
## **CSCE 582 Spring 2009**

## Test 1

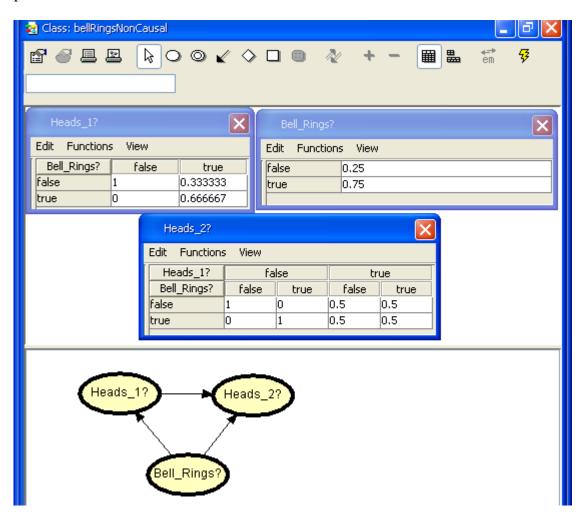
## 2009-02-18

Closed book and notes

Consider the following simple Bayesian network. The network describes a situation in which a bell rings if and only if either one of two fair coins turns up heads.



(1—10 points) Fill the d-separation column in the table below.


| Variables         | d-separated? | independent? |
|-------------------|--------------|--------------|
| Heads1?,          | No           | No           |
| Bell_Rings?       |              |              |
| Heads2?,          | No           | No           |
| Bell_Rings?       |              |              |
| Heads1?, Heads2?  | Yes          | Yes          |
| Heads1?, Heads2?  | No           | No           |
| given Bell_Rings? |              |              |

(2—10 points Compute the joint probability *P*(*Heads1?*, *Heads2?*, *Bell\_Rings?*) by filling in the following table. The first entry is given to you.

| Heads1? | Heads2? | Bell_Rings? | P(Heads1?,<br>Heads2?,        |
|---------|---------|-------------|-------------------------------|
| F       | F       | F           | Bell_Rings?) 0.5*0.5*1 = 0.25 |
| F       | F       | Т           | 0.5*0.5*0 = 0                 |
| F       | T       | F           | 0.5*0.5*0 = 0                 |
| F       | T       | T           | 0.5*0.5*1 = 0.25              |
| T       | F       | F           | 0.5*0.5*0 = 0                 |
| T       | F       | Т           | 0.5*0.5*1 = 0.25              |
| T       | T       | F           | 0.5*0.5*0 = 0                 |
| T       | T       | T           | 0.5*0.5*1 = 0.25              |

(3—10 points) Use the table above to determine whether *Heads1*? is independent of *Heads2*? given *Bell\_Rings*?. Complete the independence column in the table on the first page.

Now consider the following Bayesian network, which has the same variables as the previous one.



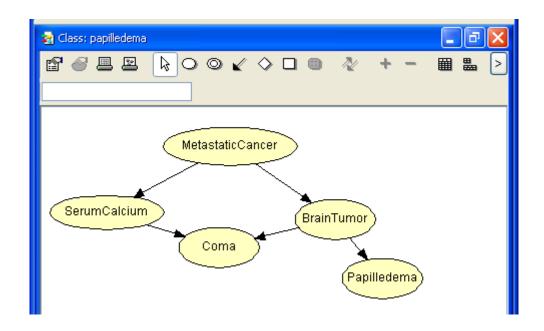
(4—10 points) Fill the d-separation column in the table below.

| Variables                | d-separated? | independent? |
|--------------------------|--------------|--------------|
| Heads1?,                 | No           | No           |
| Bell_Rings?              |              |              |
| Heads2?,                 | No           | No           |
| Bell_Rings?              |              |              |
| Heads1?, Heads2?         | No           | Yes          |
| Heads1?, Heads2?         | No           | No           |
| <b>given</b> Bell_Rings? |              |              |

(5—10 points Compute the joint probability *P*(*Heads1?*, *Heads2?*, *Bell\_Rings?*) by filling in the following table. The first entry is given to you.

| Heads1? | Heads2? | Bell_Rings? | P(Heads1?, Heads2?,   |
|---------|---------|-------------|-----------------------|
|         |         |             | Bell_Rings?)          |
| F       | F       | F           | <i>1*1*0.25= 0.25</i> |
| F       | F       | T           | 0.333*0*0.25 = 0      |
| F       | T       | F           | 1*0*0.25 = 0          |
| F       | T       | Т           | 0.333*1 0.75= 0.25    |
| T       | F       | F           | 0*0.5*0.25 = 0        |
| T       | F       | Т           | 0.667*0.5*0.75 = 0.25 |
| T       | T       | F           | 0*0.5*.25 = 0         |
| T       | Т       | T           | 0.667*0.5*0.75 = 0.25 |

(6—10 points) Use the table above to determine whether *Heads1?* is unconditionally independent of *Heads2?*. Complete the independence column in the table on the first page.


**Possible answers** for the first question: (1) the joint probability table above is the same as the JPT for part 2, so the same independence relations hold. (2) show that P(Heads 1?), P(Heads 2?) = P(Heads 1?) \* P(Heads 2?).

(7—10 points) Here is an example from Greg Cooper via Richard Neapolitan. Suppose that metastatic cancer is a cause of brain tumor and can also cause an increase in total serum calcium. Suppose further that either a brain tumor or an increase in total serum calcium could cause a patient to fall into a coma, and that a brain tumor could cause papilledema.

Draw a causal network representing the example. Use only the following five binary variables: MetastaticCancer (present/not present), SerumCalcium (increased/not increased), BrainTumor (present/not present), Coma (present/not present), Papilledema (present/not present).

Check that in your network SerumCalcium and BrainTumor are d-separated by MetastaticCancer but are d-connected given Coma and any superset of {Coma}. Also check that BrainTumor d-separates Papilledema from the other variables.

## Answer:

