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Introduction

This project was done as a practical part for the course of Decision Support Systems at
Aalborg University. The main goal was to get knowledge about Bayesian network theory
and to apply it to a practical problem.

Since the theory of Bayesian networks has become a greatly developed branch of Artificial
Intelligence research it is used in building models of CAT as well[9]. A CAT is a computerised
adaptive test that can cover any teaching domain. As we have a sufficient mathematical
background for basic algebraic operations we chose the domain of fractions for our CAT.

Our goals were:

to get acquainted with BN theory,

to analyse the domain of fractions,

to build a student model and an evidence model based on Bayesian networks for frac-
tions domain,

e to implement the CAT, and
e to verify the behavior of the implemented CAT.

The first chapter of our report introduces the necessary part of theory of Bayesian networks.
The rules of creation of a student and evidence models are described in details and the
definitions (for Bayesian network, entropy, best item selection) are given. The features of
the CAT in comparison with paper tests are presented.

The second chapter concerns the analysis of fractions and the practical process of building
a student model. The operations with fractions are analysed. The structure of a student
model is given. The process of network learning is described. The analysis of the paper tests
is presented.

The CAT implementation is described in the third chapter. The architecture of the CAT is
presented. Hugin Decision Engine is introduced as a tool for the Bayesian network manage-
ment.



Chapter 1

Theoretical background for CAT

In this chapter we discuss about Computerized Adaptive Test (CAT) and its differences from
the paper-based tests. The basic theory for modeling CAT described in following sections.

1.1 Computerized Adaptive Tests compared with the
paper tests

Computer technology has given new opportunities for the educational and psychological
testing. Computerized Adaptive Test optimizes the administration of the tests and adds
new features, which were impossible in the paper tests. Here are the CAT features:

e it is available all year around, so it is possible to reduce the number of students that
takes the test at one time (in one place);

e it is available in many locations (if it is presented through the Internet or some net-
work);

e it is better tailored to the ability level of each student;
e scores appear on a screen immediately following the test;

e it provides more precise information about the student abilities than the normal paper
test;

e number of asked questions is reduced, so it saves testing time;

e it decreases examinee frustration since low-ability examinees are not forced to take test
items constructed for high-ability testees, and vise versa;

e cach result could be recorded and easily reused later for various purposes (for example:
to calculate the result for the whole class, school or the group of students; to upgrade
the CATs primary believes about the knowledge of some particular student group
making the test more precise);

e it improves the variability of test, because the test contains an entire item bank, rather
than merely 20 or 40 specific items that make up the examinee’s test. As a result, it
is more difficult to answer the test by summarizing all the answers to the items or the



sequence of right answers. However, the item bank must be quite large to ensure that
test items do not repeat frequently;

e it can include text, graphics, photographs, audio records and even full-motion video
clips;

e it does not require the examinee to be a computer specialist when answering a test. He
or she can make it without previous computer experience. The test requires only basic
computer skills and if the test is quite important, usually there is a tutorial which gets
you acquainted with the basic computer skills and the nature of the CAT test before
beginning the official test.

e it is possible to compare the CAT results of the students, because all the test questions
are rated before students takes test. Then computer counts the score from the correctly
and incorrectly answered questions, it takes the difficulty level into consideration as
well.

We have listed above the advantages of the Computerized Adaptive Test. There is one
feature which can be hardly evaluated whether is it positive or negative. The main idea of
CAT is that “the computer scores each question before selecting the next one. You must
answer each question when it is presented. For this reason, once you answer a question and
move on to another, you cannot go back and change your answer. The computer has already
incorporated both - your answer and the requirements of the test design into its selection of
your next question”. So you can not change your previous[1] answers if you realize you have
answered wrongly, and you can not use the next questions to help you to answer the one
you have at the mean time. Looking from one point of view it is good - you solve the item
using your own knowledge. From the other point of view if the current item seems difficult
to you or you know that you knew how to solve it 5 minutes ago and you have forgotten it

now you can not leave it and return to it later. As you can see it is quite a tricky feature of
the CAT.

What are the disadvantages?

e To test a class of students you need to have a computer for every student if you want
them to take a test at the same time.

e [t is harder to concentrate for the test siting by a computer. When you have a paper
test, you realize that it is something important.

e Some people are "afraid of computers” and get nervous because they think they will
be unable to manage a computer test

Bergstron and Gershon [5] had described the main CAT features in one sentence: ”When the
difficulty of items is targeted to the ability of candidates, maximum information is obtained
from each item for each candidate, so test length can be shortened without loss of reliability.”



1.2 Building a Student model.

The goal of our project was to construct a computerized adaptive test of students’ skills we
wish to measure using an item bank. The first step in the construction of the CAT was to
create Bayesian Network (build in Hugin Proffesional 5.7 [3]) for a Student model (SM) and
Evidence models (EMds) [9].

Definition 1.2.1 [7] A Bayesian network consists of
e a set of variables and a set of directed edges among variables;
e cach variable has a finite set of mutually exclusive states;

e the variables together with the directed edges form a directed acyclic graph (DAG);

e to each variable A with parents By, ...,B,, a potential table P(A|B,...,B,) is at-
tached.

Let Si,...,Sy € {0,1} be a set of discrete random variables and each

0 with probability pg. ’
S; = { b Y Ps;o . Ds0,Psi1 €10,1], pso+psa =1, i€][l,N].

1 with probability pg;1

Student model (SM) is a Bayesian network which describes relations among student’s skills
measured by random variables S = (.5;);c1,5) and a probability distribution P(S) = P(S), ..., Sx)
represents knowledge about a student.

SM was build combining these types of connections:

(a) Serial connection (b) Diverging connec- (c) Converging con-
tion nection

Figure 1.1: Types of connections

These are the three basic types of connections among directly connected variables S, Sy
...S;. SM was build according to the rule of d — separation:

Definition 1.2.2 [7] Two distinct variables S; and S, are d — separated if, for all paths
between S; and S, there is an intermediate variable V' such that either

e the connection is serial or diverging and V' is instantiated

or



e the connection is converging, and neither V' nor any of V’s descendants have received
evidence.

Following this rule, we could indicate whether any pair of skill variables were independent
given the evidence 1.3

In case of a converging connection in our SM we can define different types of relations. For
example one of the parent variables S5 ...S; can have a greater impact on S; than other
parents or all the parents S, ....S; can have an equal impact on 5.

Special kinds of relations are logical - logical or and logical and connections. These connec-
tions can be encoded into conditional probability tables as shown below:

Logical S; = True S, = False Logical S; = True S; = False
and SQZT SQZF SQZT SQZF or SQZT SQZF SQZT SQZF
S3=T]1 0 0 0 S3=T]1 1 1 0
S3=F |0 1 1 1 S3=F |0 0 0 1

Table 1.1: Logical relations of S3 to Sy, So described by P(S3|S1, S2)

1.3 Building Evidence models

Evidence models (EMds) describe relations among skill variables and an item from item

bank. Example:

Figure 1.2: Evidence model

here S; denotes i- th skill variable and X;; denotes i- th group of items and [-th item in the
group i. A collection of items (tasks, exercises) grouped according to skill variables is called
item bank. Each item has several possible answers; 5 — 6 in our EMds. Some of the answers
correspond to misconceptions (described in Section 2.4.3), one of the answers is correct.

In the EMd each item X;; can only have one skill variable as a parent. In case it would have
two or more parents we created an intermediate node. In each EMd the guessing probability
is encoded in the conditional probability tables P(X,|S;). Example:

S; = True | S; = False Img | S; = True | S; = False
X, =T 10.95 0.2 0.75 0.25
X; =F | 0.05 0.8

Table 1.2: 'Imagination’ task given imagination skill Sy

Having imagination skill examinee will solve the task with probability 0.95. Without this
skill the probability of the correct answer is not 0, but equals to 0.2 because of the guessing
probability from 5 possible answers.



Evidence on a variable is an information about the state of the variable. Evidence can only
be transmitted to the SM through an EMds.

1.4 EM algorithm

In this section we will shortly describe the problem of maximum likelihood estimation of
the parameters having incomplete data [8]. The Expectation-Maximization (EM) algorithm
iteratively computes the maximum-likelihood estimates from the incomplete data. Each
algorithm iteration consists of two steps - expectation (E) step followed by maximization
(M) step. Incomplete data could be understood like two sample spaces X and ) with ”many
to one” mapping from X to ). The observed data y is from space ). The data x is observed
indirectly through y, and is lying in X (y). X (y) subset is computed using equation y = g(x).
It could be seen more clearly from Figure 1.3.

X g Y
'-‘

Complete data Incomplete data

Figure 1.3: Incomplete Data model

Assume f(z|6) is the PDF (probability density function), for the complete data, where 6 is
a vector of all probability tables in the Bayesian network.

Given the initial estimate of # the EM-algorithm iterates the following two steps, until the
algorithm converges:

e In the E-step the algorithm computes the current expected value of log-likelihood for
all possible ¢'.

