
Article

The International Journal of

Robotics Research

2016, Vol. 35(1–3) 224–243

� The Author(s) 2015

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0278364915594029

ijr.sagepub.com

Multi-Heuristic A*

Sandip Aine1, Siddharth Swaminathan2, Venkatraman Narayanan2,

Victor Hwang2 and Maxim Likhachev2

Abstract

The performance of heuristic search-based planners depends heavily on the quality of the heuristic function used to focus

the search. These algorithms work fast and generate high-quality solutions, even for high-dimensional problems, as long

as they are given a well-designed heuristic function. On the other hand, their performance can degrade considerably if

there are large heuristic depression regions, i.e. regions in the search space where heuristic values do not correlate well

with the actual cost-to-goal values. Consequently, the research in developing an efficient planner for a specific domain

becomes the design of a good heuristic function. However, for many domains, it is hard to design a single heuristic func-

tion that captures all of the complexities of the problem. Furthermore, it is hard to ensure that heuristics are admissible

(provide lower bounds on the cost-to-goal) and consistent, which is necessary for A* like searches to provide guarantees

on completeness and bounds on sub-optimality. In this paper, we develop a novel heuristic search, called Multi-Heuristic

A* (MHA*), that takes in multiple, arbitrarily inadmissible heuristic functions in addition to a single consistent heuristic,

and uses all of them simultaneously to search in a way that preserves guarantees on completeness and bounds on sub-

optimality. This enables the search to combine very effectively the guiding powers of different heuristic functions and sim-

plifies dramatically the process of designing heuristic functions by a user because these functions no longer need to be

admissible or consistent. We support these claims with experimental analysis on several domains ranging from inherently

continuous domains such as full-body manipulation and navigation to inherently discrete domains such as the sliding tile

puzzle.

Keywords

Path planning, heuristic search, bounded sub-optimal planning, full-body manipulation, sliding tile puzzle

1. Introduction

Heuristic search algorithms (such as A* (Hart et al., 1968))

have been a popular choice for low-dimensional path plan-

ning in robotics since the 1980s because of their intuitive

appeal and guarantees of completeness and optimality.

These methods take advantage of admissible heuristics

(optimistic estimates of cost-to-go) to speed up search.

However, for high-dimensional planning problems, heuris-

tic search methods suffer from the curse of dimensionality.

In the last decade, researchers have addressed this problem

by trading off solution quality for faster computation times.

Specifically, bounded sub-optimal versions of A* such as

Weighted A* (WA*) (Pohl, 1970) and its anytime variants

(Likhachev et al., 2004; Zhou and Hansen, 2002) have

been used quite effectively for high-dimensional planning

problems in robotics ranging from motion planning for

ground vehicles (Likhachev and Ferguson, 2009) and flight

planning for aerial vehicles (MacAllister et al., 2013) to

planning for manipulation (Cohen et al., 2014) and footstep

planning for humanoids (Hornung et al., 2013) and

quadrupeds (Zucker et al., 2011). All of these planners

achieve faster speeds than A* search by inflating the heur-

istic values with an inflation factor (w . 1) to give the

search a depth-first flavor. They also provide bounds on

the solution sub-optimality, namely, the factor (w) by which

the heuristic is inflated (Pearl, 1984).

As such though, these algorithms rely greatly on the

guiding power of the heuristic function. In fact, WA*’s per-

formance is very sensitive to the accuracy of the heuristic

function, and can degrade severely in the presence of heur-

istic depression regions, i.e. regions in the search space

1Department of Computer Science and Engineering, Indraprastha Institute

of Information and Technology, New Delhi, India
2Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Corresponding author:

Sandip Aine, Department of Computer Science and Engineering,

Indraprastha Institute of Information and Technology, Okhla Phase 3, New

Delhi 110020, India.

Email: sandip@iiitd.ac.in

where the correlation between the heuristic values and the

actual cost-to-go is weak (Hernández and Baier, 2012; Wilt

and Ruml, 2012). WA* can easily get trapped in these

regions as its depth-first greediness is guided by the heuris-

tic values, and may require expanding most of the states

belonging to a depression zone before exiting. Presence of

large depression zones is common in path planning

domains (especially in cluttered environments) as the heur-

istics are typically computed by solving a relaxed version

of the problem (such as by ignoring kinodynamic con-

straints). Consequently, the depth-first path suggested by

the heuristic function may not be feasible in reality, leading

the search into a ‘‘local minimum’’. Therefore, designing

heuristic functions that are admissible, consistent, and have

shallow depression regions remains challenging for com-

plex planning problems.

In contrast, for many domains, one can easily compute

different inadmissible heuristics each of which can provide

complementary guiding power. For example, in Figure 1

we include a full-body manipulation scenario where the

PR2 robot needs to grasp an object on the table, marked by

‘‘end-effector goal’’. The admissible heuristic function (path

shown by the solid curve, Figure 1(a)) guides the search to

a local minimum as the robot cannot reach the object from

the left side of the table (Figure 1(b)). However, we can

obtain multiple inadmissible heuristics by computing the

navigation (x, y) distance to different points around the

object to be grasped. In the example (Figure 1(a)), we show

one such additional inadmissible heuristic function that

guides the search through a different route (shown by the

dotted curve to the right-hand side of the table). Using this

heuristic, the search does find a pose that allows the robot

to grasp the object, i.e. it computes a valid plan

(Figure 1(c)).

When used in isolation, these additional heuristics pro-

vide little value, as they can neither guarantee completeness

(because they can be arbitrarily inadmissible), nor can they

guarantee efficient convergence (because each may have its

own depression region). However, as shown in this paper, a

search can consider multiple such hypotheses to explore

different parts of the search space while using a consistent

heuristic to ensure completeness. This may result in faster

convergence if any of these heuristics (or a combination)

can effectively guide the search around the depression

regions. We present an algorithmic framework, called

Multi-Heuristic A* (MHA*), that builds on this observa-

tion. MHA* works by running multiple searches with dif-

ferent inadmissible heuristics in a manner that preserves

completeness and guarantees on the sub-optimality bounds.

We propose two variants of MHA*: Independent Multi-

Heuristic A* (IMHA*) which uses independent g and h

values for each search; and Shared Multi-Heuristic A*

Fig. 1. A full-body (12-dimensional: x, y, orientation for the base + spine + 6 DOF object pose + 2 free angles for the arms)

manipulation planning (with PR2) example depicting the utility of multiple heuristics. (a) shows two heuristic paths that correspond to

greedily following two different heuristics, solid curve for an admissible heuristic and dotted curve for an inadmissible heuristic.

Greedily following the admissible heuristic guides the search to a depression region where the search gets stuck (b). In contrast,

greedily following the inadmissible heuristic guides the search along a feasible path and therefore allows the planner to efficiently

compute a valid plan (c).

Aine et al. 225

(SMHA*) which uses different h values but a single g

value for all of the searches. We show that with this shared

approach, SMHA* can guarantee the sub-optimality

bounds with at most two expansions per state. In addition,

SMHA* is potentially more powerful than IMHA* in

avoiding depression regions as it can use a combination of

partial paths found by different searches to reach the goal.

We discuss the theoretical properties of MHA* algo-

rithms, proving their completeness, sub-optimality bounds

and state re-expansions bounds. We present experimental

results for two robotics domains, namely, 12-dimensional

mobile manipulation for PR2 (full-body) and three-

dimensional (x, y, orientation) navigation. We also show

that MHA* can be a natural choice when solving multiple

goal planning problems and include experimental results to

support this observation. These experiments demonstrate

the efficacy of MHA*, especially for cases where the com-

monly used heuristics do not lead the search well. We also

include experimental results for large sliding tile puzzle

problems, highlighting the benefits of the proposed frame-

work outside of robotics domains.1

2. Related work

The utility of having multiple heuristics has been noted in

many search applications including motion planning

(Likhachev and Ferguson, 2009), searching with pattern

database heuristics (Felner et al., 2004; Korf and Felner,

2002), AND/OR graphs (Chakrabarti et al., 1992), etc. For

example, in Likhachev and Ferguson (2009) the maximum

of two admissible heuristics (one mechanism-relative and

another environment-relative) was used, as it could guide

the planner better when compared to the individual heuris-

tics. In Felner et al. (2004), it was shown that a more infor-

mative heuristic function can be created by adding multiple

disjoint pattern database heuristics, and such a heuristic

can substantially enhance search performance. The key dif-

ference between these approaches and ours is that while

these utilize multiple heuristics, the information is com-

bined to create a single best (often consistent) heuristic

value, which is then used to guide the search. In contrast,

MHA* uses multiple heuristics independently to explore

different regions of the search space. Also, as we derive the

bounds using a consistent heuristic, the additional heuris-

tics can be arbitrarily inadmissible, which makes them easy

to design.

The idea of deriving the bounds based on a consistent

heuristic and using inadmissible estimates/constraints to

guide the search has also been used in several other search

algorithms (Aine et al., 2007; Chakrabarti et al., 1989;

Pearl and Kim, 1982; Thayer and Ruml, 2011; Thayer

et al., 2012). For example, the A�e algorithm (Pearl and

Kim, 1982) uses a distance-to-go estimate to determine the

order of expansion among the states whose f values (com-

puted using a consistent heuristic) lie within the chosen

bound of the minimum f value in the open list. In the

bounded quality version of Anytime Window A* (Aine

et al., 2007), the search is confined within a window of

fixed size, as long as the f values do not exceed the bound

on the minimum f value among the suspended states (states

that are outside the current window). A more recent algo-

rithm, Explicit Estimation Search (EES (Thayer and Ruml,

2011)), uses the same principle as A�e to satisfy the bounds,

but improves the performance by using an additional inad-

missible distance function to guide the search. These algo-

rithms show how we can use arbitrary estimates to guide

the search and yet compute bounded sub-optimal solutions.

While MHA* follows a similar philosophy to derive the

sub-optimality bounds, the concept of simultaneous search-

ing with multiple heuristics sets it apart. Also, all of the

above-mentioned algorithms require unrestricted re-

expansion of states to satisfy the bounds, in contrast,

MHA* provides a bound on the maximum number of re-

expansions possible.

While, the idea of exploring multiple heuristics indepen-

dently (in contrast to combining them with sum, max, etc.)

has been there for a long time (Chakrabarti et al., 1989), in

Helmert (2006), an algorithm was proposed that simultane-

ously uses multiple heuristics to search. The proposed algo-

rithm, Multiple Heuristic Greedy Best-first Search

(MHGBFS) explores the search space in a greedy best-first

manner (Doran and Michie, 1966) using multiple queues,

each of which uses a different heuristic as the priority.

Once a state is expanded, all of its successors are evaluated

by all heuristics, and put into every queue with the corre-

sponding value. In Röger and Helmert (2010), an empirical

examination was performed on how to exploit multiple

heuristics for satisficing planning, among the different

benchmarked approaches, the above discussed method

(called the alternation method in Röger and Helmert

(2010)) was shown to be the best. In Isto (1996), a robotics

path planning algorithm was proposed that utilizes multiple

heuristics and attempts to share the resource among indi-

vidual searches. The basic philosophy of these algorithms

is similar to the MHA* approach, however, they do not

provide any guarantees on completeness/sub-optimality. In

contrast, because we introduce a consistent heuristic search

to anchor the explorations, MHA* guarantees (a) complete-

ness, (b) bounded sub-optimality and (c) bounded expan-

sions even with arbitrarily inadmissible heuristics.

Valenzano et al. (2010) proposed simultaneous search-

ing with different parameters (such as operator orders,

heuristic weights), as an alternative to fine tuning the para-

meters. This method was shown to be effective for several

problems especially when resources are available for paral-

lel exploration. However, this framework also relies on a

single heuristic to guide the search (albeit with different

parameters) and therefore can suffer similarly when the

heuristic has large depression regions.

A completely different approach to path planning is

adopted by the sampling-based planners (Karaman and

Frazzoli, 2010; Kavraki et al., 1996; Lavalle and Kuffner,

2000). The fundamental difference between the sampling

226 The International Journal of Robotics Research 35(1–3)

and heuristic search based planners is that the sampling

based algorithms primarily target continuous spaces

whereas the search algorithms are for planning in discrete

spaces, independent of whether these came as the result of

discretizing the state-space or from an inherently discrete

system. Moreover, most sampling-based planners (with the

exception of the RRT* algorithm (Karaman and Frazzoli,

2010)) focus on finding any feasible trajectory, rather than

minimizing the cost of the solution, and therefore can pro-

duce arbitrarily sub-optimal and unpredictable solutions. In

contrast, heuristic search based planning methods often

provide better cost minimization and more consistent beha-

vior (compared with the sampling-based planners), but at

the expense of higher planning times and need for a well-

designed heuristic function. Our work targets the last issue

as we try to alleviate the dependency on having a single

well-designed heuristic function by supporting multiple

heuristic functions that can be arbitrarily inadmissible.

3. Multi-Heuristic A*

In this section, we describe two multi-heuristic search algo-

rithms, IMHA* and SMHA*, and discuss their properties.

3.1. Notation and assumptions

In the following, S denotes the finite set of states of the

domain; c(s, s0) denotes the cost of the edge between s and

s0, if there is no such edge, then c(s, s0) = N. We assume

c(s, s0) � 0, "s, s0 pairs. SUCC(s) := {s0 2 Sjc(s, s0) 6¼N},

denotes the set of all successors of s. Here c*(s, s0) denotes

the cost of the optimal path from state s to s0; g*(s) denotes

the optimal path cost from sstart to s; g(s) denotes the cur-

rently best known path cost from sstart to s; and bp(s)

denotes a back-pointer which points to the best predecessor

of s (if computed).

We assume that we have n heuristics denoted by hi for

i = 1, 2, ., n. These heuristics do not need to be consis-

tent, in fact, they can be arbitrarily inadmissible. We also

require access to a consistent (and thus admissible) heuris-

tic (denoted by h0), i.e. h0 should satisfy, h0(sgoal) = 0 and

h0(s) � h0(s0) + c(s, s0), "s, s0 pair, where s0 2 SUCC(s)

and s6¼sgoal (Pearl, 1984). MHA* uses separate priority

queues for each search (n + 1 queues), denoted by OPENi,

for i = 0..n. Throughout the rest of the paper, we will use

the term anchor search to refer to the search that uses h0.

