites [3]. Other precursor signals such as iono-
spheric changes, infrared luminescence, and air-conductivity
change, along with traditional monitoring of movements of
the earth’s crust, are investigated.

In Japan, the government has allocated a considerable
amount of its budget to mitigating earthquake damage. An
earthquake early warning service has been operated by JMA
since 2007. It provides advance announcements of the es-
timated seismic intensities and expected arrival times. It
detects P-waves (primary waves) and makes an alert imme-
diately so that earthquake damage can be mitigated through
countermeasures such as slowing trains and controlling el-
evators. In fact, P-waves are a type of elastic wave that
can travel faster than the S-waves (secondary waves), which
cause shear effects and engender much more damage.

The proposed system, called Toretter13, has been operated
since August 8 of this year. A system screenshot is depicted
in Fig. 11. Users can see the detection of past earthquakes.
They can register their e-mails to receive notices of future
earthquake detection reports. A sample e-mail is presented
in Fig. 12. It alerts users and urges them to prepare for
the earthquake. It is hoped that the e-mail is received by
a user shortly before the earthquake actually arrives. An
earthquake is transmitted through the earth’s crust at about
3–7 km/s. Therefore, a person has about 20 s before its
arrival at a point that is 100 km distant.

Table 4 presents some facts about earthquake detection
and notification using our system. This table shows that we
investigated 10 earthquakes during 18 August – 2 Septem-
ber, all of which our system detected. The first tweet of

13It means ”we have taken it” in Japanese.

cc
Highlight

cc
Highlight

cc
Highlight



Table 2: Location estimation accuracy of earthquakes from tweets. For each method, we show the difference
of the estimated latitude and the longitude to the actual ones, and the Euclid distance of them. Smaller
distance means better performance.

Date Actual center Median (baseline) Weighted ave. (baseline) Kalman filters Particle filters
lat. long. lat. long. dist. lat. long. dist. lat. long. dist. lat. long. dist.

Aug. 10 01:00 33.10 138.50 3.40 -0.80 3.49 2.70 -0.10 2.70 2.67 -0.50 2.72 2.60 0.50 2.65
Aug. 11 05:00 34.80 138.50 0.90 -0.90 1.27 0.70 -0.30 0.76 0.60 -0.20 0.63 0.30 -0.90 0.95
Aug. 13 07:50 33.00 140.80 1.30 -9.60 9.69 2.30 -2.30 3.25 1.63 -3.75 4.09 2.70 -2.70 3.82
Aug. 17 20:40 33.70 130.20 4.60 6.00 7.56 0.90 3.20 3.32 1.63 4.35 4.65 0.10 -0.80 0.81
Aug. 18 22:17 23.30 123.50 7.80 9.90 12.60 8.70 10.90 13.95 8.32 10.13 13.11 5.60 8.10 9.85
Aug. 21 08.51 35.70 140.00 0.50 -4.40 4.43 0.10 -1.00 1.00 0.00 -0.60 0.60 -0.80 0.48 0.93
Aug. 24 13:30 37.50 138.60 -0.40 0.00 0.40 -0.50 0.40 0.64 -0.50 0.30 0.58 2.40 0.70 2.50
Aug. 24 14:40 41.10 140.30 -1.90 1.10 2.20 -1.30 0.50 1.39 -1.50 0.50 1.58 3.10 2.00 3.69
Aug. 25 02:22 42.10 142.80 -2.90 -3.90 4.86 -6.10 -3.80 7.19 -5.20 -3.70 6.38 -1.80 -1.90 2.62
Aug. 25 20:19 35.40 140.40 1.60 -1.80 2.41 2.20 -0.70 2.31 0.70 -1.60 1.75 1.40 0.10 1.40
Aug. 31 00:46 37.20 141.50 -0.40 -3.60 3.62 -1.10 -2.30 2.55 -1.30 -2.20 2.56 -0.30 -0.30 0.42
Aug. 31 21:11 33.40 130.90 -4.50 -3.60 5.76 0.50 2.10 2.16 0.70 1.90 2.02 -0.20 -1.70 1.71
Sep. 3 22:26 31.10 130.30 6.20 -0.10 6.20 4.00 5.00 6.40 4.90 7.20 8.71 2.40 2.10 3.19
Sep. 4 11:30 35.80 140.10 3.10 -1.70 3.54 0.20 -0.90 0.92 0.00 -1.00 1.00 0.80 1.40 1.61
Sep. 05 10:59 37.00 140.20 -2.70 -8.30 8.73 -1.40 -3.10 3.40 -1.30 -3.30 3.55 -2.10 -5.80 6.17
Sep. 08 01:24 42.20 143.00 -3.60 -8.90 9.60 -2.50 -3.90 4.63 -4.50 -6.00 7.50 1.30 -3.60 3.83
Sep. 10 18:29 43.20 146.20 -5.90 -10.20 11.78 -4.90 -7.10 8.63 -4.50 -7.20 8.49 -0.90 -7.00 7.06
Sep. 16 21:38 33.40 130.90 1.10 -0.20 1.12 0.90 2.10 2.28 0.50 1.40 1.49 -0.20 -2.50 2.51
Sep. 22 20:40 47.60 141.70 -11.10 -7.50 13.40 -10.80 -3.10 11.24 -11.30 -3.80 11.92 -7.80 -3.00 8.36
Oct. 1 19:43 36.40 140.70 0.70 -3.80 3.86 -0.60 -1.80 1.90 -0.30 -1.50 1.53 -0.70 0.30 0.76
Oct. 5 09:35 42.40 141.60 -3.70 -3.10 4.83 -2.70 -2.00 3.36 -2.60 -1.60 3.05 1.10 -1.70 2.02
Oct. 6 07:49 35.90 137.60 0.50 1.20 1.30 -0.20 0.80 0.82 -0.10 0.90 0.91 0.30 0.50 0.58
Oct. 10 17:43 41.80 142.20 -3.50 -5.40 6.44 -1.40 -2.10 2.52 -2.20 -2.60 3.41 2.40 -1.30 2.73
Oct. 12 16:10 35.90 137.60 2.80 0.50 2.84 0.80 1.20 1.44 0.80 1.60 1.79 3.60 1.40 3.86
Oct. 12 18:42 37.40 139.70 -2.00 -4.40 4.83 -1.50 -0.90 1.75 -1.70 -1.40 2.20 -1.00 -0.60 1.17