Q(0'10) = Epflog f(x]0')[g(x) = y}
e In the M-step the algorithm chooses 6 from the set of all # which maximizes Q(6'|9)

The main idea of the application of the EM algorithm to the learning of a Bayesian network
is that if we knew the values of all the nodes in the network, the M-step (learning) would be
easy. Because we have only partial data, we need to compute the expected values of all the
nodes, and suppose that now all of them are observed ones. Let P be the initial estimate of
the joint probability distribution of our Bayesian network. Then in the E-step we will do a
calculation of expected marginal count of =, given all y that may be filled as x,:

n*(z,) = Ep{n(v.)|g(ra) = v}

a€ A, A={fa(v) :v € V}. fa(v) is the family of the v node.



There are N independent cases X!, X2 .. XV y” is incompleate observation on X”. To
define X”(x,) assume ' is incomplete observation on X*). y',...,y~. Then

X ={ ) T

0 otherwise

Assume we have observed y!, ..., y".

n'(za) = En{ ix"(xawh M)} = iEP{X"(my")} - ﬁp(xaw'/)

Let T be a conditional junction tree. Every node in the tree has a conditional probability
table (all the tables correspond to the distribution P). After the accumulation the resulting
clique probability tables over all cases (n*(z,)) we will get the estimated counts.
The M-step uses these counts to construct a new distribution P’, with density p’

Np'(z,) = n*(z4),a € Az, € X4

" (Zfa(v))

n* (Zpa(v))

The computed conditional probabilities are used for the next estimation of the complete-data
counts.

P (2y |xpa(v)) =

1.5 Proof for Soft Evidence Update

Why use Soft Evidential Update

Figure 1.4: A general network

Originally, we built the evidence model, part of which looked like Figure 1.4. All the item
nodes were attached to the student model. The children nodes are of the same type, and
have the same conditional probabilities. During the test, some of the items would be selected
to test the examinee and would never be used again but still connected to the parent node.
This would make the network too big and slow down the inference. There is another way
how to do the update. We attached only one node to each of the skill nodes. Every time
after an item node had been used, we attached the same item node to replace the used one.
By doing this, we have to edit the network and recompile it. This would again take a lot of
time and system resources.



To avoid this, we proposed a better approach. The item node in Figure 1.2 is associated
with an item group, but it actually represents all single items in a group, where all group
members are of the same type and have the same conditional probabilities. If an item has
been answered, instead of selecting a certain state of the item node, we update the network
by entering the corresponding likelihoods into its parent node. This way of updating is called
"soft evidential update”. This will give us the same result as what we can get by selecting
a state of the item node.

Introduction to Evidential Update

Evidence is a collection of findings on variables. A finding may be hard or soft. A hard find-
ing specifies which value a variable is in. A soft finding or likelihood specifies the probability
distribution of a variable. Hard evidence is a collection of hard findings. Soft evidence is a
collection of soft findings. In Hugin, there are also two approaches to update the network
for discrete chance nodes. An item of evidence can have the form of a statement that a
variable is in a certain state, or, there is a more general item of evidence, called ”likelihood”.
The way to do the update by selecting a certain state of some node is called hard evidence
update, while the other way by entering the likelihood is named soft evidence update.

Update procedure

In Figure 1.5 the big circle represents a subnetwork of Bayesian Network which is composed
of the nodes A;,A,,...,A,,B. Node C stands for a node which state will be selected. The
number of the nodes n could be any integer. Node B can have output or input arrows to
any node in the subnetwork. Node C is connected to the network via node B. There can be
any edges between nodes A;,A,,...,A,,B unless they construct a directed acyclic graph.
When an evidence of C being c is given, we update the network starting in node B following
the next two steps

e Select the c state of node C and propagate
e Read P(B| C =c) in node B

e Compute the likelihood of B as L(B) = %
e Retract the finding of C

e Enter the likelihood into B and propagate

Then the update is finished. The probabilities of all nodes of this network are updated.

Purpose of the proof

Since we only adopted the method described above, it is important for us to prove that the
update by either selecting a state of a node or entering likelihoods to its parent has actually
the same effects. Next we prove that whatever the approach is, the rest of the network is
updated equivalently.

10



Proof for the equivalence

Figure 1.5: A general network

The joint probability of the network in Figure 1.5 is

P(Al,AQ,...,An,B,C) = P(Al,AQ,,An,B)P(C|B) (].].)
_ P(Ay,Ay,..., A, B)- P(C,B)
(B)
_ P(B|C)-P(C)
= P(Ay, A, ..., A, B) ()

Then we observe the evidence of C being in state ¢, the probability of the subnetwork could
be computed as

P(AI,AZ,...,ATL,B,C:C)

P(Ay, Ay, Ay B C=¢) = o= (1.2)
PB|C=c¢) -P(C=c
| P AB). (B P&g) ( )(13)
P(C =¢) '
B P(B|C=c¢)
= P(AI,AQ,...,An,B)'W
= P(41,A4s,..., Ay, B) - L(B) (1.4)

Where equation 1.3 follows from 1.2 due to equation 1.1. The equation 1.4 proves that the
conditional probability of the subnetwork given C' = ¢ can also be computed as the joint
probability of the variables in the subnetwork times the likelihood of B.

Implementation of the program

The function which implements the soft evidential update is called "updateNetwork”. To
update the network, we remember the beliefs of all the relative skill nodes before and after
the hard evidential update from their child. Before we select a state of a child node, the
function stores the beliefs and likelihoods of its parent node. After the hard evidential
update, we record the new beliefs again, and calculate the new likelihood for each node.
Then, we undo the update, and insert the new likelihood into the parents of the item node
and do the propagation.

11



find the answered item;
get the set of its parents;

while(the parent set is not empty )
{
record beliefs and old likelihoods;

¥

select the state correspondent to the answer of the item;
propagate;

while(the parent set is not empty )
{
record new beliefs ;
compute new likelihoods for current parent node;

}

retract finding of the item node; propagate;

while(the parent set is not empty )
{

insert the computed likelihoods into current parent node;

Table 1.3: pseudo-code for soft evidential update in function NetworkControl.updateNetwork

The pseudo-code of this part looks like:

The likelihoods are computed using the beliefs before and after the propagation and pre-
viously entered likelihoods, for example, a skill node B has a child node C which has m-
number of states, assume we compute the likelihood of B, L, (B), where n stands for number
of questions from the item group of B that were asked, while C has the evidence of be-
ing ¢,k € {1,2,...,m}. L,(B) is the expected new likelihood, L, 1(C) is the previously
entered likelihood. We compute L, (B) by

Pn(B | C = Ck)
Pn,l(B | C = Ckfl)

L,(B)=L,_(B)-

from the pseudo-code listed above.

Because
B | C == Cl)

P(B)
, where P(B) is the initial probability of B, and Ly(B) is the initial likelihood of B which is

Ly(B) = Lo(B) - 1

12



always 1. If we follow in the same way, then we can get

L(B) = L) p o)
. PI(B|0201) PQ(B|C:CQ)
B P(B) 'P1(B|C:C1)
. PZ(B | O:CZ)
N P(B)

L(B) = La(B)- g )
. Pg(B | 0203)
B P(B)

Finally, the likelihood of B for the n-th time can be computed as

B|O:Ck)

L,(B) = il P(B)

the denominator is always the initial probability of B. By inserting the likelihoods and
propagating, the network is updated, which is the way how soft evidential update works.

1.6 Next Best Item Selection

In order to build the most informative test which would contain the least number of tasks
per student we used information function - entropy.

Definition 1.6.1 [10] Entropy H(P) of probability distribution P(S) is defined as
H(P(S)) = - Z P(S1=s1,...,5v = sn) - log(P(S1 = s1,..., v = sn)).
81,...,SNE{0,1}

In our CAT this information function was used :

e as the criteria for stopping the test, i.e. after the certain value of entropy is reached -
test stops;

e in the algorithm of the next item selection.

In our EMds each item has 5 or 6 possible answers and item bank consists of 138 items.
Best next item selection algorithm:

Definition 1.6.2 Let X = {X;,..., X/} (M = 138 in our EMd) be an item bank, x*~1) =
(21,3, ... 25_1) be the responses to previously answered items X*~Y = {X;, ..., X;_;} and
{1,2,3,4,5,6} be a set of possible responses to any item from X. The k-th item X} of a
myopiccally optimal test is defined to be

min Y P(Xp =y [ xFY) - H(P(S | Xy = @, x*7Y)),

(k—1)
X e XA X e{1,2,3,4,5.,6)

13



Chapter 2

Basic operations with Fractions

This chapter describes the development of the student model for fractions. The domain of
fractions is introduced in the first section. Types of tasks for basic operations with fractions
and the ways to solve them are analysed in the second section. The structure of our student
model for fractions is described in the third section. The analysis of paper tests we gave to
students is presented in the fourth section.The process of model adaptation and the results
of its verification are presented in the fifth section.