Other searches will be referred to as inadmissible searches.

We assume that each priority queue (OPENi) supports a

function OPENi.MINKEY(), which returns the minimum key

value among the states present in the priority queue if the

queue is not empty, otherwise it returns N.

3.2. IMHA*

The algorithm IMHA* is presented in Algorithm 1. In

IMHA*, different heuristics are explored independently by

simultaneously running n + 1 searches, where each search

uses its own priority queue. Therefore, in addition to the

different h values, each state uses a different g (and bp)

value for each search. We use g0 to denote the g for the

anchor search, and gi (i = 1, 2, ., n) for the other searches.

The sub-optimality bound is controlled using two vari-

ables, namely, w1(� 1.0) which is used to inflate the heur-

istic values for each of the searches, and w2(� 1.0) which

is used as a factor to prioritize the inadmissible searches

over the anchor search. IMHA* runs the inadmissible

searches in a round robin manner in a way which guaran-

tees that the solution cost will be within the sub-optimality

bound w1�w2 of the optimal solution cost.

IMHA* starts with initializing search variables (lines

13–18) for all the searches. It then performs best-first

expansions in a round robin fashion from queues OPENi,

i = 1..n, as long as OPENi.MINKEY() � w2�
OPEN0.MINKEY() (line 21). If the check is violated for a

given search, it is suspended and a state from OPEN0 is

expanded in its place. This in turn can increase

OPEN0.MINKEY() (lower bound) and thus re-activate the

suspended search.2

Algorithm 1. Independent Multi-Heuristic A* (IMHA*).

1: Procedure KEY (s, i)
2: return gi(s) + w1*hi(s)
3: procedure EXPANDSTATE(s, i)
4: Remove s from OPEN i

5: for all s02 SUCC(s) do
6: if s0 was never generated in the ith search then
7: gi(s

0) = N; bpi(s
0) = null

8: if gi(s
0) . gi(s) + c(s, s0) then

9: gi(s
0) = gi(s) + c(s, s0); bpi(s

0) = s
10: if s0; CLOSED i then
11: Insert/Update s0 in OPEN i with KEY(s0, i)
12: procedure MAIN()
13: for i = 0,1,.,n do
14: OPEN i ;
15: CLOSED i ;
16: gi(sstart) = 0; gi(sgoal) = N
17: bpi(sstart) = bpi(sgoal) = null
18: Insert sstart in OPEN i with KEY (sstart, i)
19: while OPEN0.MINKEY() \ Ndo
20: for i = 1, 2, ., n do
21: if OPENi.MINKEY() � w2* OPEN0.MINKEY() then
22: if gi(sgoal) � OPENi.MINKEY() then
23: if gi(sgoal) \ Nthen
24: Terminate and return path pointed by

bpi(sgoal)
25: else
26: s OPEN i.TOP()
27: EXPANDSTATE(s, i)
28: Insert s in CLOSED i

29: else
30: if g0(sgoal) � OPEN0.MINKEY() then
31: if g0(sgoal) \ Nthen
32: terminate and return path pointed by

bp0(sgoal)
33: else
34: s OPEN0.TOP()
35: EXPANDSTATE(s, 0)
36: Insert s in CLOSED0

Aine et al. 227

Expansion of a state is done in a similar way as done in

A*. Each state is expanded at most once for each search

(line 10) following the fact that WA* does not need to re-

expand states to guarantee the sub-optimality bound

(Likhachev et al., 2004). IMHA* terminates successfully, if

any of the searches have OPENi.MINKEY() value greater

than or equal to the g value of sgoal (in that search) and

g(sgoal) \ N, otherwise it terminates with no solution

when OPEN0.MINKEY() � N.

Next, we discuss the theoretical properties of IMHA*.

First, we note that the anchor search in IMHA* is a single

shot WA* (without re-expansions) with a consistent heuris-

tic function h0 (as used in Likhachev et al., 2004; Richter

et al., 2010). Thus, all of the results of such a WA* are

equally applicable in the case of the anchor search in

IMHA*. We start by presenting two key theorems for the

anchor search which shall later be used to derive the prop-

erties of IMHA*. At this point, we introduce two assump-

tions that will be used for the proofs through out the paper.

First, we assume that if OPENi = ; ("i = 0,1,.,n), then

its minimum key value is N. We also assume that any state

s with undefined gi and bpi values (s not generated in ith

search) has gi(s) = N and bpi = null.3

Theorem 1. At line 20, for any state s with KEY(s,

0) � KEY(u, 0) "u 2 OPEN0), it holds that g0ðsÞ�
w1 � g�ðsÞ.

Proof. We borrow this theorem from the results described

in Likhachev et al. (2004), which states that the g value (g0

here) for any state to be expanded in WA* (anchor search

here) is at most w1-sub-optimal. For detailed proof, please

see Likhachev et al. (2003).

Theorem 2. At line 20, it holds that OPEN0.

MINKEY() � w1�g*(sgoal), where OPEN0.MINKEY() =

Min(KEY(u, 0) "u 2 OPEN0) if OPEN06¼;, Notherwise.

Proof. We assume that the g*(sgoal) \ N, as otherwise the

theorem holds trivially.

We prove this by contradiction. Let us say that

M = OPEN0.MINKEY(). First, we assume that

M . w1�g*(sgoal), then we will show that in such a case,

there is at least one state s0 2 OPEN0 having KEY(s0,
0) \ M arriving at a contradiction to the statement that

M = OPEN0.MINKEY().

Let us consider a least cost path from sstart to sgoal given

as P =P (s0 = sstart,.,sk = sgoal). From this path, we pick

the first state si that has not yet been expanded by the

anchor search, but is part of OPEN0 (si 2 OPEN0). Note

that, we will always find such a state si 2 OPEN0 because

(a) s0 = sstart is put in OPEN0 at the initialization (line 18),

(b) whenever any state sj 2 P is expanded in the anchor

search (i.e. removed from OPEN0), sj + 1 2 P is always

inserted in OPEN0, and (c) sk = sgoal is never expanded in

the anchor search, as whenever sgoal has the least key value

in OPEN0 (i.e. g0(sgoal) � OPEN0.MINKEY()) the search

terminates (line 32). Note that, the presence of such a state

si also ensures that OPEN0 is never empty if there is a

finite cost solution.

Now, let us examine g0(si). If i = 0, we have g0(si) =

g0(sstart) = 0 � w1�g*(si) (as g*(sstart) = g0(sstart) = 0). If

i6¼ 0, by the choice of si we know that si21 has already been

expanded in the anchor search. When si21 was chosen for

expansion, we had g0(si21) � w1�g*(si21) from Theorem

1 and gi value of a state is never increased during the execu-

tion of IMHA*. Now, as si is a successor of si21, we have

g0(si)� g0(si�1)+ c(si�1, si) (line 9,Algorithm 1)

�w1 � g�(si�1)+ c(si�1, si)

�w1 � (g�(si�1)+ c(si�1, si)) (As si�1, si 2 optimal path)

= w1 � g�(si)

ð1Þ

Thus, we have g0(si) � w1�g*(si). Using this we obtain

KEY(si, 0)

= g0(si)+ w1 � h0(si)

�w1 � g�(si)+ w1 � h0(si)

�w1 � g�(si)+w1 � c�(si, sgoal) h0 is consistent, thus admissible

�w1 � g�(sgoal)

ð2Þ

Now, as si 2 OPEN0 and KEY(si, 0) �
w1�g*(sgoal) \ M, i.e. we have a contradiction to our

assumption that M = OPEN0.MINKEY() . w1�g*(sgoal)

(from the definition of OPEN0.MINKEY()).

Next, we present three theorems summarizing the main

properties of IMHA*.

Theorem 3. When IMHA* exits (in the ith search), gi(sgoal)

� w1�w2�g*(sgoal), i.e. the solution cost obtained is

bounded by w1�w2 sub-optimality factor.

Proof. IMHA* can terminate successfully in lines 32

(anchor search) or 24 (inadmissible search), or it can termi-

nate without a solution in line 19.

If the anchor search terminates at line 32, i.e. KEY(sgoal,

0) � KEY(u,0), "u 2 OPEN0, from Theorem 1 we have,

g0(sgoal)�w1 � g�(sgoal)

�w1 � w2 � g�(sgoal)

As w2 � 1:0

ð3Þ

If an inadmissible search (say ith) terminates in line 24,

then from lines 21 and 24, we have

gi(sgoal)�w2 �OPEN0:MINKEY()

�w2 � w1 � g�(sgoal)(From Theorem 2)
ð4Þ

Therefore, in both of the above-mentioned cases, i.e. if

either the anchor terminates or an inadmissible search ter-

minates, we have the solution cost to be within w1�w2 fac-

tor of the optimal solution cost.

228 The International Journal of Robotics Research 35(1–3)

On the other hand, if the search terminates unsuccess-

fully at line 19 (while condition is not satisfied), from

Theorem 2 we know OPEN0.MINKEY() � w1�g�(sgoal).

Now, OPEN0.MINKEY() � N)g*(sgoal) � N, i.e. there is

no finite cost solution.

Theorem 4. No state is expanded more than n + 1 times

during the execution of the IMHA*.

Proof. In IMHA*, a state s can only be expanded when it

is selected as the top state of OPENi in either line 26 or

34. In both the cases the very next call is to the function

ExpandState, which removes this selected state from

OPENi (line 4). Now, a state (other than sstart) can only be

inserted in OPENi in line 11. If a state s has already been

expanded in the ith search (i.e. s 2 CLOSEDi), the check

at line 1 will ensure that s is not inserted again in OPENi,

and therefore cannot be expanded in the ith search any

more. In other words, a state s can only be expanded at

most once in every search, and as the total number of

searches is n + 1 (anchor search and n inadmissible

searches), no state is expanded more than n + 1 times.

Theorem 5. In IMHA*, a state s is never expanded in the

ith inadmissible search if KEY(s, i) . w1�w2�g*(sgoal).

Proof. This theorem can be proved using Theorem 2,

which states that OPEN0.MINKEY() � w1�g*(sgoal). If a

state s is selected for expansion in the ith inadmissible

search at line 26, it has KEY(s, i) � OPENi.MINKEY()

(from the priority queue properties). Now, from the

check at line 21, we obtain OPENi.MINKEY() � w2

�OPEN0.MINKEY(), otherwise the ith search will be sus-

pended and the control will not reach line 26. Therefore, if

a state s is expanded in the ith search, we have

KEY(s, i)�OPENi:MINKEY()

�w2 �OPEN0:MINKEY()

�w2 � w1 � g�(sgoal)

ð5Þ

Theorem 3 guarantees the sub-optimality bounds for

IMHA* while Theorems 4 and 5 provide the bounds on

state expansions by IMHA*. They also ensure that IMHA*
is complete and guaranteed to terminate for a finite search

space. The efficiency of IMHA* stems from the fact that it

terminates as soon as any one of the n heuristics leads the

search to a solution within the sub-optimality bound, i.e.

the total state expansions ’n × minimum of the state

expansions among all of the searches. Thus, if any of the

inadmissible searches converges faster than the anchor

search by a factor better than n, IMHA* can outperform

WA*.

3.3. Shared Multi-Heuristic A* (SMHA*)

The primary difference between SMHA* and IMHA* is

that in SMHA*, the current path for a given state is shared

among all the searches, i.e. if a better path to a state is

discovered by any of the searches, the information is

updated in all of the priority queues. As the paths are

shared, SMHA* uses a single g (and bp) value for each

state, unlike IMHA* in which every search maintains its

own g value. Furthermore, path sharing allows SMHA* to

expand each state at most twice, in contrast to IMHA*
which may expand a state up to n + 1 times (once in each

search), and yet achieve the same bounds as IMHA*. We

include the pseudocode for SMHA* in Algorithm 2. At

this stage, the reader may ignore the mention of v(.) in lines

5, 9 and 21 of the pseudocode presented (Algorithm 2),

these lines are added for simplifying the proofs

(discussed later) and they do not impact the working of the

algorithm.

The KEY function and initialization part in SMHA* is

the same as in IMHA* other than the fact that SMHA*
uses a single g (and bp) variable. Also, IMHA* uses sepa-

rate CLOSED lists for each search, in contrast SMHA*
uses two CLOSED lists, one for the anchor search

(CLOSEDanchor) and another for all of the inadmissible

searches (CLOSEDinad). After the initialization, SMHA*
runs the inadmissible searches in a round robin manner as

long as the check in line 29 is satisfied. If the check is vio-

lated for a given search, it is suspended and a state is

expanded from OPEN0.

The key difference between SMHA* and IMHA* lies in

the state expansion method (ExpandState routine). In

SMHA*, when a state s is expanded, its children

(s0 2 SUCC(s)) are simultaneously updated in all the priority

queues, if s0 has not yet been expanded (lines 15–17). If s0

has been expanded in any of the inadmissible searches

(s0 2 CLOSEDinad) but not in the anchor search (i.e. s0;
CLOSEDanchor, check at line 12), it is inserted only in

OPEN0. A state s0 that has been expanded in the anchor

search (s0 2 CLOSEDanchor) is never re-expanded and,

thus, never put back into any of the priority queues.

The only exception to this simultaneous update (for a

state s0 not yet expanded) is the optimization at line 2 which

ensures that s0 is not put into OPENi if KEY(s0, i) . w2�
KEY(s0, 0), because such a state will never be expanded

from OPENi anyway (check at line 29). The ExpandState

routine also removes s from all OPENi (line 4) making sure

that it is never re-expanded again in any inadmissible search

and not re-expanded in the anchor search if its g is not

lowered.

If g(sgoal) becomes the minimum key value in any of the

searches (anchor or inadmissible), SMHA* terminates with

a solution within the w1�w2 bound that can be obtained by

greedily following the bp pointers from sgoal to sstart.

Otherwise, no finite cost solution exists.

Next, we discuss the analytical properties of SMHA*.

First, we should note that, unlike IMHA*, the anchor

search in SMHA* is not a direct replica of a single shot

WA* with a consistent heuristic function and, therefore, we

cannot directly use the results for WA* (Theorems 1 and 2)

to derive SMHA* properties. Instead, we follow a three

step approach to prove the properties of SMHA*. We start

Aine et al. 229

by stating some low level properties, in the next phase we

use these properties to obtain some key results for the

anchor search. Finally, we use those theorems to prove the

correctness, bounded sub-optimality and complexity

results.