Average distance 5.47 3.62 3.85 3.01

Table 3: Trajectory estimation accuracy of typhoon Melor from tweets.

Date Location Median (baseline) Weighted ave. (baseline) Kalman filters Particle filters
lat. long. lat. long. dist. lat. long. dist. lat. long. dist. lat. long. dist.

Oct. 7 12:00 29.00 131.80 -1.90 -1.90 2.69 -5.20 -3.60 6.32 -3.90 -1.10 4.05 -4.70 1.10 4.83
Oct. 7 15:00 29.90 132.50 -3.70 -2.60 4.52 -3.80 -2.40 4.49 3.20 3.10 4.46 -2.70 0.90 2.85
Oct. 7 18:00 30.80 133.20 -4.10 -1.90 4.52 -4.40 -3.50 5.62 -6.40 5.40 8.37 -3.20 -0.70 3.28
Oct. 7 21:00 31.60 134.30 -3.90 -3.50 5.24 -3.60 -3.30 4.88 -10.90 -1.60 11.02 -3.70 -0.50 3.73
Oct. 8 0:00 32.90 135.60 -2.30 -0.10 2.30 -2.30 -0.90 2.47 -12.60 -20.40 23.98 -2.90 -3.50 4.55
Oct. 8 6:00 35.10 137.20 1.60 3.00 3.40 0.80 1.70 1.88 4.20 16.00 16.54 -0.60 -2.50 2.57
Oct. 8 9:00 36.10 138.80 -0.60 3.60 3.65 0.00 0.50 0.50 0.50 2.60 2.65 0.70 -0.80 1.06
Oct. 8 12:00 37.10 139.70 1.70 3.90 4.25 1.50 1.20 1.92 2.10 1.60 2.64 1.40 0.10 1.40
Oct. 8 15:00 38.00 140.90 2.30 3.20 3.94 2.40 2.20 3.26 1.70 7.60 7.79 2.40 2.70 3.61
Oct. 8 18:00 39.00 142.30 3.20 7.30 7.97 3.50 5.10 6.19 2.10 -18.80 18.92 3.70 5.10 6.30
Oct. 8 21:00 40.00 143.60 4.30 3.90 5.81 4.00 5.30 6.64 1.60 4.50 4.78 4.20 3.10 5.22

Average distance 4.39 4.02 9.56 3.58

Table 5: Earthquake detection performance for two
months from August 2009.