2.1 Introduction to the domain

Our group has decided to analyse basic algebraic operations with fractions. The students
of a secondary school solve different exercises testing their understanding of fractions and
their ability to operate with them. We created a CAT that could help teachers to find
out the skills students have and to diagnose the misconceptions of students. Our CAT can
also be used by children themselves to clear up which skills they miss. We assume that

children are able to add, subtract, multiply and divide natural numbers. We will test the
skills related just to fractions. There are sometimes a few ways to solve every type of the

exercises. Before constructing the Bayesian network we had to do an analysis of the domain
of fractions (Section 2.4.2). We tried to imagine how students solve exercises and which
operations are difficult to learn. During the analysis we have distinguished groups of skills
and we prepared the items of different levels according to them. We did not analyse division

in our model.

2.2 Analysis of the domain
This section deals with the algebraic operations with fractions. The possible tasks with

fractions are described. The necessary skills to solve the tasks are presented.

2.2.1 Fraction Imagination and Understanding
What is fraction imagination?

This is the first thing that students learn at school about fractions. The idea of fractions is
often presented using the pie graph. But there are more ways to imagine what a fraction is:

14



one can think of it as a part of the x-axis. (Figure 2.1)

Figure 2.1: Fraction imagination

Fraction imagination and understanding in our Student model

We included the skill Img to our Student model.

2.2.2 Comparison
Types of tasks of comparison

There are a few types of tasks in which fractions must be compared and there are a few ways
to do this. Usually most students are able to compare fractions with the same denominators
because only numerators need to be compared:

3 1

575
When the denominators are different a student has to find a way to get the result. A student
can multiply both sides of the inequality by both denominators:

L ? 2 | %5 %8
8 5
D% 8 0 2xHx%x8
8 ’ 5
5 < 16

A student can also multiply both sides by the least common denominator, but this way needs
a skill of factorization:

1 1
S 7 = | 24
8 12

3 > 2

A student can also move the fraction from the right side of the inequality to the left side
leaving zero at the right, then he can make the operation of subtraction and compare the
result with zero:

4,1
5 3
41
S
5 3
7
= >0
15

—_
ot



There is one more situation when the task can be solved in two different ways. Having
two fractions with the same numerators the student can just compare the fractions without
performing any operations but using the fraction imagination - the fraction with a smaller
denominator is greater than the other fraction:

3 3

57 8

Of course a student can use the reduction of the fractions to the fractions with the same
denominator like in general situation. The exercises of comparison which include mixed

numbers need an understanding of mixed numbers, and the skill to convert mixed numbers
into improper fractions can be included. More about this operation in Section 2.2.7 on
page 19.

Comparison in our Student model

We included following skills needed for comparison of fractions to our model:

e (pD. Comparison of fractions with the same denominator.

CpD-RSD. Comparison of fractions using reduction to fractions with the same denom-
inator.

e (CpN. Comparison of fractions with the same numerators.

e CpD-MNm. Comparison of mixed numbers using conversion of mixed numbers to
improper fractions and reducing them to fractions with the same denominators.

e CpN-MNm. Comparison of mixed numbers that have the same whole numbers and the
same numerators of proper fractions (e.g. 1%, 1%)

e (UpN2. Tt was added as an auxiliary node for the CpN exercise.

2.2.3 Addition

Types of addition exercises

This skill can also be divided into a few basic skills. Like in the situation of the comparison
addition is easy and understandable when the denominators of the fractions are the same.
Then a student needs to know that he must add the numerators and leave the denominator
the same:

5 5 5 5
The situation becomes complicated when fractions have different denominators or when they
are mixed numbers. In these cases the reduction of the fractions to the fractions with the
same denominator is needed:

3 1 3+1 4

1 1*3+1*4_3+4__7
3 4%3 3x4 12 12

L
4

16



More about reducing fractions to fractions with the same denominator is presented in Sec-
tion 2.2.6 on page 19. When fractions include mixed numbers the skill of the understanding

of mixed numbers is necessary. More about addition of mixed numbers in Section 2.2.7 on
page 19. The result of addition must be a proper fraction (or a mixed number)[2]. A student

must reduce the fraction to its lowest terms or to convert it to the compound fraction. A
student should have understanding for these operations.

Addition in our Student model

We included following skills needed for addition to our student model:
e Ad. Addition of fractions with the same denominators.

e Ad-RSD. Addition of fractions using reducing of fractions to fractions with the same
denominator.

o Ad-MNm. Addition of mixed numbers.

o Ad-MNm’RLT. Addition of mixed numbers and reduction of the result fraction to its
lowest terms.

e AdRSD-RLT. Addition of fractions using reduction to fractions with the same denom-
inator and reducing the result to its lowest terms.

2.2.4 Subtraction

Types of exercises of subtraction

The operation of subtraction is almost of the same difficulty as addition. The easiest exercise
is to make the operation of subtraction with the fractions that have the same denominators.
A students needs to subtract the numerator of the second fraction from the numerator of
the first fraction and to leave the denominator the same:

4 1 3

5 5 5
When the denominators of the fractions are different a student needs reducing the fractions
to the fractions with the same denominator as in addition (Section 2.2.3). The exercises

that include mixed numbers are the most difficult ones in the group of subtraction exercises
(Section 2.2.7).

Subtraction in our Student model

We included following skills needed for subtraction to our student model:
e Sb. Subtraction of fractions with the same denominator.

e Sb-RSD. Subtraction of fractions using reducing of fractions to fractions with the same
denominators.
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SORSD-RLT. Subtraction of fractions using reducing of the fractions to fractions with
the same denominators and reducing the result fraction to its lowest terms.

Sb-MNm. Subtraction of mixed numbers.

Sb-MNmCMI. Subtraction of mixed numbers by converting the result to a mixed num-
ber.

Sb-MNm’RLT. Subtraction of mixed numbers using conversion of the result to its
lowest, terms.

2.2.5 Multiplication
Types of exercises of multiplication

To multiply fractions a student needs to know the basic rule of multiplication - the product of
multiplied numerators must be placed over the product of denominators to get the result[6]:

1 3 3

— % — = —,

2 5 10
The fraction of the result must be simplified or even converted to a mixed number if it is
an improper fraction. Before multiplying fractions it is better to perform canceling of the
fractions - to divide the factors of the numerators and the factors of the denominators by
the same number:

4 5) 4%5 1x4x%5 1 1

15712 15%12 3%5+3%4 3%3 9
Then a student operates with smaller numbers, but the skill of factorization is necessary. If

at least one of the fractions in multiplication is compound the exercise becomes more difficult
as it needs other skills. More about multiplication with mixed numbers in Section 2.2.7 page
19.

Multiplication in our Student model

We included following skills needed for multiplication to our student model:
e Mt. Multiplication of fractions.
e MtSD. Multiplication of fractions that have the same denominators.

NN. Understanding that a natural number can be converted to an improper fraction
that has a denominator equal to one.

MtNN. Multiplication of the fraction by a natural number.

MtMNm. Multiplication of mixed numbers.

Mt-RLT. Multiplication of fractions using reducing of fractions to their lowest terms.
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2.2.6 Reducing fractions with different denominators to the frac-
tions with the same denominator

Where is this skill used?

This is a basic skill as well as fraction imagination. Without this skill a student can not solve
most of the exercises concerning fractions - addition, subtraction, comparison of fractions. A
student needs to find a common denominator. For example, the easiest way to get a common
denominator is to multiply both denominators:

1 +3_ 1x8 +3*12_8+36
12 8 12%x8 8%x12 8x12°

The find the least common denominator is a more complicated thing. It needs the skill of
the number factorization: 12=2%*2*3, 8=2%2*2.The common denominator is 2*2*2%*3=24.

1 3 1%2 3%3 249

1278 122 8x3 24

Reducing fractions to fractions with the same denominators in our Student model

We included two skills that correspond to reduction of the fractions to the fractions with the
same denominator:

e RSD. Reduction of fractions to fractions with the same denominator.

e UN-RSD. Understanding that given fractions should be reduced to fractions with the
same denominators. More about skills of understanding see in Section 2.3.2.

2.2.7 Mixed numbers
Mixed numbers and basic operations with them

Basic operations with fractions become a bit complicated when the mixed numbers are
included. A student must know the rule how to convert the mixed number into an improper
fraction (a fraction that has a greater numerator than denominator) - multiply the whole
number by the denominator and add the product and the numerator. The result of the
sequence of these steps is the numerator of the improper fraction and the denominator is the
same as it was in the mixed number:

3 24543
20 = ZX0FY

5 Y

This action is important in the operations with mixed numbers. But the mixed numbers
can be left in addition, subtraction and multiplication, as plus can be imagined between the
whole part and the proper fraction of the mixed number. The result of the basic operations

(addition, subtraction, multiplication) is usually an improper fraction and it is required to
be converted to a mixed number.

e Comparison of mixed numbers. When the whole number parts of the mixed
numbers are the same then a student needs to compare the proper fractions of the
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mixed numbers only as he does in the general situation of comparison (Section 2.2.2):

1 1
1- > 1-
2 4
1 - 1
2 4’

A fraction with a larger whole number part is a larger mixed number and the proper
fractions need not be compared:

11 < 21
2 4
1 > 2.