To simplify the proofs, we augment the pseudocode for

SMHA*with lines 5, 9 and 21, which show that every state

s now maintains an additional variable v(s), which is ini-

tially set to N, and then is set to the g(s), when s is

expanded in any of the searches. It should be noted that

this modification does not impact the working of SMHA*
in any way as the v values are not used in the algorithm.

We also extend the initialization assumption used for the

IMHA* proofs to include v value, we assume that any state

s with undefined v, g and bp values (i.e. s not generated by

the search) has v(s) = g(s) = N and bp(s) = null.

Lemma 1. At any point of time during the execution of

SMHA* and for any state s, we have v(s) � g(s).

Proof. The lemma clearly holds before line 27 since at that

point all the v values are infinite. Afterwards, g values can

only decrease (line 11). For any state s, on the other hand,

v(s) is initiated to N (line 9) and only changes on line 5

when it is set to g(s). Thus, it is always true that

v(s) � g(s).

Lemma 2. At line 27 (and line 28), all v and g values are

non-negative, bp(sstart) = null, g(sstart) = 0 and for

Algorithm 2. Shared Multi-Heuristic A* (SMHA*).

1: procedure KEY(s, i)
2: return g(s) + w1*hi(s)
3: procedure EXPANDSTATE(s)
4: Remove s from OPENi"i = 0,1,.,n
5: v(s) = g(s) x /* For proofs only. */
6: for all s02 SUCC(s) do
7: if s0 was never generated then
8: g(s0) = N; bp(s0) = null
9: v(s0) = N x /* For proofs only. */
10: if g(s0) . g(s) + c(s, s0) then
11: g(s0) = g(s) + c(s, s0); bp(s0) = s
12: if s0; CLOSED anchor then
13: Insert/Update s0 in OPEN0 with KEY(s0,0)
14: if s0; CLOSED inad then
15: for i = 1, 2, ., n do
16: if KEY(s0, i) � w2* KEY(s0, 0) then
17: Insert/Update s0 in OPEN i with KEY(s0, i)
18: procedure MAIN()
19: g(sstart) = 0; g(sgoal) = N
20: bp(sstart) = bp(sgoal) = null
21: v(sstart) = v(sgoal) = N x /* For proofs only. */
22: for i = 0,1,.,n do
23: OPEN i ;
24: Insert sstart in OPEN i with KEY(sstart, i)
25: CLOSED anchor ;
26: CLOSED inad ;
27: while OPEN0.MINKEY() \ Ndo
28: for i = 1, 2, ., n do
29: if OPEN i.MINKEY() � w2* OPEN0.MINKEY() then
30: if g(sgoal) � OPEN i.MINKEY() then
31: if g(sgoal) \ Nthen
32: Terminate and return path pointed by bp(sgoal)
33: else
34: s OPEN i.TOP()
35: EXPANDSTATE(s)
36: Insert s in CLOSED inad

37: else
38: if g(sgoal) � OPEN0.MINKEY() then
39: if g(sgoal) \ Nthen
40: terminate and return path pointed by bp(sgoal)
41: else
42: s OPEN0.TOP()
43: EXPANDSTATE(s)
44: Insert s in CLOSED anchor

230 The International Journal of Robotics Research 35(1–3)

8s 6¼ sstart, bp(s)= argmin(s02Pred(s))v(s
0)+ c(s0, s), g(s)=

v(bp(s))+ c(bp(s) , s).

Proof. The lemma holds after the initialization, when

g(sstart) = 0 while the rest of g values are N, and all the v

values are N.

The only places where g and v values are changed after-

wards are on lines 11 and 5. If v(s) is changed in line 5, then

it is decreased according to Lemma 1. Thus, it may only

decrease the g values of its successors. The test on line 2

checks this and updates the g and bp values if necessary.

Since all costs are non-negative and they never change,

g(sstart) can never be changed: it will never pass the test on

line 10, and thus is always 0. The lemma thus holds.

Lemma 3. Suppose s is selected for expansion on lines 34

or 42. Then the next time line 28 is executed v(s) = g(s),

where g(s) before and after the expansion of s is the same.

Proof. Suppose that s is selected for expansion. Then on

line 5, v(s) = g(s), and it is the only place where a v value

changes. We, thus, only need to show that g(s) does not

change. It could only change if s 2 SUCC(s) and g(s) .

v(s) + c(s, s). The second test, however, implies that

c(s, s) \ 0 since we have just set v(s) = g(s). This contra-

dicts our assumption that costs are non-negative.

Next, we analyze the properties of the anchor search in

SMHA* and show that it essentially follows the same

lower bound properties as IMHA* (Theorems 1 and 2). At

an intuitive level, we can see that the lower bound results

for SMHA* should be equivalent with IMHA*, as at any

given point the OPEN0 in SMHA* can be viewed as a

superset of OPEN0 in IMHA* (or WA* without re-expan-

sions). This is due to the fact that whenever a state s is

expanded in any of the searches of SMHA* its children are

put into OPEN0, thus it includes states from different

searches. On the other hand, although s is deleted from

OPEN0 at this point (line 4), it can be re-inserted later if a

better path to it is discovered (lowered g value), as long as

it has not yet been expanded in the anchor search. Now, as

both Theorem 1 and 2 refer to the minimum key value in

OPEN0, the same bounds should hold for the anchor search

in SMHA*.

However, to prove these results formally, we consider a

set of states defined as follows.

Definition 1. We define

Q = fujv(u).g(u)jv(u).w1 � g�(u)g ð6Þ

In other words, Q contains all the states that are gener-

ated but not yet expanded (v(u) 6¼g(u)) and has v(u) more

than w1 times the best cost path between sstart and u.

Theorem 6. At line 27 (and line 28), let Q be defined

according to the Definition 1. Then for any state s with

KEY(s, 0) � KEY(u, 0) "u 2 Q, it holds that

g(s) � w1�g*(s).

Proof. We prove by contradiction.

Suppose there exists an s such that KEY(s, 0) � KEY(u,

0) "u 2 Q, but g(s) . w1�g*(s). The latter implies that

g*(s) \ N. We also assume that s6¼sstart since otherwise

g(s) = 0 = g*(s) (Lemma 2).

Let us consider a least cost path from sstart to s given as

P = P(s0 = sstart,.,sk = s). The cost of this path is g*(s).

Such path must exist since g*(s) \ N. Our assumption

that g(s) . w1�g*(s) means that there exists at least one si

2 P(s0,.,sk21) whose v(si) . w1�g*(si). Otherwise,

g(s)= g(sk)

� v(sk�1)+ c(sk�1, sk)(Lemma 2)

�w1 � g�(sk�1)+ c(sk�1, sk) (As v(si)�w1 � g�(si)8si 2 P)

�w1 � (g�(sk�1)+ c(sk�1, sk)) (As sk�1 2 optimal path to sk)

�w1 � g�(sk)= w1 � g�(s)

ð7Þ

Let us now consider si 2 P(s0,.,sk21) with the smallest

index i � 0 (that is, the closest to sstart) such that v(si) .

w1�g*(si). We will now show that si 2 Q.

If i = 0 then g(si) = g(sstart) = g*(sstart) = 0 (Lemma 2).

Thus, v(si) . w1�g*(si) = 0 = g(si), and si 2 Q. If i . 0,

we have v(si) . w1�g*(si), and by the choice of si,

g sið Þ= min s02Pred sið Þð Þv s0ð Þ+ c s0, sð Þ
� v si�1ð Þ+ c si�1, sið Þ
�w1 � g� si�1ð Þ+ c si�1, sið Þ
�w1 � g� sið Þ

ð8Þ

We thus have v(si) . w1�g*(si) � g(si), which also implies

that si 2 Q.

We will now show that KEY(s, 0) . KEY(si, 0), and

finally arrive at a contradiction. According to our

assumption,

KEY(s, 0)= g sð Þ+ w1 � h0 sð Þ
.w1 � g� sð Þ+ w1 � h0 sð Þ
.w1 � g� sið Þ+ c� si, sð Þ+ h0 sð Þð Þ
.w1 � g� sið Þ+ w1 � h0 sið Þ h0 is consistentð Þ
.g sið Þ+ w1 � h0 sið Þ
.KEY si, 0ð Þ ð9Þ

Now, as si 2 Q and KEY(si, 0) \ KEY(s, 0), we have a con-

tradiction to our assumption that KEY(s, 0) � KEY(u, 0),

"u 2 Q.

Theorem 7. At line 27 (as well as at line 28), let Q be

defined according to the Definition 1. Then Q4OPEN0.

Proof. We prove this by induction. At the very start

OPEN0 contains sstart, v(sstart) = N and g(sstart) = 0, thus,

sstart 2 Q, obviously sstart 2 OPEN0 (line 24). Also, for all

other states s0, g(s0) = v(s0) = N, thus the statement holds.

Aine et al. 231

Now, we consider the states that are part of

CLOSEDanchor. CLOSEDanchor holds all of the states that

are expanded in the anchor search at line 43 (insertion in

line 44). Such a state s is removed from OPEN0 (and from

all other OPENi, i6¼ 0) at line 4 (before it is inserted in

CLOSEDanchor). It follows that s 2 CLOSEDanchor)s;
OPENi, "i, i = 0, 1, ., n, as a state s expanded in the

anchor search will never be put back in any open list due

to the check at line 12.

First, we show that the following statement, denoted by

(*), holds for the first time line 27 is executed. (*) For any

state s 2 CLOSEDanchor, v(s) � w1�g*(s).

This is obviously true as before the first execution of

line 27, no state is expanded in the anchor search and thus

CLOSEDanchor is empty. We will now show by induction

that the statement and the theorem continues to hold for

the consecutive executions of the line 27. Suppose the the-

orem and the statement (*) held during all of the previous

executions of line 27. We need to show that the theorem

holds the next time line 27 is executed.

We first prove that the statement (*) still holds during

the next execution of line 27. Let us consider the for loop

in line 28. From the induction hypothesis, we obtain that

the theorem and the statement (*) is true before the first

iteration of the for loop (as there are no other statements

between line 27 and 28). We assume the theorem and state-

ment (*) are true for all for loop iterations prior to

current iteration and show that they will remain true after

the current iteration. Therefore, the statements will also

remain true when the for loop ends and the control returns

to line 27.

Considering the current iteration of the for loop, we

observe the following possibilities, either the search termi-

nates, in which case the theorem is proved trivially (as

there will no more execution of line 27), or a state s is

expanded either in an inadmissible search, i.e. from OPENi

(i = 1,2,.,n) or in the anchor search, i.e. from OPEN0.

Let us consider the first case, i.e. when s is selected for

expansion in OPENi (line 34) and i6¼ 0. This expansion (of

s) will only change v(s) (line 5) and no other state’s v will

be altered. Also, as s is being expanded in an inadmissible

search, it follows that s; CLOSEDanchor (as shown before)

and thus there will be no change in the v-values of states

that are in CLOSEDanchor. Thus, all of the states that are in

CLOSEDanchor, satisfy v(s) � w1�g*(s) before and after

such an expansion (from the induction hypothesis). Thus,

the statement (*) holds.

Now, consider the case when s is chosen for expansion

in the anchor search (line 42). From the induction hypoth-

esis Q4 OPEN0, thus, selection of s guarantees g(s) �
w1�g*(s) (Theorem 6). From Lemma 3, it also follows that

next time line 28 is executed v(s) � w1�g*(s), and hence

the statement (*) still holds as no other state’s v value has

changed during this expansion.

We now prove that after s is expanded (either in the

anchor or in an inadmissible search) the theorem itself also

holds. We assume that Q4 OPEN0 held during all earlier

iteration of the for loop and we prove it by showing that Q

continues to be a subset of OPEN0 after the current itera-

tion. This will also prove that Q4 OPEN0, when the next

time line 27 is executed.

Any state that is generated for the first time in the

ExpandState routine will be initialized with

v(s) = g(s) = N. Now, if during this expansion its g value

is lowered then v(s) = N . g(s). Similarly, for all other

states if the g value is lowered (at line 11), it would ensure

v(s) . g(s), as either v(s) = N or v(s) holds the value g(s)

when it was expanded last, now the g value has decreased

(the g value of a state can only be altered at line 11, and

this change can only lower the g value as otherwise, the

check at line 10 will never be true).

Each such state will be inserted/updated in OPEN0 at

line 13, the only exception being if the check at line 12 is

satisfied, i.e. s has earlier been expanded in the anchor

search, in which case s 2 CLOSEDanchor, and thus has v(s)

� w1�g*(s), from statement (*).

All of the states that have v(s) . g(s) are

either 2 OPEN0 or 2 CLOSEDanchor. From statement (*)

any state s 2 CLOSEDanchor satisfies v(s) � w1�g*(s).

Therefore, for any state s, v(s) . g(s) and v(s) . w1�g*(s),

imply that s 2 OPEN0. Which means, Q4 OPEN0.

Thus, the theorem is proved.

Theorem 8. At line 2, for any state s with KEY(s,

0) � KEY(u, 0), "u 2 OPEN0, it holds that g(s) �
w1�g*(s).

Proof. This theorem can be proved directly from the results

of Theorem 6 and 7. From Theorem 7 we have Q4
OPEN0, thus any state that satisfies KEY(s, 0) � KEY(u,

0), "u 2 OPEN0 also satisfies KEY(s, 0) � KEY(u, 0),

"u 2 Q. Thus, from Theorem 6, g(s) � w1�g*(s).

Theorem 9. At line 28, it holds that

OPEN0.MINKEY() � w1�g*(sgoal).

Proof. We can prove this in the same manner as done for

Theorem 2, utilizing Theorem 8 instead of Theorem 1.

Theorem 10. When SMHA* exits, g(sgoal) �
w1�w2�g*(sgoal), i.e. the solution cost is bounded by w1�w2

sub-optimality factor.

Proof. This theorem can be proved in a manner similar to

the proof for Theorem 3 using Theorems 8 and 9.

Theorem 11. During the execution of SMHA*, (a) no state

is expanded more than twice, (b) a state expanded in the

anchor search is never re-expanded, and (c) a state

expanded in an inadmissible search can only be re-

expanded in the anchor search if its g value is lowered.