JMA intensity scale 2 or more 3 or more 4 or more
Num. of earthquakes 78 25 3
Detected 70(89.7%) 24 (96.0%) 3 (100.0%)
Promptly detected14 53 (67.9%) 20 (80.0%) 3 (100.0%)

an earthquake is usually made within a minute or so. The
delay can result from the time for posting a tweet by a user,
the time to index the post in Twitter servers, and the time
to make queries by our system. We apply classification for
49,314 tweets retrieved by query words in one month; re-
sults show 6,291 positive tweets posted by 4,218 users. Ev-
ery earthquake elicited more than 10 tweets within 10 min,
except one in Bungo-suido, which is the sea between two
large islands: Kyushu and Shikoku. Our system sent e-mails
mostly within a minute, sometimes within 20 s. The delivery
time is far faster than the rapid broadcast of announcement
of JMA, which are widely broadcast on TV; on average, a
JMA announcement is broadcast 6 min after an earthquake

occurs. Statistically, we detected 96% of earthquakes larger
than JMA seismic intensity scale15 3 or more as shown in
Table 5.

6. RELATED WORK
Twitter is an interesting example of the most recent social

media: numerous studies have investigated Twitter. Aside
from the studies introduced in Section 1, several others have
been done. Grosseck et al. investigated indicators such
as the influence and trust related to Twitter [8]. Krish-
namurthy et al. crawled nearly 100,000 Twitter users and
examined the number of users each user follows, in addi-
tion to the number of users following them. Naaman et al.
analyzed contents of messages from more than 350 Twitter

15The JMA seismic intensity scale is a measure used in Japan
and Taiwan to indicate earthquake strength. Unlike the
Richter magnitude scale, the JMA scale describes the degree
of shaking at a point on the earth’s surface. For example,
the JMA scale 3 is, by definition, one which is ”felt by most
people in the building. Some people are frightened”. It is
similar to the Modified Mercalli scale IV, which is used along
with the Richter scale in the US.
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Table 4: Facts about earthquake detection.
Date Magnitude Location Time E-mail sent time #tweets within 10 min Announce of JMA

Aug. 18 4.5 Tochigi 6:58:55 7:00:30 35 07:08
Aug. 18 3.1 Suruga-wan 19:22:48 19:23:14 17 19:28
Aug. 21 4.1 Chiba 8:51:16 8:51:35 52 8:56
Aug. 25 4.3 Uraga-oki 2:22:49 2:23:21 23 02:27
Aug. 25 3.5 Fukushima 22:21:16 22:22:29 13 22:26
Aug. 27 3.9 Wakayama 17:47:30 17:48:11 16 17:53
Aug. 27 2.8 Suruga-wan 20:26:23 20:26:45 14 20:31
Aug. 31 4.5 Fukushima 00:45:54 00:46:24 32 00:51
Sep. 2 3.3 Suruga-wan 13:04:45 13:05:04 18 13:10
Sep. 2 3.6 Bungo-suido 17:37:53 17:38:27 3 17:43

Figure 11: Screenshot of Toretter, an earthquake
reporting system.

� �
Dear Alice,

We have just detected an earthquake
around Chiba. Please take care.

Toretter Alert System

� �
Figure 12: Sample alert e-mail.

users and manually classified messages into nine categories
[19]. The numerous categories are ”Me now” and ”State-
ments and Random Thoughts”; statements about current
events corresponding to this category.

Some studies attempt to show applications of Twitter:
Borau et al. tried to use Twitter to teach English to English-
language learners [4]. Ebner et al. investigated the ap-
plicability of Twitter for educational purposes, i.e. mobile
learning [6]. The integration of the Semantic Web and mi-
croblogging was described in a previous study [20] in which
a distributed architecture is proposed and the contents are
aggregated. Jensen et al. analyzed more than 150 thousand
tweets, particularly those mentioning brands in corporate
accounts [12].

In contrast to the small number of academic studies of
Twitter, many Twitter applications exist. Some are used
for analyses of Twitter data. For example, Tweettronics16

provides an analysis of tweets related to brands and prod-
ucts for marketing purposes. It can classify positive and
negative tweets, and can identify influential users. The clas-

16http://www.tweettronics.com

sification of tweets might be done similarly to our algorithm.
Web2express Digest17 is a website that auto-discovers infor-
mation from Twitter streaming data to find real-time inter-
esting conversations. It also uses natural language process-
ing and sentiment analysis to discover interesting topics, as
we do in our study.