The mixed numbers can also be converted to improper fractions and compared using
the rules of comparison of proper fractions.

Addition and subtraction of mixed numbers. There are two ways of addition of
mixed numbers. The first way is to add the whole numbers, to add proper fractions of
the mixed numbers and then to add these to sums (zero can be imagined in the whole
part, of fractions that have no whole parts):

3 2 3 2 9+10 19 4
I-+2-=(1+2 - +-)=3 =3—=4—.
5+ 3 (1+ )+(5+3) - >3 15 15

The second way for addition of fractions is to convert the mixed numbers into the
proper fractions, add them and then convert the result into a mixed number:
3 2 8 8 24+40 64 4

124+25 =242 = = — =4
57737573 15 15 15

Subtraction of mixed numbers is performed in the same way as addition.

Multiplication of mixed numbers. As it was mentioned before, fractions can be
multiplied using conversion of mixed numbers to improper fractions. A student can
multiply the improper fractions and then convert the result to a mixed number if it is
an improper fraction:
2 2 7
*

12422 = 2
5 73 5

78 56 11

8 _7x8 _56_ .11
3 5x%x3 15 15

Distributive law also can be used to multiply mixed numbers:

(21) (12) (2+1) (1+2) 2%x1+2 2+1 1+1 2
—)x(1=-) = —) x —) =2 % * — — % — % — =
5 3 5 3 3 5 5 3
4 1 2 20+3+2 25 5 2 2
=24+ -+ +— =24 = " 924 94 - =241 =232
+3+5+15 + 15 +15 +3 +3 3

Mixed numbers in our Student model

In our model we included following skills corresponding to the operations with mixed num-

bers:

CMI. Converting a mixed number to an improper fraction.
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e (CIM. Converting an improper fraction to a mixed number.

UN-CMI. Understanding that a mixed number should be converted to an improper
fraction.

e UN-CIM. Understanding that an improper fraction should be converted to a mixed
number.

UMNm. Understanding of a mixed number as a sum of the whole part and a proper
fraction of a mixed number.

2.2.8 Reducing of fractions to fractions with their lowest terms.Expansion
The purpose of reducing the fraction to its lowest terms and the use of expansion

Reducing the fractions to their lowest terms and expansion of the fraction are complementary
skills. The result of addition, subtraction or multiplication usually requires simplification -
the denominator and the numerator should be factorised and divided by the same number
that is called the greatest common factor.Expansion is used when a student adds, subtracts

or compares fractions with different denominators. The expansion of the fraction is multi-
plication of both parts of the fraction by the same natural number.

Reducing of the fraction to its lowest terms in our Student model

We included the skills connected to reducing of the fraction to its lowest terms to our student
model:

e RLT. Reducing of a fraction to its lowest terms.
e Fz. Expansion of a fraction to a fraction with its higher terms.

NNFe. Natural number factorization.

Cn. Canceling of fractions.

UN-RLT. Understanding that a given fraction should be reduced to its lowest terms.

2.3 Structure of our Student model

The structure of our Student model is analysed in this section. The types of the nodes of
the model are presented and their descriptions are given.

2.3.1 Types of the nodes

There are six types of nodes in our model (Appendix B):
e Skill nodes;
e Misconception nodes;

e Task nodes;
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e Auxiliary nodes (for combining influence of a skill and misconception);
e Logical AND and OR nodes;

e Logical NOT AND nodes.

2.3.2 Skill nodes

This type of node (Figure 2.2) is the main type of node in our Student model, because it
corresponds to a skill of a student. Skill nodes can be grouped according to the operations

Figure 2.2: Skill node Sb

to which the skills belong (Section 2.2). Each skill belongs to one of the groups:

e Comparison: CpD, CpD_RSD, CpD_MNm, CpN, CpN2, CpN_MNm

Addition: Ad, Ad_-RSD, Ad_RSD’RLT, Ad_-MNm, Ad_MNmRLT

Subtraction: Sb, Sb_.RSD, Sb_-MNm, Sb_MNm’RLT, SbMNmCMI

Multiplication: Mt, MtSD, MtNN, MtMNm, Mt_RLT

Ability to use a skill: UN_RSD, UN_CMI, UN_CIM, UN_MNm

Other skills: RSD, CMI, CIM, CN, NNFc¢, NN

The probability tables for the nodes of this type show the prior beliefs of skills of a student.
The probabilities should correspond to to the tested group of students. The experts of this
domain can determine the probabilities most precisely. Experience tables are used in the
penalized EM algorithm. For example, the probability and experience tables for the node
Mt are:

2 [ 02] b

true 0.8

Table 2.1: a) Mt probability table and b) Mt experience table

The table means that the probability that students are able to multiply fractions is 0.8. The

nodes of the group are connected and they constiture a hierarchy. For example, the node Ad
is a parent of the node Ad_RSD, Ad_RSD is a parent for Ad_ RSD’'RLT and Ad_MNm (see
Figure 2.3). This means that if a student has to solve the exercise for Ad_RSD (2 + 1) then
he must have skills

e Ad (L +2)

15

e RSD (reducing the fractions to the fractions with the same denominator)
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AdRSD-RLT

Figure 2.3: Hierarchy of nodes

GRSD false true

Ad false | true | false | true
false 1 1 1 0.05
true 0 0 0 0.95

Table 2.2: Probability table for the skill Ad_RSD

e UN_RSD (understanding of RSD)
(the last two skills are combined by the node GRSD - more about this in Section 2.3.6).

The probability table for the skill node Ad_RSD is given in Table 2.2

If a student has the skills GRSD (true) and Ad (true) then the probability that a student
has a skill Ad_RSD is equal to 0.95. The probability is not equal to 1 since we want to
model that a student will not always be able to solve the exercise even if he has both skills.
Ad_RSD requires an additional ability to combine and use the simpler skills. There is one

specific feature that makes skill nodes different from the other types of nodes. Skill nodes
have experience tables. These tables are used in the penalized EM algorithm for Bayesian
network learning (more about EM algorithm in Section 1.4). Table 2.3 is the experience
table for node Ad_RSD. The numbers in the experience table mean how certain an expert is

GRSD false true
Ad false | true false | true
experience | 1000 | 1000 | 1000 | 60

Table 2.3: Experience table for Ad_RSD

about the prior probabilities. The larger number means that experts are more certain. The
number values can be understood as a number of observed cases that were used to estimate
the probability. Nodes with a prefix UN_ belong to the the group of ability to use a skill

nodes. These skills mean that a student is able to use the correspondin basic skill (e.g.
UN_RLT means that a student uses his skill RLT). When a student can solve an exercise
that requires RSD skill but he does not add the fractions with different denominators - he
has not skill UN_RSD. The results of the paper tests approved the necessity of such nodes
to be included in the model.

2.3.3 Misconception nodes

The misconception nodes of our model have names that begin with a symbol ”-”. The nodes
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of this type (Figure 2.4) have the same features as skill nodes have. They have experience and
prior probabilities. The probabilities tables are updated using the penalized EM algorithm,
but misconception nodes do not have any hierarchy. We included these misconceptions to

Figure 2.4: Misconception node -ADA

our model (they are described in Section 2.4.3):
e Misconception in addition: -ADA
e Misconception in subtraction: -SDS
e Misconceptions in multiplication: ~-ANMSD, -MASD, -ADM, -MD

e Misconception in mixed numbers: -MMNm

2.3.4 Task nodes

The task nodes of our model have names that begin with a letter T (see Figure 2.5 for an

example of a task node).

Figure 2.5: Task node TMAd

Each task node corresponds to a test item and a task node from an evidence model. Task
nodes are separated from the model and our student model is a model without task nodes.
These nodes are attached to the model dynamically and the evidence obtained by the stu-
dent is transmitted to these nodes and after propagation the evidence is transmitted to the
evidence model. Table 2.4 is the probability table for the TMAd node.

Skill Ad

false | true ADA
Task false 0.6 0.038 | 0.038
TMAd | true 0.2 0.95 0.12
ADA | 0.2 0.012 0.95

Table 2.4: Probability table for TMAd given Ad

The probabilities in Table 2.4 correspond to a multichoice exercise for the TMAd node with:
e one correct choice
e one choice corresponding to a misconception (in the example it is ADA)
e three false choices.

If a student has skill Ad then
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e the probability that he will choose the true answer is equal to 0.95.

e the probability to choose the other answer is 0.05, but there are three possibilities to
do this (0.05 is for false answer as the student can make a numerical mistake):

— the probability to choose a false answer is 0.038 ,

— the probability that a student has ADA misconception is 0.012 (0.05 was divided
by 4).