Proof. In SMHA*, a state s can only be expanded when

it is selected as the top state of OPENi in either line 34

or 42.

If s is selected for expansion in line 34, the very next

call is to the function ExpandState (line 35), which removes

this selected state from OPENi, "i = 0..n (line 4). Also,

232 The International Journal of Robotics Research 35(1–3)

after the ExpandState call, s is inserted in CLOSEDinad

(line 36). Now, a state (other than sstart) can only be

inserted in OPENi (i6¼ 0) in line 17. If a state s has already

been expanded in any of the inadmissible searches (i.e.

s 2 CLOSEDinad), the check at line 14 will ensure that s is

not inserted again in OPENi (i6¼ 0). Therefore, a state can

only be expanded once in the inadmissible searches.

Now, when a state s is expanded in the anchor search,

similar to the earlier case, here also, s is removed from all

OPENi (line 4) and inserted to CLOSEDanchor. Thus, s can

only be expanded again either in inadmissible searches or

in anchor search, if it is re-inserted in any of the OPENi,

which can only be done in lines 13 or 17. However, as

s2CLOSEDanchor, the check at line 12 will never be true,

thus the control will never reach lines 13 or 17, i.e. s will

never be re-expanded. Therefore, statement (b) is true.

Also, as s can be expanded at most once in the anchor

search and at most once in the inadmissible searches, i.e. s

cannot be expanded more than twice, proving statement

(a).

Finally, a state s that has been expanded in an inadmissi-

ble search, can only be expanded in the anchor search later

if it is re-inserted in OPEN0. A state can only be inserted in

OPEN0 (any OPENi, for that matter) if the check at line 10

is true, i.e. if its g value is less than its earlier g value. Thus,

a state s whose g has not been lowered after its expansion in

any inadmissible search will never satisfy the condition at

line 10 and will not be re-inserted in OPEN0 and, thus, can

never be expanded in the anchor search. Therefore, state-

ment (c) is true.

Theorem 12. In SMHA*, a state s is never expanded in the

ith inadmissible search if KEY(s, i) . w1�w2�g�(sgoal).

Proof. The proof is similar to Theorem 5, utilizing the fact

that OPEN0.MINKEY() � w1�g�(sgoal) (Theorem 9).

Theorem 10 shows that SMHA* guarantees the same

sub-optimality bounds as IMHA* while Theorem 11 high-

lights the difference in complexity between these two

approaches. In IMHA*, a state can be re-expanded at most

n + 1 times as each search is performed independently,

whereas in SMHA* the same bounds are attained with at

most 1 re-expansion per state (at most one expansion in

inadmissible searches and one expansion the anchor search,

when the state is first expanded in an inadmissible search

and its g value is lowered). On the other hand, IMHA* has

the following advantages over SMHA*: (a) expansion of

states in IMHA* is cheaper than SMHA* as SMHA* may

require n + 1 insertion/update/removal steps, whereas

IMHA* requires only 1, (b) in SMHA* all of the searches

store a copy of each of the generated states, thus the mem-

ory overhead is greater,4 and (c) IMHA* is more amenable

to parallelization, as individual searches do not share

information.

A more important distinction between SMHA* and

IMHA* arises from the fact that as SMHA* shares the

states and the best path information among all of the

searches,5, it can potentially use a combination of partial

paths to exit from depression regions, which is not possible

in IMHA*. Therefore, if there are nested depression regions

in the state space that none of the consistent/inadmissible

heuristics can avoid independently, SMHA* can outper-

form IMHA*. In Figure 2, we illustrate this phenomenon

with an example of a 12D planning problem. As shown in

the figure, we use 3 heuristics here (1 consistent + 2 inad-

missible), however none of these heuristics can guide the

search completely, as all of them get stuck in their own

local minimum. In such a scenario, SMHA* can use partial

paths obtained by individual searches and seamlessly com-

bine them to obtain a complete plan (Figure 2(f)), but

IMHA* cannot, as it does not share information. A video

of the PR2 robot actually performing the task using the

plan generated by SMHA* is included in Extension 1.

It should be noted that while sharing paths certainly

makes SMHA* more powerful in handling nested minima,

it can also be counter-productive at times, especially if the

path sharing drags the search to a local minimum that could

have been avoided if the searches were kept separate. Figure

3 includes an example of such a scenario with 3 heuristics

(1 consistent + 2 inadmissable). In this case, IMHA* termi-

nates earlier than SMHA*, as path sharing leads both the

inadmissible searches toward the same local minimum.

4. Experimental results

We evaluated the performance of MHA* (both IMHA* and

SMHA*) for the following domains: 12-dimensional

mobile manipulation planning for the PR2 robot, 30-dimen-

sional (x, y, orientation) navigation for single and multiple

goal domains, and sliding tile puzzles. All of the experi-

ments were performed on an Intel i7-3770 (3.40 GHz) PC

with 16 GB RAM.

We primarily benchmarked MHA* against WA*without

re-expansions (as in ARA* (Likhachev et al., 2004)/RWA*
(Richter et al., 2010)). In addition, we also compared with

the sampling-based planning algorithms (PRM (Kavraki

et al., 1996), RRT-Connect (Kuffner and LaValle, 2000),

and RRT* (Karaman and Frazzoli, 2010)), MHGBFS

(Röger and Helmert, 2010), multiple parameter WA*
(MPWA*) (Valenzano et al., 2010), and EES (Thayer and

Ruml, 2011) when applicable.

As MHA* uses two sub-optimality bounds (w1 and w2)

in comparison to one w used by WA*/MPWA*/EES, we set

w2 = min 2:0,
ffiffiffiffi

w
p

ð Þ and w1 = w/w2, for all our experiments

(and the examples), so that the solutions are guaranteed to

be within w-sub-optimality bound.

For MHGBFS, we used the same heuristics as used for

SMHA*. For MPWA*, we used the admissible heuristic

with 5 different weights (0.2 × w to 1.0 × w, with 0.2

gap; where w � 10.0). For EES, we used an inadmissible

distance measure, one inadmissible heuristic function (from

the set used for MHA*) and the admissible heuristic. We

ran WA*, MPWA* and MHGBFS without state re-

expansions as re-expansions can degrade the planning time.

Aine et al. 233

Both WA* and MPWA* can satisfy the quality bounds

without re-expansions, while MHGBFS does not guarantee

any bounds.

4.1. Mobile manipulation planning for the PR2

(12-dimensional)

The PR2 mobile manipulation robot is a dual-arm robot (7

DOFs each) with an omnidirectional base and a prismatic

spine. In our experiments, we used a state space representa-

tion similar to that used in Cohen et al. (2012). We repre-

sented a robot state with 12 DOFs: a 6-DOF object pose, 2

redundant arm joints, 2D Cartesian coordinates for the

base, an orientation of the base, and the prismatic spine

height. The planner was provided the initial configuration

of the robot as the start state. The goal state contained only

the 6-DOF position of the object, which made it inherently

under-specified because it provides no constraints on the

position of the robot base or the redundant joint angles. The

actions used to generate successors for states were a set of

motion primitives, which are small, kinematically feasible

motion sequences that move the object in 3D Cartesian

space, rotate the redundant joint, or move the base in a typi-

cal lattice-type manner (Likhachev and Ferguson, 2009).

The prismatic spine was also allowed to adjust its height in

small increments.

Fig. 2. A full-body (12-dimensional) planning example highlighting the advantage of SMHA* over WA*/IMHA* for cases where no

individual heuristic can escape all of the depression regions by itself (nested depression regions). Here the task for the robot (PR2) is

to carry a large object (picture frame) through a narrow corridor and a doorway, and then to put it down on a table. The problem

instance is shown in (a) with left and right figures depicting the start and end configurations, respectively. (b) The vector field for a

consistent heuristic (h0), computed by performing a backward (from goal to start) 2D search for the PR2 base. In (c) we show how a

search using h0 gets stuck (at the door) as it cannot orient the end-effector correctly, and thus ends up expanding a large number of

states at the shown position without moving toward the goal (deep local minimum) before running out of time (1 minute). To rectify

this, we compute two additional (inadmissible) heuristics by including the orientation information for the end-effector, one targeting

the goal orientation (h1) and another targeting a vertical orientation (h2). Unfortunately, none of these heuristics are powerful enough

to take the search to the goal state as they both suffer from their own depression regions (the searches using h1 and h2 gets stuck at

different positions as shown in (d) and (e)). As all of the heuristics (consistent and inadmissible) lead the search to separate depression

regions, IMHA* cannot avoid any of them and performs as poorly as WA*. However, as shown in (f), SMHA* can efficiently

compute a plan by using partial paths from different heuristics. It uses the base and vertical orientation heuristic (in parts) go through

the corridor and the door, and then switches to the goal orientation heuristic to align the end-effector to the goal.

234 The International Journal of Robotics Research 35(1–3)

We computed the admissible heuristic by taking the

maximum value between the end-effector heuristic and the

base heuristic, where the end-effector heuristic

was obtained by a 3D Dijkstra search initialized with the

(x, y, z) coordinates of the goal and with all workspace

obstacles inflated by their inner radius, and the base heuris-

tic was obtained using a 2D Dijkstra search for the robot

base where the goal region is defined by a circular region

centered around the (x, y) location of the 6-DOF goal. The

purpose of this circular region is to maintain an admissible

heuristic despite having an incomplete search goal. As the

set of possible goal states must have the robot base within

arm’s reach of the goal, we ensure that the heuristic always

underestimates the actual cost to goal by setting the radius

of the circular region to be slightly larger6 distance than the

maximum reach of the robot arm.

For IMHA*, we computed two additional heuristics in

the following way. First, we randomly selected two points

from the base circle around the goal with valid inverse

kinematic (IK) solutions for the arm to reach the goal and

ran 2D Dijkstra backward searches (to the start state) start-

ing from these two points. This gave us two different base

distances. Second, we computed an orientation distance by

obtaining the angular difference between the current base

orientation (at a given point) and the desired orientation,

which was to make the robot face the end-effector goal.

These distances (base and orientation) were then added to

the end-effector heuristic to compute the final heuristic val-

ues. Note that this informative heuristic is clearly inadmis-

sible, as they compute the angular and base distance

difference for particular configurations, in contrast to find-

ing the minimum value among all possible configurations,

but can still be used in the MHA* framework.

For SMHA*, we augmented this set by using the base

(2D Dijkstra + orientation) and the end-effector heuristics

(3D Dijkstra) as two additional heuristics, since SMHA*
can share the paths among the inadmissible searches, and

hence, can potentially benefit from not combining the two

heuristics into a single one.

In Figure 4, we include an example of the test scenario

with two large tables and a few narrow passageways. For

each trial of the experiment, we randomly generated a full

robot configuration anywhere in the kitchen for the start

state, while generating a valid goal state that lies above the

tabletops containing clutter. We generated 15 such environ-

ments by randomly changing the object positions and for

each such environment we used 10 different start and goal

configurations.

In Table 1, we include the results comparing WA*, EES,

MPWA*, MHGBFS with the MHA*. We used w = 50 for

all the algorithms. Each planner was given a maximum of

60 seconds to compute a plan. The results clearly show that

MHA* (especially SMHA*) and MHGBFS perform much

better than WA*/MPWA*/EES, highlighting the efficacy of

using multiple heuristics over a single heuristic function,

which often suffers from local minima due to the robot’s

orientation, presence of obstacles, etc.

MPWA* performs slightly better than WA* indicating

that the size of a local minimum can depend on the weights

used. However, it still gets stuck in most of the cases, since

it uses the same heuristic (albeit with different weights) for

each search. EES performs poorly when the inadmissible

distance function has a large depression. Also, the inadmis-

sible and admissible searches in EES do not use weighted

heuristics and, thus, often get trapped in some cost plateau.

MHA* (and MHGBFS) is less prone to suffer from

heuristic depression regions as they can converge in time if

any of the heuristics can lead the search to the goal.

SMHA* and MHGBFS perform better than IMHA*, as

S

B

A

C D

G
h0=5
h1=0
h2=0

h0=5
h1=10
h2=10

h0=0
h1=0
h2=0

h0=5
h1=50
h2=0

h0=5
h1=0
h2=0

h0=5
h1=0
h2=0

10

10

5

2 2 2
E

h0=5
h1=0
h2=0

IMHA* Expansions
Anchor:
Search 1: S,A
Search 2: S,B

SMHA* Expansions
Anchor:
Search 1: S,C,E, ..
Search 2: B,D, ..

Fig. 3. An example scenario depicting how path sharing in

SMHA* can at times degrade performance (over IMHA*). S

denotes the start state and G denotes the goal state. The different

h-values are shown in the boxes alongside the states. We run

MHA* with w1 = 5.0 and w2 = 2.0. IMHA* does not share

information among the searches, which in this case results in

termination after 4 expansions (as shown in the figure). In

contrast, SMHA* shares the g-values (and the states), which in

this case drags the search toward the lower part of the graph

(expansions shown in the figure) and, thus, delays termination.

Fig. 4. An example of the planning scenarios used for 12-

dimensional mobile manipulation. Experiments were done for a

kitchen-like environment with narrow passages, tables and

shelves. This figure shows a typical problem instance with a fully

specified start configuration and a partially specified (6-DOF)

goal configuration.

Aine et al. 235

they can use partial paths. For example, they can combine

a path obtained in the base heuristic search with the end-

effector heuristic search. MHGBFS performs comparably

to SMHA* in terms of number of instances solved and

slightly better in terms of convergence time. However, the

solution costs obtained for MHGBFS are significantly

worse than SMHA* (and IMHA*), as noted in the solution

cost ratio in Table 1. This highlights the utility of the

anchor search, which ensures better quality solution by

intelligently controlling the inadmissible expansions.

In Table 2, we include the results comparing MHA*
with 3 sampling based algorithms, namely PRM, RRT-

Connect, and RRT*, in terms of runtime and solution qual-

ity. For the sampling-based algorithms we used the stan-

dard OMPL (Sxucan et al., 2012) implementation. Since the

sampling-based planners do not directly report the solution

costs, in this table we include the results in terms of base

and end-effector distances covered by the robots (after post

processing). All the results are presented as a ratio over the

corresponding SMHA* numbers for episodes where that

planner and SMHA* were both successful in finding a

solution within 60 seconds).