Various studies have been made of the analysis of web
data (except for Twitter) particularly addressing the spatial
aspect: The most relevant study to ours is one by Back-
strom et al. [2]. They use queries with location (obtained
by IP addresses), and develop a probabilistic framework for
quantifying spatial variation. The model is based on a de-
composition of the surface of the earth into small grid cells;
they assume that for each grid cell x, there is a probabil-
ity px that a random search from this cell will be equal
to the query under consideration. The framework finds a
query’s geographic center and spatial dispersion. Exam-
ples include baseball teams, newspapers, universities, and
typhoons. Although the motivation is very similar, events
to be detected differ. Some examples are that people might
not make a search query earthquake when they experience
an earthquake. Therefore, our approach complements their
work. Similarly to our work, Mei et al. targeted blogs and
analyzed their spatiotemporal patterns [17]. They presented
examples for Hurricane Katrina, Hurricane Rita, and iPod
Nano. The motivation of that study is similar to ours, but
Twitter data are more time-sensitive; our study examines
even more time-critical events e.g. earthquakes.

Some works have targeted collaborative bookmarking data,
as Flickr does, from a spatiotemporal perspective: Serdyukov
et al. investigated generic methods for placing photographs
on Flickr on the world map [24]. They used a language
model to place photos, and showed that they can effectively
estimate the language model through analyses of annota-
tions by users. Rattenbury et al. [22] specifically examined
the problem of extracting place and event semantics for tags
that are assigned to photographs on Flickr. They proposed
scale-structure identification, which is a burst-detection method
based on scaled spatial and temporal segments.

Location estimation studies are often done in the field of
ubiquitous computing. Estimating an object’s location is
arguably the most fundamental sensing task in many ubiq-
uitous and pervasive computing scenarios. Representing lo-
cations statistically enables a unified interface for location
information, which enables us to make applications indepen-
dent of the sensors used — even when using very different
sensor types, such as GPS and infrared badges [7], or even
Twitter. Well known algorithms for location estimation are
Kalman filters, multihypothesis tracking, grid-based, and
topological approaches, and particle filters. Hightower and
Borriello made a study of applying particle filters to location
sensors deployed throughout a lab building [10]. More than

17http://web2express.org
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30 lab residents were tracked; their locations were estimated
accurately using the particle filter approach.

7. DISCUSSION
We plan to expand our system to detect events of various

kinds using Twitter. We developed another prototype that
detects rainbow information. A rainbow might be visible
somewhere in the world; someone might be twittering about
a rainbow. Our system can identify rainbow tweets using
a similar approach to that used for detecting earthquakes.
The differences are that in the rainbow case, the information
is not so time-sensitive as that in the earthquake case.

Our model includes the assumption that a single instance
of the target event exists. For example, we assume that we
do not have two or more earthquakes or typhoons simulta-
neously. Although the assumption is reasonable for these
cases, it might not hold for other events such as traffic jams,
accidents, and rainbows. To realize multiple event detec-
tion, we must produce advanced probabilistic models that
allow hypotheses of multiple event occurrences.

A search query is important to search possibly-relevant
tweets. For example, we set a query term as earthquake
and shaking because most tweets mentioning an earthquake
occurrence use either word. However, to improve the recall,
it is necessary to obtain a good set of queries. We can use
advanced algorithms for query expansion, which is a subject
of our future work.

8. CONCLUSION
As described in this paper, we investigated the real-time

nature of Twitter, in particular for event detection. Seman-
tic analyses were applied to tweets to classify them into a
positive and a negative class. We consider each Twitter user
as a sensor, and set a problem to detect an event based on
sensory observations. Location estimation methods such as
Kalman filtering and particle filtering are used to estimate
the locations of events. As an application, we developed an
earthquake reporting system, which is a novel approach to
notify people promptly of an earthquake event.

Microblogging has real-time characteristics that distin-
guish it from other social media such as blogs and collabo-
rative bookmarks. In this paper, we presented an example
using the real-time nature of Twitter. It is hoped that this
paper provides some insight into the future integration of
semantic analysis with microblogging data.
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