When a student has a misconception there is a probability equal to 0.95 that he will choose
ADA. When a student has not a skill he will probably guess and thus every answercan be
chosen with probability 0.2. As there are three false choices then the probability to choose
a false answer is 0.6. The probability tables for these nodes are not updated through the
network learning.

2.3.5 Auxiliary nodes for combining influence of a skill and mis-
conception

The names of these nodes begin with a letter M (Figure 2.6) in our model (except multi-
plication nodes Mt, MtSD). These nodes combine skill nodes and misconception nodes so

Figure 2.6: Intermediate node MAd

that each task node has just one parent. This procedure helps to minimize the size of tables
for the task nodes which are connected to the model dynamically. The auxiliary nodes have
potential tables (Table 2.5). We assume that students can not have both - a skill and a

ADA false true

Ad false | true | false | true
false 1 0 0 0
true 0 1 0 0.8
ADA | 0 0 1 0.2

Table 2.5: Table for the intermediate node MAd

misconception. In the model it is forbidden with a logical NOT AND nodes. Therefore the
probabilities for ADA=true and Ad=true are not relevant.

2.3.6 Logical AND nodes

These nodes have names that begin with a letter G in our model (Figure 2.7). These nodes

Cl_orsD__ D

Figure 2.7: Logical AND node GRSD
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combine parent nodes by the AND operation. These nodes help to minimize the number of
arrows in the network. For example, GRSD means that a student has RSD and knows how
to use the skill. GRSD node has a conditional probability table given in Table 2.6. Logical
AND nodes have no experience tables.

RSD false true
UN_RSD | false | true | false | true
false 0 0 0 1
true 1 1 1 0

Table 2.6: Table for GRSD node

2.3.7 Logical NOT AND nodes

A R

These nodes have names that begin with in our student model (Figure 2.8).  As it

oo >

Figure 2.8: Logical NOT AND node INANDCMI

was mentioned above a student can not have a skill and a misconception for the skill at the
same time. We have INAND nodes to avoid such situations and use NOT(AND) operation
(Table 2.7). A student can not have -MMNm and CMI at the same time when NAND has

-MMNm false true
CMI false | true | false | true
false 0 0 0 1
true 1 1 1 0

Table 2.7: Table for NAND_CMI

the evidence true. The evidence for NAND nodes is inserted during the initialization of
the tests - there is a special node _!_ for this purpose and it is initialised immediately after
loading the network. These nodes have no experience tables.

2.4 Paper tests

This section deals with the paper tests we gave to the students of a secondary school. The
purpose of these tests is explained. The process of the preparation and the contents of the
tests are described. The analysis of the results is given.

2.4.1 Preparation of the tests

Having decided to choose the domain of the fractions we needed an advice of someone who
had experience in working with children who learn fractions. We had an appointment with
a teacher of mathematics working in the secondary school in Brgnderslev. She gave us the
information according to which we worked further. We got the understanding about the
level of students’ knowledge in fractions. During the meeting with the teacher it was agreed
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Skill 3a,b | 4a,b | ba | bb,c | 6a,b | 7a,b | 8a | 8b | 8 | 9a 9b | 9¢ | 10a | 10b | 10c
RLT + + (2)! (2)
RSD +
TCpD_3 +
TCpD_RSD_3 +
CMI + + + +
CIM + + + +
MtSD +
Mt

Mt_RLT
UN_RLT
MtMNm
UN_CMI
UN_CIM
Ad +
Ad_RSD
UN_RSD
Ad_-MNmRLT +
Sb + + +
Sb_RSD +
Sb_-MNm +

+|++

+|++

+|+|+

Table 2.8: Skills tested in the exercises

that we would create the test and the teacher would give it to her students as we needed
the information about skills of students for our model. We created two tests and each of

them had 10 groups of the exercises (see the tests in AppendixA). We chose the exercises
according to the information we got from the teacher and we expected the students to have
some misconceptions.

We wanted to know how students imagine fractions. That is why the first exercise asks
students to describe how they understand a given fraction. The second exercise asks to
choose one of the two pictures or to draw the other one to explain what the fraction is in
the student’s mind. We expected that students think of fractions as of a part of a pie or the
part of x-axis.

The third group of exercises asks to reduce the fractions to their lowest terms. This skill is
usually required after the operation of addition or subtraction. The forth exercise asks to
find the least common denominator for the fractions as this skill is important in addition
and subtraction when fractions do not have the same denominators.

The fifth group of exercises asks to compare fractions - to decide which one is greater than
the another one.

The sixth and the seventh groups are related to the compound fractions. The sixth group
asks to transform the compound fractions into improper fractions and the seventh asks to
do it vice versa.

The last three groups of exercises are related to basic operations - multiplication, addition
and subtraction. There are three exercises for each of them. The first one includes fractions
with the same denominator, the second one includes fractions with different denominators
and there is a compound fraction included in the third one. Table 2.8 on page 27 shows
which skills were tested in each exercise. The tests were given to the students of 15 years
old in the secondary school in Brgnderslev. 149 students did our tests.

!These skills were necessary only in Test 2
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2.4.2 Analysis of the paper tests

We have made the analysis of results students got making our tests (see in Appendix C).

Number of students &

o 1 2 3 fa ] 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20
Number of true answers

Figure 2.9: Distribution of the students according to the number of true answers

Complexity of our tests

Figure 2.9 shows how many students were able to solve different number of exercises. Ac-
cording to the statistics we can say that we prepared the tests for the students of the medium
level of knowledge in fractions. We had 20 exercises.

e 19 students solved more than eighteen exercises;
e 7 students solved less than four exercises.

This means that our tests were not difficult, but also they were not easy and not all the
students were able to do all the exercises:

e 98 students (65.77%) made more than ten exercises (i.e. 50%).

e 44 (29.53%) of those 98 solved more than fifteen exercises (i.e. 75%).

Groups of exercises

The first two exercises were used to clear up how students imagine fractions. Most students
imagine fractions as a part of a pie. We defined the prior probabilities for the Img node
in our network according to this information. We learned what exercises of our tests were

difficult for students (Table 2.10). Most students know how:
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Figure 2.10: Statistics for each exercise

to reduce a fraction to its lowest terms (exercises 3a,b);

to reduce the fractions to the fractions with the same denominators (exercises 4a,b);

e to compare the fractions (exercises ba, b, ¢);

to convert a mixed number to an improper fraction (exercises 6a, b) or convert an
improper fraction to a mixed number (exercises 7a, b).

But much less of them are able to combine these skills in more complex exercises (groups
8,9, 10). The number of students who solved the exercises 8-10 is lower than the number
of students who solved exercises 3-7. The groups of exercises 8-10 were organized to give

different situations for the same operation. We see from the table that the most complex
exercises were those which included mixed numbers (8¢, 9¢, 10c). The students are able

e to convert a mixed number to an improper fraction (ex.6: a - 108, b - 102),

e to convert an improper fraction to a mixed number (ex.7: a - 113, b - 115).
But they do not understand how operate with mixed numbers:

e multiply (ex. 8c- 30),

e add (ex. 9c - 49),

e subtract (ex. 10c - 43).

Exercise 9a required addition of two fractions with the same denominators and 10a required
subtraction of two fractions with the same denominators. It seems they were more difficult
for the students than the exercises that included the fractions with different denominators
(9b, 10b):
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e 9a - 77 and 9b - 96;
e 10a - 84 and 10b - 87.

The students know that many rules exist for the situation when the denominators are the
same but they do not remember exactly what to do. The most difficult operation for students

is multiplication. We found five misconceptions that are connected with this operation (see
Section 2.4.3).

140
120
100
a0
Number of students
&0

40

20

Skills

Figure 2.11: Skills

Skills

Figure 2.11 shows how many students have each skill.
e 138 students have the skill of reducing the fraction to its lowest terms (RLT)

— but only 55 of them are able to use this skill in complex exercises (UN_RLT)

— and only 43 students can multiply a fraction(Mt_RLT) or add mixed numbers
(AAMNmRLT) and reduce the result fraction to its lowest terms.

e 107 students can convert a mixed number to an improper fraction(CMI) but only 65
are able to use it(UN_CMI). The same thing happens with conversion of an improper
fraction to a mixed number(CIM) - only 38 students understand how to use this skill
(UN_CIM).

e The number of students that have the skill of reducing fractions to fractions with the
same denominator(RSD) and the number of students that have an understanding of
using (UN_RSD) it do not differ much:
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— 119 students have RSD,
— 101 students have UN_RSD.

The lowest numbers are for the skills that are connected with mixed numbers - multi-
plication(MtMNm), addition(Ad_MNmRLT) and subtraction (Sb_MNm).