The results show that SMHA* performs reasonably well

when compared with the sampling-based planners. Its run-

time is better than both PRM (5×) and RRT* (8×) but

worse than RRT-Connect (5×). In terms of solution qual-

ity, MHA* results are noticeably better than all the

sampling-based planners. However, both RRT-Connect and

RRT* can solve more number of instances, mainly due to

the facts that (a) they are not bound by discretization

choices and (b) they do not use any heuristic function that

may lead to local minima. Overall, the results show that

MHA* (SMHA* in particular) is a reasonable alternative

for planning in such high-dimensional environments, espe-

cially when we are looking for predictable7 and bounded

sub-optimal (with respect to the discretization choice) plan-

ning solutions.

4.2. 3D path planning (navigation)

While high-dimensional problems such as full-body plan-

ning for the PR2 are a true test-bed for assessing the real

life applicability of MHA*, finding close-to-optimal solu-

tions in such spaces is infeasible. Therefore, in order to get

a better idea of MHA*’s behavior for close-to-optimal

bounds, we ran experiments in an easier 3D (x, y, orienta-

tion) navigation domain.

Here, we modeled our environment as a planar world

and a rectangular polygonal robot with three degrees of

freedom: x, y, and u (heading). The search objective is to

plan paths that satisfy the constraints on the minimum turn-

ing radius. The actions used to get successors for states are

a set of motion primitives used in a lattice-type planner

(Likhachev and Ferguson, 2009). We computed the consis-

tent heuristics (h0) by running a 16-connected 2D Dijkstra

search assuming the robot is circular with a radius equal to

the actual robot’s (PR2 base) inscribed circle, i.e. inflating

the objects by the robot’s in-radius.

We used two kinds of environments for the testing: (i)

simulated indoor environments, which are composed of a

series of randomly placed narrow hallways and large rooms

with polygonal obstacles; and (ii) simulated outdoor envir-

onments, which have relatively large open spaces with

random regular shaped obstacles,8 that occupy roughly

Table 1. Comparison between WA*, MHGBFS, MPWA*, EES, and MHA* for PR2 manipulation planning in kitchen environments.

The first row (SR) shows the percentage of total problem instances solved by each planner. The other rows include the results as a ratio

between the algorithm marked in the column heading and the corresponding SMHA* numbers, when both of them solved an instance.

Legend: SR, success rate; SE, state expansion ratio; RT, runtime ratio; SC, solution cost ratio.

WA* MHGBFS MPWA* EES IMHA* SMHA*

SR 31% 76% 36% 27% 70% 81%
SE 1.08 0.78 3.84 1.54 1.58 1.0
RT 0.99 0.91 2.82 1.54 1.41 1.0
SC 0.95 1.57 0.97 0.93 1.09 1.0

Table 2. Comparison between MHA* and sampling-based planners for PR2 manipulation in kitchen environments. All the results are

presented as a ratio between the algorithm marked in the column heading and the corresponding SMHA* numbers. For sampling-

based planners, the distances are obtained after post processing. Since RRT* is an anytime algorithm, we include the results for the

first solution reported (RRT*-First) and the solution obtained at the end of 60 seconds (RRT*-Final). Legend: SR, success rate; RT,

runtime ratio; BD, base distance ratio; ED, end-effector distance ratio.

PRM RRT-Connect RRT*(First) RRT*(Final) IMHA* SMHA*

SR 74% 98% 100% 100% 70% 81%
RT 2.07 0.18 5.39 8.48 1.41 1.00
BD 1.93 1.88 1.36 1.34 1.02 1.00
ED 1.87 1.68 1.27 1.24 0.99 1.00

236 The International Journal of Robotics Research 35(1–3)

10–30% of the space. We generated 100 maps of

1000 × 1000 dimensions for both these environments.

We performed the following experiments.

4.2.1. 3D path planning with dual heuristics. In this

experiment, in addition to h0, we generated an extra heuris-

tic h1 by performing another 2D Dijkstra search by inflat-

ing all the objects using the robot’s out-radius. Obviously,

this heuristic function is an arbitrarily inadmissible one as a

valid path can get blocked by such an inflation. On the

other hand, h1 is less prone to the local minima created due

to minimum turning radius constraints.

In Figure 5, we include the results obtained for this

experiment. The results show that for indoor environments,

in terms of runtime, MHA* generally outperforms WA* by

a significant margin. This is because, in indoor maps, the

presence of large rooms and narrow corridors frequently

creates big depression regions. MHA* can utilize the out-

radius heuristic to quickly get away from such depression

zones, while maintaining the quality bounds using the

anchor search. In contrast, WA* only uses the in-radius

heuristic guidance and thus often gets stuck in large local

minima. For low sub-optimality bounds, IMHA*’s perfor-

mance degrades a bit compared to WA* due to re-expan-

sions, however SMHA* still performs better. Overall,

MHA* provides around 3× speed up over WA*while pro-

ducing solutions of similar quality. In contrast, for outdoor

environments, all of the algorithms perform similarly for

high bounds. In fact, in most cases, MHA* has a trifle lon-

ger runtime than WA* due to overhead of generating an

extra heuristic. The comparative results are different for

outdoor maps mainly due to the fact that the outdoor maps

are generally more benign and large depression regions are

rare and, thus, WA* is very efficient. However, even in this

case, MHA* (especially SMHA*) perform better in case of

low bounds, both in terms of solution quality and runtime.

This is because MHA* spends more effort in exploring the

feasible solutions when compared with WA*.

Comparing IMHA* and SMHA* we note that there is

not much difference in the results, as we used just one extra

heuristic, the scope of sharing is minimal. Although, there

were instances where SMHA* converged faster, as it could

share the search efforts between the anchor and the inad-

missible search, which is not possible for IMHA*.

4.2.2. 3D path planning with progressive heuristics. In this

experiment, we evaluated MHA* on 3D path planning with

more than two heuristics. We used two schemes to generate

the inadmissible heuristics, Progressive Heuristics (PH) and

Progressive Heuristics with Guidance (PG) (Holte et al.,

1995).

0.10

0.40

0.70

1.00

1.30

10 5 4 3 2 1.5

IMHA* SMHA*

(a) Runtime ratio (indoor)

0.80

0.90

1.00

1.10

1.20

10 5 4 3 2 1.5

IMHA* SMHA*

(b) Solution cost ratio (indoor)

0.20

0.50

0.80

1.10

1.40

10 5 4 3 2 1.5

IMHA* SMHA*

(c) Runtime ratio (outdoor)

0.70

0.80

0.90

1.00

1.10

10 5 4 3 2 1.5

IMHA* SMHA*

(d) Solution cost ratio (outdoor)

Fig. 5. Comparison between WA* and MHA* with dual heuristic for simulated indoor and outdoor environments in terms of average

runtime and solution costs. All the results are shown as a ratio between a candidate algorithm (as mentioned in the plots) and the

corresponding WA* numbers. The x-axis in each figure shows the target sub-optimality bounds (w in case of WA*, w1*w2 in case of

MHA*).

Aine et al. 237

In PH, the 2D Dijkstra path obtained from the original

map is investigated for possible bottlenecks. If the path has

narrow passages (passage width � robot’s outer diameter),

those are blocked to create the next map, which is then

used to compute the next heuristics. The procedure is iter-

ated (at most 10 times), while there are narrow passages.

The objective of this strategy is to obtain alternate heuris-

tics until a relatively wide path is discovered. In PG, the

PH scheme is augmented with an extra heuristic computed

from a map with all cells blocked but a tunnel (of width 30

cells) around the last 2D path, with an intention to focus

the 3D search toward the wide path.

Figure 6 depicts an example of the heuristics generation

process, where the first 2D path has a narrow passage,

which is blocked to obtain the second heuristic (PH). For

PG, an extra heuristic is computed from the third map

blocking all of the cells other than a tunnel around the 2D

path.

We used an incremental search (Koenig et al., 2004) to

compute the additional heuristics. Typically, the generation

of MHA* heuristics (including heuristic computation, path

tracing and blocking) took about 0.1–0.3 seconds time,

which was around 1.2–1.5 times more than the time it takes

to generate a single consistent heuristic for WA*.

We include the results for this experiment in Figure 7.

While the overall trends resemble the observations with

dual heuristics (i.e. MHA* provides considerable improve-

ment of WA* for indoor cases), the difference between

WA* and MHA* is even more pronounced with PH/PG

schemes. For indoor environments, the PH scheme gener-

ated additional heuristics for 44 maps (out of 100), whereas

for outdoor environments, it generated additional heuristics

for 8 maps only. On an average, for indoor environments,

MHA* provides 18–2× runtime improvement over single

heuristic WA*. Runtime results for all the algorithms are

similar in case of outdoor environments (at high bounds,

MHA* is a bit worse). However, for low bound values (�
2.0), SMHA*(PG) outperforms WA* both in terms of run-

time and solution quality. Comparing IMHA* and SMHA*,

we observe that in this experiment SMHA* consistently

outperforms IMHA*, highlighting the efficacy of path

sharing to navigate around depression regions in a more

robust manner. Also, for low bound values, IMHA* tends

to re-expand a lot more states which considerably degrades

its performance.

In Table 3, we include the results comparing MHA*
(PG) with the MHGBFS and MPWA* on the combined set

of 52 hard instances (44 indoor + 8 outdoor), for which the

PH scheme generated extra heuristics. For MHA* and

MPWA*, we used w = 10.0. Each algorithm was given a

maximum of 5 seconds to compute a plan. Overall, the

comparison between MPWA* and MHA* show a similar

trend as seen for the 12-dimensional planner. In contrast,

MHGBFS’ performance degrades considerably for this

domain as its greedy approach at times drives the search

deeper into a local minimum. Unlike 12-dimensional plan-

ning, cost plateaus are rare here while large depression

regions are pretty common and, thus, the greedy approach

hurts more often than it helps.

4.3. Multiple goal path planning

In this experiment, we investigate the multiple goal path

planning problem for 3D (x, y, orientation) lattices. Here,

the planning objective is to plan a path to any of the goals

from a given set. Such planning problems are common in

real life, for example, if a parking lot has multiple open

slots, an autonomous car needs to plan a path to any one of

the available slots, preferably the one closest to it. MHA*
can be a good fit for such planning problems as it can

simultaneously explore paths to all the goals, using one (or

more) heuristics targeted toward a particular goal.

We used two bounded sub-optimal search techniques to

compare against MHA* for this domain. In the first tech-

nique (we call it Seq-A*), we sequentially searched for

paths to individual goals, starting with the goal that has the

minimum heuristic value (2D distance) and using the best

cost in the previous searches as an upper bound constraint

for the current search, i.e. we prune the states that have f

value (f = g + h) greater than or equal to the best solution

obtained in the earlier iterations. In the second technique

(Min-A*), we generated a single admissible heuristic for

Fig. 6. Example of progressive heuristics generation: (a) the original 2D path with a narrow passage; (b) the new map with the

second heuristic function (PH); and (c) the heuristic created by constructing a tunnel around the path (PG).

238 The International Journal of Robotics Research 35(1–3)

each state by using the minimum heuristic value across all

goals (computed by running a single Dijkstra search con-

sidering all goals), and conducted WA* using this heuristic

(with inflation).

We ran the MHA* algorithms in two modes, in the first

case (MHA*-Ad), we used a consistent heuristic (as com-

puted in Min-A*) for the anchor search and used individual

(admissible) heuristics for the inadmissible searches. In the

second version (MHA*-InAd) we used the same heuristic

for the anchor but used outer-radius based inadmissible

heuristics for the other searches. We performed this experi-

ment with indoor environments only (on 100 maps) by ran-

domly selecting 2–4 goals.

The results of this experiment are included in Figure 8,

which shows that according to runtime for convergence,

MHA*-InAd� MHA*-Ad \ Min-A* \\ Seq-A*, and

the differences increase with number of goals. Solution

quality wise, all of the algorithms perform similarly (within

10%). The runtime difference among the algorithms can be

explained by the fact that Seq-A* can perform poorly if any

of the heuristics suffer from large local minima. Min-A*
performs poorly if the combined consistent heuristic suffers

from local minima. MHA*-Ad can converge faster than

Seq-A* or Min-A* if any of the individual goal heuristics

does not have a large local minimum, but can get stuck if

all of the heuristics suffer from local minima (note that for

individual goals, the corresponding heuristics are admissi-

ble). MHA*-InAd takes maximum advantage of the multi-

heuristic approach as it can use out-radius based heuristic

to conduct the individual searches (which are less prone to

get stuck in a local minimum) and if any one of the inad-

missible searches reach a goal state while satisfying the

chosen bounds, it can terminate. Overall, the results corro-

borate our observation that MHA* is indeed well suited to

0.00

0.30

0.60

0.90

1.20

10 5 4 3 2 1.5

IMHA*(PH) SMHA*(PH)
IMHA*(PG) SMHA*(PG)

(a) Runtime ratio (indoor)

0.50

0.70

0.90

1.10

1.30

10 5 4 3 2 1.5

IMHA*(PH) SMHA*(PH)
IMHA*(PG) SMHA*(PG)

(b) Solution cost ratio (indoor)

0.50

0.80

1.10

1.40

1.70

10 5 4 3 2 1.5

IMHA*(PH) SMHA*(PH)
IMHA*(PG) SMHA*(PG)

(c) Runtime ratio (outdoor)

0.50

0.65

0.80

0.95

1.10

10 5 4 3 2 1.5

IMHA*(PH) SMHA*(PH)
IMHA*(PG) SMHA*(PG)

(d) Solution cost ratio (outdoor)

Fig. 7. Comparison between WA* and MHA* with PH and PG heuristic for simulated indoor and outdoor environments. All the

results are shown as a ratio between a candidate algorithm (as mentioned in the plots) and the corresponding WA* numbers. The x-

axis in each figure shows the target sub-optimality bounds (w in case of WA*, w1*w2 in case of MHA*).

Table 3. Comparison between MHGBFS, MPWA*, and MHA* for 3D path planning. All of the planners were given a maximum of 5

seconds to plan. IS denotes the number of instances solved. RT and SC denote the runtime and solution cost ratio over SMHA*.

MHGBFS MPWA* IMHA* SMHA*

IS 37 35 52 52
RT 2.39 3.38 1.35 1.00
SC 7.27 1.26 1.22 1.00

Aine et al. 239

efficiently solve multiple goal search problems and they

can provide significant improvement over individual/com-

bined heuristic searches.

4.4. Sliding tile puzzle

In this section, we present the experimental results for slid-

ing tile puzzles, a well known discrete optimization prob-

lem from artificial intelligence literature. For this domain,

we used the Manhattan distance (MD) plus linear conflicts

(LC) (h0 = MD + LC) as the consistent heuristic function

(for more details about these heuristics, please see http://

heuristicswiki.wikispaces.com/N + - + Puzzle).

For MHA*, we generated 4 additional heuristics by com-

puting the number of misplaced tiles (MT), and adding MD,

LC and MT with random weights (between 1.0 to 5.0), i.e.

we used hi = r1*MD + r2*LC + r3*MT, where r1, r2, r3 are

random numbers between 1.0 and 5.0. Clearly, these heuris-

tics are somewhat random and are inadmissible. We tested

the algorithms on 50 random instances (all solvable) of 48,

63 and 80 puzzles.

In Table 4, we include the results in terms of the number

of problems solved by all of the algorithms under two time

limits: 1 minute and 3 minutes (we did not use larger time

bounds due to memory limitations). The results show that

even with a randomized approach MHA*, especially

SMHA*, can significantly outperform WA*. The perfor-

mance gap is more pronounced for larger sized problems

and higher w values. For example, for 63 puzzle, SMHA*
solved 44 instances whereas WA* could only solve 35

instances (IMHA* solved 38), for 80 puzzle, SMHA*
solved 37 instances while WA* solved 22 instances only.

To highlight that the MHA* results were not due to the

quality of randomized heuristic function, we include the

results for WA* with a heuristic function (hr) generated

using the same scheme as in MHA*, i.e.

hr = r1*MD + r2*LC + r3*MT, where r1, r2, r3 are random

numbers between 1.0 and 5.0 (referred to as WA*(R) in

Table 4). As, hr � 10 *h0, we computed the results for

sub-optimality bounds � 10 only. From Table 4, we

see that the WA*(R) results are actually worse than WA*
indicating that the improvements obtained by MHA* are

due to their multi-heuristic exploration, which at times

helped the search avoid getting trapped in depression

regions.

In Table 5, we present the results obtained by comparing

MHA* to MHGBFS and MPWA*. MHA*s and MPWA*
were run with w = 20.0. All of the algorithms were given a

time limit of 1 minute. From the results, we observe that

while MPWA* and MHGBFS perform better in this

domain (compared with path planning), overall, SMHA*
still remains the best algorithm. For each size, SMHA*
could solve more or equal number (as in the case of 48 puz-

zle) of instances than both MPWA*/MHGBFS. Although

MHGBFS had a better planning time in two scenarios, its

solution quality is markedly worse, as one would expect

from the greedy approach.

Overall, the results from all of these domains (from

inherently continuous domains such as 12-dimensional

motion planning to purely discrete domains such as sliding

tile puzzles) highlight the potential of MHA* for solving

complex optimization problems where it is hard to design a

single consistent heuristic which effectively captures all of

the features of a given problem. Comparing two MHA*

0.0

0.2

0.4

0.6

0.8

10 5 4 3 2 1.5

Min-A* IMHA*-Ad
SMHA*-Ad IMHA*-InAd
SMHA*-InAd

(a) Runtime ratio (2 goals)

0

0.2

0.4

0.6

0.8

10 5 4 3 2 1.5

Min-A* IMHA*-Ad
SMHA*-Ad IMHA*-InAd
SMHA*-InAd

(b) Runtime ratio (3 goals)

0

0.2

0.4

0.6

0.8

10 5 4 3 2 1.5

Min-A* IMHA*-Ad
SMHA*-Ad IMHA*-InAd
SMHA*-InAd

(c) Runtime ratio (4 goals)

0.9

1

1.1

1.2

10 5 4 3 2 1.5

Min-A* IMHA*-Ad
SMHA*-Ad IMHA*-InAd
SMHA*-InAd

(d) Solution cost ratio (2 goals)

0.9

1

1.1

1.2

10 5 4 3 2 1.5

Min-A* IMHA*-Ad
SMHA*-Ad IMHA*-InAd
SMHA*-InAd

(e) Solution cost ratio (3 goals)

0.9

1

1.1

1.2

10 5 4 3 2 1.5

Min-A* IMHA*-Ad
SMHA*-Ad IMHA*-InAd
SMHA*-InAd

(f) Solution cost ratio (4 goals)

Fig. 8. Results for multiple goal search for simulated indoor environments. All of the results are shown as a ratio between a candidate

algorithm (as mentioned in the plots) and the corresponding Seq-A* numbers. The x-axis in each figure shows the target sub-

optimality bounds (w in the case of Seq-A* and Min-A*, w1*w2 in case of MHA*).

240 The International Journal of Robotics Research 35(1–3)

strategies, we observe that SMHA* generally dominates

IMHA*, as it can combine the advantages of three key

MHA* principles, (a) simultaneous exploration, (b) sharing

of partial paths, and (c) controlling unnecessary expansions

using the anchor, and can do this with minimal re-

expansions (at most two). However, IMHA* has a lower

memory overhead and thus can be more useful for domains

where memory is a bottleneck.

5. Conclusions and future work

We presented a heuristic search framework (MHA*) that

uses multiple inadmissible heuristics to simultaneously

explore the search space, while preserving guarantees of

completeness and sub-optimality bounds using a consistent

heuristic. We described two variants of the MHA*
approach, IMHA* where individual searches run indepen-

dently and SMHA*, where the searches share the current

path obtained to a state. Experimental results obtained on

various domains demonstrate the efficacy of the proposed

framework, especially for search spaces with large depres-

sion regions. Overall, the approach is simple (i.e. easy to

implement) and yet very powerful, and we hope this will

make it useful for solving complex planning problems in

robotics and other domains.

In addition, while the initial results with MHA* are

encouraging, we believe that there are plenty of directions

for major improvements/extensions. One of the direction

can be to use meta-reasoning to dynamically select which

heuristic to explore, the current version uses round robin

scheduling, however, more intelligent approaches can intel-

ligently schedule the searches depending on their progress

on a particular instance. If done efficiently such intelligent

scheduling may also enable us to use a larger number of

heuristics, which in turn can increase the coverage of the

algorithms when solving really hard problems. Other

Table 4. Number of sliding tile puzzle instances solved by WA*, IMHA*, and SMHA* for different sub-optimality bounds with time

limit 1 minute (columns 3, 4, and 5) and 3 minutes (columns 7, 8, and 9). WA*(R) columns (6 and 10) show the results obtained by

WA* used the same randomized heuristic, as used for MHA*.

Time limit = 1 minute Time limit = 3 minutes

Size Bound WA* IMHA* SMHA* WA*(R) WA* IMHA* SMHA* WA*(R)

48 50 46 49 50 49 47 49 50 50
20 49 47 50 43 49 49 50 46
10 45 37 50 32 46 45 50 32
5 37 19 49 — 38 39 50 —
2 12 4 9 — 12 6 10 —

63 50 25 35 40 26 29 38 44 33
20 34 26 39 18 35 37 41 31
10 32 21 39 17 35 29 40 18
5 19 8 31 — 24 19 37 —
2 3 4 4 — 7 4 9 —

80 50 17 24 31 15 22 26 33 23
20 22 17 27 13 22 27 37 16
10 19 19 29 12 21 25 30 18
5 17 11 22 — 20 14 28 —
2 7 1 4 — 7 1 9 —

Table 5. Comparison between MHGBFS, MPWA*, IMHA*, and SMHA* for the sliding tile puzzle. The maximum runtime allowed

was 1 minute. Legend: IS, number of instances solved (out of 50); RT, runtime ratio; SC, solution cost ratio (over SMHA*).

Size MHGBFS MPWA* IMHA* SMHA*

48 IS 50 44 38 50
RT 0.63 2.57 2.63 1.00
SC 3.59 1.02 0.96 1.00

63 IS 29 27 26 39
RT 1.06 1.46 1.13 1.00
SC 4.98 0.97 0.94 1.00

80 IS 21 16 17 27
RT 0.85 1.17 0.91 1.00
SC 3.92 0.94 0.99 1.00

Aine et al. 241

possible future extensions on the algorithmic side include

anytime version of MHA*, dynamic re-computation of

heuristics, and parallel MHA*, all of which should enhance

the capabilities of MHA* significantly. On the application

side, we would like to investigate MHA*’s applicability for

other planning domains, such as symbolic planning.

Funding

This research was sponsored by the ONR (DR-IRIS MURI grant

number N00014-09-1-1052) and the DARPA Computer Science

Study Group (CSSG) (grant number D11AP00275).

Notes

1. An initial version of this work appeared in Aine et al. (2014).

In this paper we provide a complete report on MHA* algo-

rithms with detailed discussions of their theoretical properties

as well as experimental results.

2. It should be noted that an expansion from OPEN0 can also

decrease the lower bound and thus suspend more inadmissible

searches. One admissible way to get rid of this is to allow the

lower bound to only increase, i.e. we store the initial value of

OPEN0.MINKEY() in a variable and later only update it if

OPEN0.MINKEY() increases.

3. It may be noted that these assumptions are similar to those used

in Likhachev et al. (2004), for the proofs (details in Likhachev

et al. (2003)), which ensures the results used in Likhachev

et al. (2004) remain applicable for the anchor search.

4. It may be noted that this memory overhead can be eliminated

by using a single open list and making the update/insertion/

removal more informed.

5. SMHA* uses common g and bp values for all of the searches.

Also during each expansion, the children of the expanded

state are inserted/updated in all the priority queues making

them available for selection according any of the heuristics.

6. We use a slightly larger distance to be conservative and

thereby avoid any discretization errors which may make the

heuristic inadmissible. However, if perfect measurements are

available, the exact value of the maximum reach of the robot

arm can be used as the radius.

7. One of the issues with sampling-based planners is that they

often produce completely different solutions for problems that

are very similar (Phillips et al., 2012); in contrast, the search-

based planners tend to produce more predictable solutions.

8. We used circular, triangular and rectangular obstacles.

References

Aine S, Chakrabarti PP and Kumar R (2007) AWA* - a window

constrained anytime heuristic search algorithm. In: Veloso MM

(ed.) IJCAI 2007, Proceedings of the 20th international joint

conference on artificial intelligence, Hyderabad, India, 6–12

January 2007, pp. 2250–2255.

Aine S, Swaminathan S, Narayanan V, Hwang V and Likhachev M

(2014) Multi-Heuristic A*. In: Proceedings of the robotics: sci-

ence and systems (RSS).

Chakrabarti PP, Ghose S, Pandey A and Sarkar SCD (1989)

Increasing search efficiency using multiple heuristics. Infor-

mation Processing Letters 30(1): 33–36.

Chakrabarti PP, Ghose S and Sarkar SCD (1992) Generalized best

first search using single and multiple heuristics. Information

Sciences 60(1–2): 145–175.

Cohen B, Chitta S and Likhachev M (2014) Single- and dual-arm

motion planning with heuristic search. The International Jour-

nal of Robotics Research 33(2): 305–320.

Cohen BJ, Chitta S and Likhachev M (2012) Search-based plan-

ning for dual-arm manipulation with upright orientation con-

straints. In: Proceedings of ICRA. IEEE, pp. 3784–3790.

Doran JE and Michie D (1966) Experiments with the graph traver-

ser program. In: In: Brafman RI, Geffner H, Hoffmann J and

Kautz HA (eds.) Proceedings of the 20th international conference

on automated planning and scheduling (ICAPS 2010), Toronto,

Ontario, Canada, 12–16 May 2010. AAAI, pp. 235–259.

Felner A, Korf RE and Hanan S (2004) Additive pattern database

heuristics. Journal of Artificial Intelligence Research 22: 279–318.

Hart PE, Nilsson NJ and Raphael B (1968) A formal basis for the

heuristic determination of minimum cost paths. IEEE Transac-

tions on Systems Science and Cybernetics 4(2): 100–107.

Helmert M (2006) The fast downward planning system. Journal

of Artificial Intelligence Research 26: 191–246.

Hernández C and Baier JA (2012) Avoiding and escaping depres-

sions in real-time heuristic search. Journal of Artificial Intelli-

gence Research 43: 523–570.

Holte R, Perez M, Zimmer R and MacDonald A (1995) The trade-

off between speed and optimality in hierarchical search. Tech-

nical Report TR-95-19, School of Information Technology and

Engineering. University of Ottawa. Canada.

Hornung A, Maier D and Bennewitz M (2013) Search-based foot-

step planning. In: Proceedings of the ICRA workshop on prog-

ress and open problems in motion planning and navigation for

humanoids, Karlsruhe, Germany.

Isto P (1996) Path planning by multiheuristic search via subgoals.

In: Proceedings of the 27th international symposium on indus-

trial robots. CEU, pp. 71272–6.

Karaman S and Frazzoli E (2010) Incremental sampling-based

algorithms for optimal motion planning. In: Robotics: Science

and Systems, Zaragoza, Spain. Cambridge, MA: The MIT Press.

Kavraki LE, Svestka P, Latombe JC and Overmars MH (1996)

Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Transactions on Robotics and

Automation 12(4): 566–580.

Koenig S, Likhachev M and Furcy D (2004) Lifelong planning

A*. Artificial Intelligence 155(1–2): 93–146.

Korf RE and Felner A (2002) Disjoint pattern database heuristics.

Artificial Intelligence 134(1–2): 9–22.

Kuffner JJ Jr and LaValle SM (2000) RRT-Connect: an efficient

approach to single-query path planning. In: ICRA. IEEE, pp.

995–1001.

Lavalle SM and Kuffner JJ Jr (2000) Rapidly-exploring random

trees: progress and prospects. In: Algorithmic and Computa-

tional Robotics: New Directions 2000 WAFR. A K Peters/CRC

Press, pp. 293–308.

Likhachev M and Ferguson D (2009) Planning long dynamically

feasible maneuvers for autonomous vehicles. The International

Journal of Robotics Research 28(8): 933–945.