140

120 4

100 A

a0 1

60 1

Number of students

40 A

20 4
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3aRLT |36 RLT |45 RSD |40 RSD TCHD_R [TCD_R | Ba CMI | Bl CMI | 7a CIM | 7k CIM Ga Ad |Ad_RS [Ad_MN [10a Sb |Sb_RS |Skh_MN
TCpD_3 WHSD  |t_FLT |hithdhim

S0_3 | S0_3 D | mRLT D m

‘. Questions | 128 137 a5 106 124 126 m 108 102 113 115 =] 43 30 i 96 49 a4 a7 43
‘D Skillz 138 138 119 119 124 123 123 107 107 M7 "7 1] 43 30 104 96 19 a7 a7 43

Figure 2.12: Exercises compared with the main skill

In Figure 2.12 a pair of columns for each exercise is presented. The first column represents
the number of students that solved an exercise correctly. The second column represents the
number of students that showed they have the skill necessary to solve the exercise. Some
skills were tested using a few exercises and we made the conclusions according to their results
(Table 2.8). For example, RLT was tested in exercises 3a,b, 8b and 9a,10a in the second
test. For each exercise there is a main skill - RLT is main for 3a and 3b, and Mt_RLT is
main for 8b. As it can be seen from the diagram there are a few big differences between the

number of students that solved an exercise and the amount of students that have the main
skill for the corresponding exercise. For example, 9a has the main skill Ad (addition):

e 77 students solved the exercise correctly,

e but 104 students have the skill of addition. Some students solved the other addition
exercises correctly and did a numerical mistake in this one (or did not finish the exercise
as we required) - however they proved that they do have the skill of addition.

The columns for 9¢ (Ad_MNmRLT) show an opposite situation. The amount of students
that have the skill is lower than the amount of students that solved the exercise 9c. This
situation appeared as some students solved the exercise correctly, but we could not decide if
they have a skill or not. They got the correct result but according to other related exercises
they do not seem to have this skill - the students did not solve easier exercises of addition,
so perhaps they have a misconception. This unclear situation was left not resolved.
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Nr | Name Example Pattern Cases | Percentage
T, 1 _ 2 b _ atb

1 | ADA 3t3=3% = 5_% 22 14.8

2 | SDS S—3:=3 ¢_b_ab 14 9.4
T~ 3 _ x4 _ 4 a b —ay 1

4 | MASD |[:x2=232=3 Ly b — axb 21 14.1
T _ il —T.q1l, 1T _1 — A=

5 %131/[1\1/}15?3 oo —ailyry =g |G =T 6 4.0

6 L= =< 42 =49 12 8.1

T [ADM  [1lxT=31=73 gy 31 2|8l
2 7 4 244 — 6 z "y zty :

8 |ISMNm [13-2=1; 2.7

9 | AWNmN | 22 = 22 AS = Ade 1 0.7
1 4 _ 80 a ¢ _ (axd)x(cxd)

Table 2.9: Misconceptions

2.4.3 Misconceptions

Number of students

0 1 2 3 4
Number of misconcptions

Figure 2.13: Distribution of students according to the number of their misconceptions
During the analysis of the results of students we found nine misconceptions (Table 2.9).
They can be divided into four groups.

e Two misconceptions (ADA, ISMNm) were found in the exercises which included the
operation of addition.

e One misconception (SDS) was found in the exercises of subtraction.

e Two misconceptions appeared when students solved the exercises which included mixed
numbers (MMNm, AWNmN).
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e The largest group of misconceptions is connected with multiplication - five misconcep-
tions (MD, MASD, ANMSD,ADM, MAPM ).

The patterns, examples, statistics of misconceptions are given in Table 2.9.
Figure 2.13 shows the distribution of students according to the number of misconceptions
they have.

e 80 students (of 149) have no misconceptions (53.69%);
e 40 students have one misconception (26.85%).

We see that 80.54% of students have less than two misconceptions. Only one student has four
misconceptions out of nine and 10 students have three misconceptions - just 7.38% of students
have more than two misconceptions. The left 12.08% of students have two misconceptions.
We can make the conclusion that even if we found nine misconceptions in the papers - not
many students have them. We have about 54% of students with no misconception, but
Figure 2.9 on page 28 shows that just 8 students solved all the exercises. This means that
either students do not have misconception, either they did not try to solve the exercise or
they did a numerical mistake.

ADA

Addition of Denominators in Addition. This misconception appeared in the exercises of
addition. Students added denominators as well as numerators. ADA is one of misconceptions
that appeared frequently - 22 students (14.8%) have it (see Table 2.9).

SDS

Subtraction of Denominators in Subtraction. The pattern of this misconception is almost
the same as in ADA, but misconception is connected to subtraction and students subtracted
denominators as well as numerators.

MD

Multiplication using Division rules. This misconception appeared when students mixed the
rules of multiplication with division rules. The students multiplied the numerator of the first
fraction by the denominator of the second fraction and the denominator of the first fraction
by the numerator of the second. It means that the second fraction was turned over as in
division. MD is the most frequent misconception - 23 students have it (15.4%).

MASD

Multiplication like Addition with the Same Denominator. Students mixed addition with
multiplication. When fractions had the same denominators in the exercises of multiplication
students having this misconception left the same denominator for the result instead of raising
it to the second power. They multiplied only the numerators.
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MAPM

Multiplication of All Parts of fractions in Multiplication. The misconception is connected
to multiplication. Before multiplying fractions the students reduced the fractions to the
fractions with the same denominator, they left the common denominator for the result but
multiplied numerators.

MMDNm

Multiplication in Mixed Numbers. The misconception was found in the exercises which
included mixed numbers. Students multiplied the whole part of the mixed number by the
numerator.

ANMSD

Addition of Numerators in Multiplication of fractions with the Same Denominator. This
misconception was found in the exercises of multiplication. Students multiplied denomina-
tors, but they added numerators instead of multiplying them.

ADM

Addition of Denominators in Multiplication. This misconception is complementary to AN-
MSD. Students multiplied numerators but added denominators.

ISMNm

Improper Subtraction of Mixed Number. The misconception is connected to the under-
standing of mixed numbers. Students left the whole part of the first fraction, then subtracted
proper fractions, got the negative fraction but they wrote it as if it was positive.

AWNmMmN

Addition of the Whole Number and the Numerator in mixed numbers. This misconception
was found just once. The student converted the mixed number using his own rule - he added
the whole number with the numerator.

2.4.4 Brief summary of the results of the paper tests

Having analysed the paper tests we added the misconceptions to our student model. We
validated the structure of our network. We got the prior probabilities for our network.
Before testing students we doubted if we should add skills of understanding what skills use
and how in an operation(e.g. in the operations like reduction of a fraction to its lowest terms
or conversion of a mixed number to improper fraction). Since many students who had the
necessary skills were not able to use them properly we included the "understanding” skills
in our network. We found nine misconceptions but to have more detailed analysis special
test would be needed.
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2.5 Learning network of our Student model

This section deals with the Bayesian network learning. The learning procedure is described
and the results of the learning verification are presented.

2.5.1 Process of the learning

We prepared the paper tests and gave them to the students of a secondary school in
Brgnderslev. We tested the students of 15 years old and we used this information for the
learning network. As it was mentioned earlier (Section 2.3.2) the probability tables for skill

nodes can be filled by the domain expert. An expert working with students can help us to
find the prior probabilities. The model should be adapted to the group of students the tests
are created for. Another way to get the probabilities is to prepare paper tests for the students
and find out the necessary probabilities from the results. On the basis of the testing results
it is also possible to determine the misconceptions the students have and to find exercises
most difficult for the students. According to the results the network learning is performed
using EM algorithm. For the research of the group of the students we have consulted a

secondary school teacher and prepared paper tests (more about paper tests in Section 2.4.1).
We summarized the results as a list of data vectors (Appendix C). We used the penalized EM
algorithm (described in Section 1.4) implemented in Hugin Decision Engine (HDE) for the
network learning (more about HDE in Section 3.3). To learn each node EM algorithm uses
the experience tables of nodes (see Section 2.3.2). We do not need to update probabilities
for logical type nodes. So these nodes do not have experience tables. For auxiliary nodes we
should update only one column which corresponds to the situation when all the parents of
a node have values true (Table 2.2). Other columns should stay unchanged because we are
sure about values in them. Experience values in these columns are equal to 1000.

2.5.2 Verification of the learning network

To test the quality of the learned Bayesian network we used the results from the paper
tests. The results were divided into two parts: 70% of the test results (chosen randomly)
were used learn the Bayesian network and 30% were left to imitate students. We wanted
to see how well our Student model can predict the answers of each student from the group
of students we tested. Each tested case is a set of skills and misconceptions of a student.