Likhachev M, Gordon GJ and Thrun S (2003) ARA*: Formal

analysis. Technical Report CMU-CS-03-148, School of Com-

puter Science, Carnegie Mellon University, Pittsburgh,

PA15213.

242 The International Journal of Robotics Research 35(1–3)

Likhachev M, Gordon GJ and Thrun S (2004) ARA*: anytime

A* with provable bounds on sub-optimality. In: Advances in

Neural Information Processing Systems 16. Cambridge, MA:

MIT Press.

MacAllister B, Butzke J, Kushleyev A and Likhachev M (2013)

Path planning for non-circular micro aerial vehicles in con-

strained environments. In: Proceedings of the IEEE interna-

tional conference on robotics and automation (ICRA), pp.

3933–3940.

Pearl J (1984) Heuristics: intelligent search strategies for com-

puter problem solving. Boston, MA: Addison-Wesley Long-

man Publishing Co., Inc.

Pearl J and Kim JH (1982) Studies in semi-admissible heuristics.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 4(4): 392–399.

Phillips M, Cohen BJ, Chitta S and Likhachev M (2012) E-graphs:

bootstrapping planning with experience graphs. In: Robotics:

Science and Systems.

Pohl I (1970) Heuristic search viewed as path finding in a graph.

Artificial Intelligence 1(3): 193–204.

Richter S, Thayer JT and Ruml W (2010) The joy of forgetting:

faster anytime search via restarting. In: Brafman RI, Geffner

H, Hoffmann J and Kautz HA (eds.) Proceedings of the 20th

international conference on automated planning and schedul-

ing (ICAPS 2010), Toronto, Ontario, Canada, 12–16 May

2010. AAAI, pp. 137–144.

Röger G and Helmert M (2010) The more, the merrier: combining

heuristic estimators for satisficing planning. In: Brafman RI,

Geffner H, Hoffmann J and Kautz HA (eds.) Proceedings of

the 20th international conference on automated planning and

scheduling (ICAPS 2010), Toronto, Ontario, Canada, 12–16

May 2010. AAAI, pp. 246–249.

Sxucan IA, Moll M and Kavraki LE (2012) The Open Motion Plan-

ning Library. IEEE Robotics and Automation Magazine 19(4):

72–82.

Thayer JT and Ruml W (2011) Bounded suboptimal search: a

direct approach using inadmissible estimates. In: IJCAI’11

proceedings of the twenty-second international joint confer-

ence on artificial intelligence, pp. 674–679.

Thayer JT, Stern R, Felner A and Ruml W (2012) Faster bounded-

cost search using inadmissible estimates. In: McCluskey L,

Williams B, Silva JR and Bonet B (eds.) ICAPS. AAAI.

Valenzano RA, Sturtevant NR, Schaeffer J, Buro K and Kishimoto

A (2010) Simultaneously searching with multiple settings: an

alternative to parameter tuning for suboptimal single-agent

search algorithms. In: In: Brafman RI, Geffner H, Hoffmann J

and Kautz HA (eds.) Proceedings of the 20th international

conference on automated planning and scheduling (ICAPS

2010), Toronto, Ontario, Canada, 12–16 May 2010. AAAI, pp.

177–184.

Wilt CM and Ruml W (2012) When does weighted A* fail? In:

SOCS. AAAI Press.

Zhou R and Hansen EA (2002) Multiple sequence alignment

using anytime A*. In: Proceedings of 18th national conference

on artificial intelligence (AAAI’2002), pp. 975–976.

Zucker M, Ratliff N, Stole M, Chestnutt J, Bagnell JA, Atkeson

CG and Kuffner J (2011) Optimization and learning for rough

terrain legged locomotion. The International Journal of

Robotics Research 30(2): 175–191.

Aine et al. 243

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-Italic
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeCorpID-Acrobat
 /AdobeCorpID-Adobe
 /AdobeCorpID-Bullet
 /AdobeCorpID-MinionBd
 /AdobeCorpID-MinionBdIt
 /AdobeCorpID-MinionRg
 /AdobeCorpID-MinionRgIt
 /AdobeCorpID-MinionSb
 /AdobeCorpID-MinionSbIt
 /AdobeCorpID-MyriadBd
 /AdobeCorpID-MyriadBdIt
 /AdobeCorpID-MyriadBdScn
 /AdobeCorpID-MyriadBdScnIt
 /AdobeCorpID-MyriadBl
 /AdobeCorpID-MyriadBlIt
 /AdobeCorpID-MyriadLt
 /AdobeCorpID-MyriadLtIt
 /AdobeCorpID-MyriadPkg
 /AdobeCorpID-MyriadRg
 /AdobeCorpID-MyriadRgIt
 /AdobeCorpID-MyriadRgScn
 /AdobeCorpID-MyriadRgScnIt
 /AdobeCorpID-MyriadSb
 /AdobeCorpID-MyriadSbIt
 /AdobeCorpID-MyriadSbScn
 /AdobeCorpID-MyriadSbScnIt
 /AdobeCorpID-PScript
 /AGaramond-BoldScaps
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-RomanScaps
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGar-Special
 /AkzidenzGroteskBE-Bold
 /AkzidenzGroteskBE-BoldEx
 /AkzidenzGroteskBE-BoldExIt
 /AkzidenzGroteskBE-BoldIt
 /AkzidenzGroteskBE-Ex
 /AkzidenzGroteskBE-It
 /AkzidenzGroteskBE-Light
 /AkzidenzGroteskBE-LightEx
 /AkzidenzGroteskBE-LightOsF
 /AkzidenzGroteskBE-Md
 /AkzidenzGroteskBE-MdEx
 /AkzidenzGroteskBE-MdIt
 /AkzidenzGroteskBE-Regular
 /AkzidenzGroteskBE-Super
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine401BTSPL-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Aldus-Italic
 /Aldus-ItalicOsF
 /Aldus-Roman
 /Aldus-RomanSC
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Anna
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Arcadia
 /Arcadia-A
 /Arkona-Medium
 /Arkona-Regular
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AssemblyLightSSK
 /AuroraBT-BoldCondensed
 /AuroraBT-RomanCondensed
 /AuroraOpti-Condensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /Avenir-Black
 /Avenir-BlackOblique
 /Avenir-Book
 /Avenir-BookOblique
 /Avenir-Heavy
 /Avenir-HeavyOblique
 /Avenir-Light
 /Avenir-LightOblique
 /Avenir-Medium
 /Avenir-MediumOblique
 /Avenir-Oblique
 /Avenir-Roman
 /BaileySansITC-Bold
 /BaileySansITC-BoldItalic
 /BaileySansITC-Book
 /BaileySansITC-BookItalic
 /BakerSignetBT-Roman
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /BaskervilleBook-Italic
 /BaskervilleBook-MedItalic
 /BaskervilleBook-Medium
 /BaskervilleBook-Regular
 /BaskervilleBT-Bold
 /BaskervilleBT-BoldItalic
 /BaskervilleBT-Italic
 /BaskervilleBT-Roman
 /BaskervilleMT
 /BaskervilleMT-Bold
 /BaskervilleMT-BoldItalic
 /BaskervilleMT-Italic
 /BaskervilleMT-SemiBold
 /BaskervilleMT-SemiBoldItalic
 /BaskervilleNo2BT-Bold
 /BaskervilleNo2BT-BoldItalic
 /BaskervilleNo2BT-Italic
 /BaskervilleNo2BT-Roman
 /Baskerville-Normal-Italic
 /BauerBodoni-Black
 /BauerBodoni-BlackCond
 /BauerBodoni-BlackItalic
 /BauerBodoni-Bold
 /BauerBodoni-BoldCond
 /BauerBodoni-BoldItalic
 /BauerBodoni-BoldItalicOsF
 /BauerBodoni-BoldOsF
 /BauerBodoni-Italic
 /BauerBodoni-ItalicOsF
 /BauerBodoni-Roman
 /BauerBodoni-RomanSC
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bauhaus-Light
 /Bauhaus-Medium
 /BellCentennial-Address
 /BellGothic-Black
 /BellGothic-Bold
 /Bell-GothicBoldItalicBT
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /BellGothic-Light
 /Bembo
 /Bembo-Bold
 /Bembo-BoldExpert
 /Bembo-BoldItalic
 /Bembo-BoldItalicExpert
 /Bembo-Expert
 /Bembo-ExtraBoldItalic
 /Bembo-Italic
 /Bembo-ItalicExpert
 /Bembo-Semibold
 /Bembo-SemiboldItalic
 /Benguiat-Bold
 /Benguiat-BoldItalic
 /Benguiat-Book
 /Benguiat-BookItalic
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /Benguiat-Medium
 /Benguiat-MediumItalic
 /Berkeley-Black
 /Berkeley-BlackItalic
 /Berkeley-Bold
 /Berkeley-BoldItalic
 /Berkeley-Book
 /Berkeley-BookItalic
 /Berkeley-Italic
 /Berkeley-Medium
 /Berling-Bold
 /Berling-BoldItalic
 /Berling-Italic
 /Berling-Roman
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BlockBE-Condensed
 /BlockBE-ExtraCn
 /BlockBE-ExtraCnIt
 /BlockBE-Heavy
 /BlockBE-Italic
 /BlockBE-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BremenBT-Black
 /BremenBT-Bold
 /BroadwayBT-Regular
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Caliban
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /Carta
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenFace
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /CastleT-Bold
 /CastleT-Book
 /Caxton-Bold
 /Caxton-BoldItalic
 /Caxton-Book
 /Caxton-BookItalic
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /Caxton-Light
 /Caxton-LightItalic
 /CelestiaAntiqua-Ornaments
 /Centennial-BlackItalicOsF
 /Centennial-BlackOsF
 /Centennial-BoldItalicOsF
 /Centennial-BoldOsF
 /Centennial-ItalicOsF
 /Centennial-LightItalicOsF
 /Centennial-LightSC
 /Centennial-RomanSC
 /Century-Bold
 /Century-BoldItalic
 /Century-Book
 /Century-BookItalic
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /Century-HandtooledBold
 /Century-HandtooledBoldItalic
 /Century-Light
 /Century-LightItalic
 /CenturyOldStyle-Bold
 /CenturyOldStyle-Italic
 /CenturyOldStyle-Regular
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /Century-Ultra
 /Century-UltraItalic
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /Cheltenham-HandtooledBdIt
 /Cheltenham-HandtooledBold
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Christiana-Bold
 /Christiana-BoldItalic
 /Christiana-Italic
 /Christiana-Medium
 /Christiana-MediumItalic
 /Christiana-Regular
 /Christiana-RegularExpert
 /Christiana-RegularSC
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CMR10
 /CMR8
 /CMSY10
 /CMSY8
 /CMTI10
 /CommonBullets
 /ConduitITC-Bold
 /ConduitITC-BoldItalic
 /ConduitITC-Light
 /ConduitITC-LightItalic
 /ConduitITC-Medium
 /ConduitITC-MediumItalic
 /CooperBlack
 /CooperBlack-Italic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Critter
 /CS-Special-font
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Della-RobbiaItalicBT
 /Della-RobbiaSCaps
 /Del-NormalSmallCaps
 /Delphin-IA
 /Delphin-IIA
 /Delta-Bold
 /Delta-BoldItalic
 /Delta-Book
 /Delta-BookItalic
 /Delta-Light
 /Delta-LightItalic
 /Delta-Medium
 /Delta-MediumItalic
 /Delta-Outline
 /DextorD
 /DextorOutD
 /DidotLH-OrnamentsOne
 /DidotLH-OrnamentsTwo
 /DINEngschrift
 /DINEngschrift-Alternate
 /DINMittelschrift
 /DINMittelschrift-Alternate
 /DINNeuzeitGrotesk-BoldCond
 /DINNeuzeitGrotesk-Light
 /Dom-CasItalic
 /DomCasual
 /DomCasual-Bold
 /Dom-CasualBT
 /Ehrhard-Italic
 /Ehrhard-Regular
 /EhrhardSemi-Italic
 /EhrhardtMT
 /EhrhardtMT-Italic
 /EhrhardtMT-SemiBold
 /EhrhardtMT-SemiBoldItalic
 /EhrharSemi
 /ELANGO-IB-A03
 /ELANGO-IB-A75
 /ELANGO-IB-A99
 /ElectraLH-Bold
 /ElectraLH-BoldCursive
 /ElectraLH-Cursive
 /ElectraLH-Regular
 /ElGreco
 /EnglischeSchT-Bold
 /EnglischeSchT-Regu
 /ErasContour
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuropeanPi-Four
 /EuropeanPi-One
 /EuropeanPi-Three
 /EuropeanPi-Two
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-BoldOblique
 /Eurostile-Condensed
 /Eurostile-Demi
 /Eurostile-DemiOblique
 /Eurostile-ExtendedTwo
 /EurostileLTStd-Demi
 /EurostileLTStd-DemiOblique
 /Eurostile-Oblique
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /ExPonto-Regular
 /FairfieldLH-Bold
 /FairfieldLH-BoldItalic
 /FairfieldLH-BoldSC
 /FairfieldLH-CaptionBold
 /FairfieldLH-CaptionHeavy
 /FairfieldLH-CaptionLight
 /FairfieldLH-CaptionMedium
 /FairfieldLH-Heavy
 /FairfieldLH-HeavyItalic
 /FairfieldLH-HeavySC
 /FairfieldLH-Light
 /FairfieldLH-LightItalic
 /FairfieldLH-LightSC
 /FairfieldLH-Medium
 /FairfieldLH-MediumItalic
 /FairfieldLH-MediumSC
 /FairfieldLH-SwBoldItalicOsF
 /FairfieldLH-SwHeavyItalicOsF
 /FairfieldLH-SwLightItalicOsF
 /FairfieldLH-SwMediumItalicOsF
 /Fences
 /Fenice-Bold
 /Fenice-BoldOblique
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /Fenice-Light
 /Fenice-LightOblique
 /Fenice-Regular
 /Fenice-RegularOblique
 /Fenice-Ultra
 /Fenice-UltraOblique
 /FlashD-Ligh
 /Flood
 /Folio-Bold
 /Folio-BoldCondensed
 /Folio-ExtraBold
 /Folio-Light
 /Folio-Medium
 /FontanaNDAaOsF
 /FontanaNDAaOsF-Italic
 /FontanaNDCcOsF-Semibold
 /FontanaNDCcOsF-SemiboldIta
 /FontanaNDEeOsF
 /FontanaNDEeOsF-Bold
 /FontanaNDEeOsF-BoldItalic
 /FontanaNDEeOsF-Light
 /FontanaNDEeOsF-Semibold
 /FormalScript421BT-Regular
 /Formata-Bold
 /Formata-MediumCondensed
 /ForteMT
 /FournierMT-Ornaments
 /FrakturBT-Regular
 /FrankfurterHigD
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-Roman
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /FreestyleScrD
 /Freestylescript
 /FreestyleScript
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
 /Futura-Thin
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Antiqua
 /GaramondBE-Bold
 /GaramondBE-BoldExpert
 /GaramondBE-BoldOsF
 /GaramondBE-CnExpert
 /GaramondBE-Condensed
 /GaramondBE-CondensedSC
 /GaramondBE-Italic
 /GaramondBE-ItalicExpert
 /GaramondBE-ItalicOsF
 /GaramondBE-Medium
 /GaramondBE-MediumCn
 /GaramondBE-MediumCnExpert
 /GaramondBE-MediumCnOsF
 /GaramondBE-MediumExpert
 /GaramondBE-MediumItalic
 /GaramondBE-MediumItalicExpert
 /GaramondBE-MediumItalicOsF
 /GaramondBE-MediumSC
 /GaramondBE-Regular
 /GaramondBE-RegularExpert
 /GaramondBE-RegularSC
 /GaramondBE-SwashItalic
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-HandtooledBold
 /Garamond-HandtooledBoldItalic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-BoldNarrow
 /GaramondITCbyBT-BoldNarrowItal
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondITCbyBT-BookNarrow
 /GaramondITCbyBT-BookNarrowItal
 /GaramondITCbyBT-Light
 /GaramondITCbyBT-LightCondensed
 /GaramondITCbyBT-LightCondItalic
 /GaramondITCbyBT-LightItalic
 /GaramondITCbyBT-LightNarrow
 /GaramondITCbyBT-LightNarrowItal
 /GaramondITCbyBT-Ultra
 /GaramondITCbyBT-UltraCondensed
 /GaramondITCbyBT-UltraCondItalic
 /GaramondITCbyBT-UltraItalic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /GaramondThreeSMSIISpl-Italic
 /GaramondThreeSMSitalicSpl-Italic
 /GaramondThreeSMSspl
 /GaramondThreespl
 /GaramondThreeSpl-Bold
 /GaramondThreeSpl-Italic
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /GarthGraphic
 /GarthGraphic-Black
 /GarthGraphic-Bold
 /GarthGraphic-BoldCondensed
 /GarthGraphic-BoldItalic
 /GarthGraphic-Condensed
 /GarthGraphic-ExtraBold
 /GarthGraphic-Italic
 /Geometric231BT-HeavyC
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Giddyup
 /Giddyup-Thangs
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldExtraCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-ExtraBoldDisplay
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-LightShadowed
 /GillSans-Shadowed
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gill-Special
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glypha
 /Glypha-Bold
 /Glypha-BoldOblique
 /Glypha-Oblique
 /Gothic-Thirteen
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudySans-Black
 /GoudySans-BlackItalic
 /GoudySans-Bold
 /GoudySans-BoldItalic
 /GoudySans-Book
 /GoudySans-BookItalic
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudySans-Medium
 /GoudySans-MediumItalic
 /Granjon
 /Granjon-Bold
 /Granjon-BoldOsF
 /Granjon-Italic
 /Granjon-ItalicOsF
 /Granjon-SC
 /GreymantleMVB-Ornaments
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Black-SemiBold
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-Light-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Condensed-Thin
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /HelveticaInserat-Roman
 /HelveticaInserat-Roman-SemiBold
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeueLTStd-Md
 /HelveticaNeueLTStd-MdIt
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /HelvExtCompressed
 /HelvLight
 /HelvUltCompressed
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist531BT-BlackA
 /Humanist531BT-BoldA
 /Humanist531BT-RomanA
 /Humanist531BT-UltraBlackA
 /Humanist777BT-BlackB
 /Humanist777BT-BlackCondensedB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldCondensedB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ExtraBlackB
 /Humanist777BT-ExtraBlackCondB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightCondensedB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist777BT-RomanCondensedB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HumanistSlabserif712BT-Black
 /HumanistSlabserif712BT-Bold
 /HumanistSlabserif712BT-Italic
 /HumanistSlabserif712BT-Roman
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /Iglesia-Light
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Imago-Book
 /Imago-BookItalic
 /Imago-ExtraBold
 /Imago-ExtraBoldItalic
 /Imago-Light
 /Imago-LightItalic
 /Imago-Medium
 /Imago-MediumItalic
 /Industria-Inline
 /Industria-InlineA
 /Industria-Solid
 /Industria-SolidA
 /Insignia
 /Insignia-A
 /IPAExtras
 /IPAHighLow
 /IPAKiel
 /IPAKielSeven
 /IPAsans
 /ITCGaramondMM
 /ITCGaramondMM-It
 /JAKEOpti-Regular
 /JansonText-Bold
 /JansonText-BoldItalic
 /JansonText-Italic
 /JansonText-Roman
 /JansonText-RomanSC
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Juniper
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kaufmann
 /Kaufmann-Bold
 /KeplMM-Or2
 /KisBT-Italic
 /KisBT-Roman
 /KlangMT
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LatinMT-Condensed
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LDecorationPi-One
 /LDecorationPi-Two
 /Leawood-Black
 /Leawood-BlackItalic
 /Leawood-Bold
 /Leawood-BoldItalic
 /Leawood-Book
 /Leawood-BookItalic
 /Leawood-Medium
 /Leawood-MediumItalic
 /LegacySans-Bold
 /LegacySans-BoldItalic
 /LegacySans-Book
 /LegacySans-BookItalic
 /LegacySans-Medium
 /LegacySans-MediumItalic
 /LegacySans-Ultra
 /LegacySerif-Bold
 /LegacySerif-BoldItalic
 /LegacySerif-Book
 /LegacySerif-BookItalic
 /LegacySerif-Medium
 /LegacySerif-MediumItalic
 /LegacySerif-Ultra
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /Life-Bold
 /Life-Italic
 /Life-Roman
 /LINE10
 /LINEW10
 /Linotext
 /Lithos-Black
 /LithosBold
 /Lithos-Bold
 /Lithos-Regular
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /LOMD-Normal
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaHandwritingItalic
 /LucidaMath-Symbol
 /LucidaSansTypewriter
 /LucidaSansTypewriter-Bd
 /LucidaSansTypewriter-BdObl
 /LucidaSansTypewriter-Obl
 /LucidaTypewriter
 /LucidaTypewriter-Bold
 /LucidaTypewriter-BoldObl
 /LucidaTypewriter-Obl
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /Marigold
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /MatrixScriptBold
 /MatrixScriptBoldLin
 /MatrixScriptBook
 /MatrixScriptBookLin
 /MatrixScriptRegular
 /MatrixScriptRegularLin
 /Melior
 /Melior-Bold
 /Melior-BoldItalic
 /Melior-Italic
 /MercuriusCT-Black
 /MercuriusCT-BlackItalic
 /MercuriusCT-Light
 /MercuriusCT-LightItalic
 /MercuriusCT-Medium
 /MercuriusCT-MediumItalic
 /MercuriusMT-BoldScript
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /Minion-Black
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-Ornaments
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /MonaLisa-Recut
 /MrsEavesAllPetiteCaps
 /MrsEavesAllSmallCaps
 /MrsEavesBold
 /MrsEavesFractions
 /MrsEavesItalic
 /MrsEavesPetiteCaps
 /MrsEavesRoman
 /MrsEavesRomanLining
 /MrsEavesSmallCaps
 /MSAM10
 /MSAM10A
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM10A
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MTSYN
 /MusicalSymbols-Normal
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NeuzeitS-Book
 /NeuzeitS-BookHeavy
 /NewBaskerville-Bold
 /NewBaskerville-BoldItalic
 /NewBaskerville-Italic
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewBaskerville-Roman
 /NewCaledonia
 /NewCaledonia-Black
 /NewCaledonia-BlackItalic
 /NewCaledonia-Bold
 /NewCaledonia-BoldItalic
 /NewCaledonia-BoldItalicOsF
 /NewCaledonia-BoldSC
 /NewCaledonia-Italic
 /NewCaledonia-ItalicOsF
 /NewCaledonia-SC
 /NewCaledonia-SemiBold
 /NewCaledonia-SemiBoldItalic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-BoldOblique
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldCondensed
 /NewsGothicBT-BoldCondItalic
 /NewsGothicBT-BoldExtraCondensed
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Demi
 /NewsGothicBT-DemiItalic
 /NewsGothicBT-ExtraCondensed
 /NewsGothicBT-Italic
 /NewsGothicBT-ItalicCondensed
 /NewsGothicBT-Light
 /NewsGothicBT-LightItalic
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /NewsGothic-Oblique
 /New-Symbol
 /NovareseITCbyBT-Bold
 /NovareseITCbyBT-BoldItalic
 /NovareseITCbyBT-Book
 /NovareseITCbyBT-BookItalic
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialScript
 /OceanSansMM
 /OceanSansMM-It
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OnyxMT
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-BoldOblique
 /Optima-ExtraBlack
 /Optima-ExtraBlackItalic
 /Optima-Italic
 /Optima-Oblique
 /OSPIRE-Plain
 /OttaIA
 /Otta-wa
 /Ottawa-BoldA
 /OttawaPSMT
 /Oxford
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Parisian
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PhotinaMT
 /PhotinaMT-Bold
 /PhotinaMT-BoldItalic
 /PhotinaMT-Italic
 /PhotinaMT-SemiBold
 /PhotinaMT-SemiBoldItalic
 /PhotinaMT-UltraBold
 /PhotinaMT-UltraBoldItalic
 /Plantin
 /Plantin-Bold
 /Plantin-BoldItalic
 /Plantin-Italic
 /Plantin-Light
 /Plantin-LightItalic
 /Plantin-Semibold
 /Plantin-SemiboldItalic
 /Poetica-ChanceryI
 /Poetica-SuppLowercaseEndI
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /QuaySansEF-Black
 /QuaySansEF-BlackItalic
 /QuaySansEF-Book
 /QuaySansEF-BookItalic
 /QuaySansEF-Medium
 /QuaySansEF-MediumItalic
 /Quorum-Black
 /Quorum-Bold
 /Quorum-Book
 /Quorum-Light
 /Quorum-Medium
 /Raleigh
 /Raleigh-Bold
 /Raleigh-DemiBold
 /Raleigh-Medium
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /RMTMI
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /RotisSansSerif
 /RotisSansSerif-Bold
 /RotisSansSerif-ExtraBold
 /RotisSansSerif-Italic
 /RotisSansSerif-Light
 /RotisSansSerif-LightItalic
 /RotisSemiSans
 /RotisSemiSans-Bold
 /RotisSemiSans-ExtraBold
 /RotisSemiSans-Italic
 /RotisSemiSans-Light
 /RotisSemiSans-LightItalic
 /RotisSemiSerif
 /RotisSemiSerif-Bold
 /RotisSerif
 /RotisSerif-Bold
 /RotisSerif-Italic
 /RunicMT-Condensed
 /Sabon-Bold
 /Sabon-BoldItalic
 /Sabon-Italic
 /Sabon-Roman
 /SackersGothicLight
 /SackersGothicLightAlt
 /SackersItalianScript
 /SackersItalianScriptAlt
 /Sam
 /Sanvito-Light
 /SanvitoMM
 /Sanvito-Roman
 /Semitica
 /Semitica-Italic
 /SIVAMATH
 /Siva-Special
 /SMS-SPELA
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /SpecialAA
 /Special-Gali
 /Sp-Sym
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-PhoneticAlternate
 /StoneSans-PhoneticIPA
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Italic
 /StoneSerif-PhoneticAlternate
 /StoneSerif-PhoneticIPA
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss921BT-RegularA
 /Symbol
 /Syntax-Black
 /Syntax-Bold
 /Syntax-Italic
 /Syntax-Roman
 /Syntax-UltraBlack
 /Tekton
 /Times-Bold
 /Times-BoldA
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /Times-NewRoman
 /Times-NewRomanBold
 /Times-Oblique
 /Times-PhoneticAlternate
 /Times-PhoneticIPA
 /Times-Roman
 /Times-RomanSmallCaps
 /Times-Sc
 /Times-SCB
 /Times-special
 /TimesTenGreekP-Upright
 /TradeGothic
 /TradeGothic-Bold
 /TradeGothic-BoldCondTwenty
 /TradeGothic-BoldCondTwentyObl
 /TradeGothic-BoldOblique
 /TradeGothic-BoldTwo
 /TradeGothic-BoldTwoOblique
 /TradeGothic-CondEighteen
 /TradeGothic-CondEighteenObl
 /TradeGothicLH-BoldExtended
 /TradeGothicLH-Extended
 /TradeGothic-Light
 /TradeGothic-LightOblique
 /TradeGothic-Oblique
 /Trajan-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Univers
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /Univers-BlackExt
 /Univers-BlackExtObl
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-ExtraBlackExt
 /Univers-ExtraBlackExtObl
 /Univers-Light
 /Univers-LightOblique
 /UniversLTStd-Black
 /UniversLTStd-BlackObl
 /Univers-Oblique
 /Utopia-Black
 /Utopia-BlackOsF
 /Utopia-Bold
 /Utopia-BoldItalic
 /Utopia-Italic
 /Utopia-Ornaments
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Viva-BoldExtraExtended
 /Viva-Regular
 /Weidemann-Black
 /Weidemann-BlackItalic
 /Weidemann-Bold
 /Weidemann-BoldItalic
 /Weidemann-Book
 /Weidemann-BookItalic
 /Weidemann-Medium
 /Weidemann-MediumItalic
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Roman
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-Black
 /ZurichBT-BlackExtended
 /ZurichBT-BlackItalic
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldExtended
 /ZurichBT-BoldExtraCondensed
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraBlack
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-LightItalic
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
 /TimesNewRomanPS
 /TimesNewRomanPS-Bold
 /TimesNewRomanPS-BoldItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-Italic
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