In the sequel we will use the term skills for both skills and misconceptions. The ¢ observed
skills are chosen randomly from all n = 20 skills and the evidence is inserted into the student
model. The student model knows ¢ skills of a student and it guesses the other n — ¢ skills.
The bigger number of the correct guesses shows the better correspondence of the model to
a student. The guess is correct if the probability of the answer in the data is higher than
0.5 in the model. In each paper test we tested 20 skills of a student. For example, we

choose randomly ¢ = 15 skills and enter the evidence for these skills into the model. The
left 20 — ¢t = 5 skills are used to check the correspondence of our model to the paper test.
We read the belief for every skill out of these five skills from our model. If the belief, for
example, is P(true) = 0.6, P(false) = 0.4 and from the paper test we read that a student
has the skill then we consider the model to guess correctly. If a skill= false in the model
then we consider the model to predict wrong. The tests were done for various values of ¢
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corresponding to e = £, e € {0%, 5%, 10%, ..., 95%}. The average of 10 runs of the test with
the same parameters reflect the dependency between the amount of evidence included in the
model and the number of correct predictions of the remaining n — ¢ skills. The tests were
done on network:

e before learning tree,
e after learning of 50% of cases,
e after learning of 70% of cases.

The results are displayed in Figure 2.14(a).
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Figure 2.14: Verification of the network

The graph in Figure 2.14(a) shows that the model has 50% prediction accuracy even before
learning and without any evidence. According to the first curve learning 0% our model
predicts answers of the tested group of students quite well even without learning. The curve
that represents the model after learning 70% of the cases (we left 30% of randomly selected
items from the item bank to imitate students) shows better results. The student model
corresponds to the group of students better after learning than before it. After learning
procedure the quality of prediction increases approximately 10 - 15%. The difference is quite
small and some reasons can be found:

e We observed only 149 student cases;

e After test analysis we got more knowledge about the student group and we manually
corrected some prior probabilities according to the test results.

The learned model was tuned with respect to the group of students that were tested but it is
possible that it will not model well the other group of students. To make the student model
general the data from various groups of students should be used.
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Chapter 3

CAT implementation

3.1 Decription of the program for the Computer Adap-
tive Test of Fractions

In this chapter, we discuss the implementation of the program. We give the class diagram
of the CAT program and a description of the structure of the item bank. Basic guidelines of
the program usage and a short description of the Hugin Decision Engine(HDE) used in the

program are presented.

Entropy
Mext item Selec.t the next
1temn Update
CAlTest selectMextitemn
® Interface
Conitrol
Updat del
Get item peate mose
° :
Ezxecution Tiem Rank
Cottrol )
Idanage items
I Iteﬂl L-l:lEl.d

The program consists of five main parts. Each part is responsible for a particular task. The
CATest is the main part, it takes control over all other parts. This part also handles the

Figure 3.1: System architecture
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operations concerning the user interface. The XmlParser loads the ItemBank from the xml
file. The ItemBank manages Items. The NetworkControl handles the operations concerning
the Bayesian Network. The part of the Entropy controls the order of appearance of items in
the test.

3.1.1 Class diagrams and description of main classes

CATest

-itemBank: Vector
-skills: Vector
-entropy: ItemControl

-netControl: NetworkControl ResultTree
+main() : static void “skills: Vector

+initTest () : void +ResultType (skills:Vector)
+startTest () : void +setData (skills:Vector) : void

-randomizeltemBank (itemBank:Vector): void
-drawlItem(item:Item): voi

-drawResults (skills:Vector): void
-proccedWithNewItem() : void - Result
—userResponse () : void

“skillname: String
-skillvalue: double
-skillInfo: String
“Result (name:String,info:String,data:double)

ItemGroup
~items: Vector
-probTable: double []
NetworkControl “node: Node
~domain: Domain +randomizeltems () : void
+NetworkControl (SMfile:String, itemBank:Vector) +readItem(): Item
+updateNetwork (itemGroup: ItemGroup) : void +getNextItem(): Item
+getResults (skillVector:Vector) : Vector +hasMoreItems () : boolean
Item
XMLParser
- : Vect
“parser: DOMParser Cent: String
+loadAndParse (filename:String, itemBank:Vector, skills:Vector): void _picture: String
+randomizeAnswers () : void
+getSelectedAnswer () : Answer
+getText () : String
«interface» 6
ItemControl
Answer
+selectBestNewItem (itemBank:Vector) : ItemGroup -text: String
+toStop (itemBank:Vector) : boolean -picture: String
+setNetworkControl (net :NetworkControl) : void LHControl ~numberInNode: int
+setDomain (domain:Domain) : void ~motherNode: Node

-likelihood: double[]
-newLikelihood: double []
- computeNewLh (stateNum:int) : void

Entropy
ItemIterator -domain: Domain
-netControl: NetworkControl
+selectBestNewltem(itemBank:Vector): ItemGroup +Entropy (dom:Domain, net : NetworkControl)
+toStop (itemBank:Vector) : boolean +selectBestNewItem(itemBank:Vector): ItemGroup
+setDomain (domain:Domain,): void +toStop (itemBank:Vector) : boolean
+setNetworkControl (net : NetworkControl) : void +entropyValue () : boolean

Figure 3.2: Class diagram

Only the most important methods and attributes are included in this class diagram.

class CATest

The class CATest is the main class, which controls the execution of the whole program. It
provides the user interface and responses to the user’s selection of answers.
The main methods are:

e initTest()

initializes the test, loads the student model and creates the item bank

e randomizeItemBank ()

mixes ordering of Items in each ItemGroup
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e proccedWithNewItem()

finds the most informative item using the Entropy object, and gives this item to a
student.

e userResponse()

handles the response of a user and passes the evidence to the NetworkControl object

interface ItemControl

The interface ItemControl is used as the general interface for the item selection procedure.
The main methods are:

e ITtemGroup selectBestNewItem(Vector itemBank)

has to return the next item in the test

e boolean toStop(Vector itemBank)
has to return true if the test should be finished

class Entropy

The class Entropy handles mathematical calculations. This class finds the item to proceed
next. The main methods are:

e ItemGroup selectBestNewItem(Vector itemBank)

is used to find the item in the itemBank. This method uses the method described in
section 1.6

e boolean toStop(Vector itemBank)
this method returns true if the test should be finished.

e double entropyValue()
this method calculates the entropy of the probability distribution of the Student Model

class ItemlIterator

The class Itemlterator is used to go through all items in the item bank, without any clever
selection algorithm. This class is used as a tool to find errors in the itemBank. The main
methods are:

e ItemGroup selectBestNewItem(Vector itemBank)

returns the item from itemGroup item by item.

e boolean toStop(Vector itemBank)

this method returns true if no more items have left in the item bank
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Class NetworkControl

This class is mainly used to load the student model, build the evidence model, and update
the network. When the program starts, Class NetworkControl parses the Bayesian Network
file which has the extension ”hkb”, and loads the network into a domain, that is the way how
student model is built. Because the item nodes in the evidence model won’t be taken into
consideration when we calculate the entropy value, the NetworkControl records the cliques
and intersections in the student model and store them into two Vectors. The number of them
are fixed during the test. Then, the NetworkControl builds the evidence models, it reads
the infomation for each item node from Class [tem. The information includes parent nodes’
names of each item, the number of its states, the conditional probability table, etc. All the
Hugin nodes will be created and attached to the student model. Thus the initialization part
ends. During the test, Class NetworkControl will modify and update the network by the
requests from the other parts of the program.

e NetworkControl(String SMfile, Vector itemBank)
is the constructor for NetworkControl. It creates the domain object, loads the student
model from “.hkb” file and builds the evidence models using the data of the itemBank.
e void updateNetwork(Vector itemBank)

updates the network by performing the soft evidential update instead of the hard one
(please read Section 1.5 for the definitions of hard and soft evidential update). However
hard evidential update is performed during the process of the soft evidential update,
but it is retracted when the updated values were read. The goal is to keep a skill node
updated by outcomes of all answered children items.

e Vector getResults(Vector skills)

The task for this method is to read the current beliefs from the student model. This
method is called after the test is finished.

class ItemGroup

The class ItemGroup is a storage class for items of the same type. Items of the same type
have the same parent node in the student model and the same probability tables. The main
methods are:

e Ttem readItem()

reads the current available item from the item group.

e Item getNextItem()
reads the next item from the item group and this item becomes the current item in
this item group.

e void randomizeItems ()

mixes the ordering of items in the I[temGroup. The initial ordering is the same as in
the xml file.
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class Item

The class Item stores information related to one test item. The main methods are:

e String getText()

returns the question of an item.

e Answer getSelectedAnswer ()

after a student selects one possible answer for an item, the selected answer is provided
by this method

e void randomizeAnswers()

mixes the ordering of answers in an Item. The initial ordering is the same as in the
xml file.

class XMLParser

The class XMLParser loads the itemBank and descriptions of skills from the xml file. The
main methods are:

e void loadAndParse(String fileName, Vector itemBank, Vector skills)

this method reads the file with a name fileName and fills the data from this file into
two Vectors.

3.1.2 Xml file of Item bank

The item bank is stored in an xml file. The structure of the xml file is given below.

<itembank>
<skillsdescriptions>
<skill type="skill">
<nodename>MMt</nodename>
<description>This skill represents multiplication</description>
</skill>

</skillsdescriptions>

<itemgroup>
<parents>
<parent>First.parent</parent>

</parents>

<table>

<probab id="yes" number="2" confl1="0.1" conf2="0.4"/>
<probab id="no" number="2" conf1="0.2" conf2="0.5"/>
<probab id="misc" number="2" conf1="0.3" conf2="0.6"/>
</table>
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<item>
<task>
{<picture {width="20"|[0]} {height="30"|[0]}>
resources/images/img.gif
</picture>|[""]}
<text {layout="left"|["right"]}>
layouts can be left,right,top, bottom
</text>
</task>
<answers>
<answer>
{<picture {width="10"|[0]} {height="5"|[0]}>
resources/images/img2.gif
</picture>|[""]1}
<text {layout="left"|["right"]}>answer a</text>
<probab id="yes"/>
</answer>

</answers>
</item>

</itemgroup>
</itembank>

In this example a specific notation is used to explain possible alternations in the xml file.
The meanings of symbols are:

e xml element between
{ xmlItem |[""]}
like
{<picture> </picture>|["fraction.gif"]}

means, that a picture of the element is not required and if no picture of the element is
present the value for the attribute picture in the object Item will be set to ”fraction.gif”.

e three points like in this example
</skill>
</skillsdescriptions>

mean that many elements of type <skill>can be placed in the element <skillsdescription>.
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In the beginning of the xml file all skills with their descriptions are placed. These descriptions
are used in the window with test results (Figure 3.3(c)). After all <itemgroup> elements
are listed. Each element <itemgroup> has its node name from the student model, to which
the task item is connected. The element <table> has a conditional probability table for the
task node. Each row of the table has a specific name in atribute id. Each row represents the
row of a state in the conditional probability table of the corresponding node in the Bayesian
network. The attribute number has the length of the row. Further in <itemgroup> all items
are listed. Each element <item> has a text of the corresponding question in the element
<text> and a name of an attached picture - in element <picture>. Further in element
<item> all answers are listed. Element <answer> should have an association to a row of
the table, this association is represented by the row id.

3.1.3 Some usage guidelines

Our program was written in Java. To run it from the command line write
run.bat

(Hugin API v5.2 or higher must be installed). This script file, sets environment variables
and runs Java VM.

The program can be started in two modes: debug mode and normal mode. In the debug
mode each answer near its radio button will have a row id from the xml file(Figure 3.3(b)).
To start the debug mode keywords should be added:

e /d - with this key the program will start in the debug mode (figure 3.3(b))
e /di - with this key the program will debug all items in the item bank

e /% - displays possible keys

3.2 Performance of item selection procedure

To verify performance of the item selection procedure, we have performed several tests. In
these tests we observe changes of an entropy value according to selected (and answered)
items by item selection (see Section 1.6) and random selection procedures.

Figure 3.4 shows results for tests performed using the item selection procedure described in
Section 1.6 and selecting correct, incorrect and random answers for each given item.

Figure 3.5 shows results for test performed using random item selection and selecting correct
answers for each given item.

As we can see entropy value using selection method described in Sectionl.6 decreases much
faster with comparison to random ordering (random ordering have some similarities with
paper test). This shows that using item selection procedure, we can faster determine student
abilities.
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3.3 Introduction to the Hugin Decision Engine (HDE)

The CAT is an applet running on the Hugin Decision Engine(HDE). The HDE is delivered
with the application program interfaces (API’s) for four major programming languages C,
C++, Java and an ActiveX-server for e.g. Visual Basic.

The HUGIN API (application program interface) is a library that allows a programmer to
use Bayesian belief networks (with both discrete and continuous variables) and influence
diagrams in his own application. It is used as most other libraries: the application program
invokes HUGIN API functions whenever it wants to have operations of the belief networks
performed. [4]
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3.3.1 Used features

1. Construction of models

Major functions used for model construction are described in this section.

saving/loading of domains. The program first creates a Domain object by loading
a file with an extension "hkb” which is a representation of belief networks. While
the program exits, it closes and saves the same file.

accessing the probability of a state of a node (read belief).

define dependence. Function Node.addParent() makes it possible to define depen-
dence between two nodes.

editing the table data (probabilities). After attaching a node to one or more
nodes, a table of the child node is created.

accessing/changing the name, labels, the number of states, names, labels of a
node. The manipulating of the attributes of nodes is important for creating a
node or gathering the information. For example, users can search a particular
node by Domain.getNodeByName(String).

2. Usage

Functions described in this section are mostly used with already constructed models.

insertion of both hard (instantiation) and soft (likelihood) evidence. Hard ev-
idence means a node is instantiated by selecting a certain state while the soft
evidence represents that a more general item of evidence called ”likelihood” can
be entered into discrete nodes. Users may update the network by entering either
soft evidence or hard evidence.

compilation of a domain. Before a belief network can be used for the inference,
it must be compiled. The work such as selecting a state of a node, propagation
could only be done after the network is compiled.
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e retraction of evidence. By this feature, users can retract an already entered ob-
servations, return the node to its previous statues. We use this in calculating the
entropy of the network.

e propagation of evidence in the junction tree of cliques. The probability of the
propagated evidence is available as a result of propagation (normalization con-
stant). After the evidence has been entered into a domain, we want to get the
revised beliefs for some or all nodes of the domain. This is done by incorpo-
rating the specified evidence into the junction tree potentials and performing a
propagation operation on the junction tree(s).

e computation of the joint probability distributions of a set of discrete variables.
Using Domain.getMarginals(NodeList), users can easily get the probability table
of a list of nodes. Each cell of the table represents a configuration of the states
of the member nodes. Our program depends on this feature a lot while it is
calculating the entropy of the network.

e retrieve the belief of a discrete chance node. Users can easily get the belief of a
specific state of a certain node.

e save to memory functionality support efficient inference and initialization. This
makes it faster to do operations in a big network.

e Junction tree navigation. JuntionTreeList is made up of junction trees, a junction
tree is composed of cliques, a clique contains nodes. It is easy for users to traverse
through the nodes in trees and cliques.

3. Error handling

Several types of errors can occur when using a function from the HUGIN API. These
errors can be a result of errors in the application program, of running out of memory,
of corrupted data files, etc. whenever a Hugin Decision Engine operation fails, an error
indicator is returned.
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Conclusions

In this work we presented the CAT for the domain of fractions. The student model based
on the Bayesian Network was developed. To build a model we had to analyze the basic
operations with fractions and to determine the skills necessary for these operations. A
meeting with a teacher was arranged. We have got the necessary information for building
a network. We created paper tests for students to check how they solve the tasks with
fractions.

We made an analysis and the results of the paper tests were used:

e to update the structure of the network, i.e. misconceptions and new skills were added
to our model;

e to update the probability tables using penalized E'M algorithm;

e to verify how the network fits to the particular student group.

The main result of our work is a program which implements the CAT. This program performs
tests on operations with fractions. It determines what skills students have. The item bank
is stored in an XML file and can be easily expanded or modified.

Our work can be extended. We concentrated on the necessary skills of basic operations with
fractions and we did not deeply analyzed the misconceptions as the special test should be
created for this.
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Appendix A

Tests
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Appendix B

Student model
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Appendix C

Results of paper tests
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Appendix D
Read.me file

How to run a program:

This program is written in Java and uses Hugin API 5.2.
To run this program Hugin Proffesional is required to be installed on the
computer

1. If Hugin is not installed on your computer:

Download Hugin from:
http://www.hugin.com/Products_Services/Products/Commercial/Explorer/
a) install program

After you install Hugin Proffwsional, ensure that your Java VM can always access to:

hapib52.jar* - This is installed in the "lib" subfolder of the
Hugin Java API 5.2 program folder
(eg. "C:\Program Files\Hugin\Java_API52\1ib").
Add this jar to the classpath.
(e.g. for the JDK1.3 java VM: set the CLASSPATH environment
variable to contain "C:\Program Files\Hugin\Java_API52\1ib\hapib2.jar".

or

you can copy this file to folder \1lib in the folder, where CATest is
placed and modify run.bat file.(eg. if CATest is placed in folder
C:\CATest, copy this file to C:\CATest\1lib\ and modify run.bat
file (read instructions inside this file) )

nhapib2.d11* is installed in the "bin" subfolder of the
Hugin Java API 5.2 program folder
(eg. "C:\Program Files\Hugin\Java_API52\bin"). When running the
Java VM, this file MUST be in the search path.
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or
you can copy this file to your bin folder of JDK. (eg. if you have
installed jdk1.3.1 in C:\jdk1.3.1, copy this file to folder
C:\jdk1.3.1\bin\ folder.)
*Note: last two digits of file name represents the version of program.
OQur program was build using version 5.2. Your Hugin program can
have higher version and folder structure can be changed.
Try to fing hapi??.jar and nhapi??.dll files in other folders.
2. Running program
To start program type in command line:
run.bat
or

run.bat /?

to get help about key words.
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