
Where’s Waldo?
Sensor-Based Temporal Logic Motion Planning ∗

Hadas Kress-Gazit, Georgios E. Fainekos and George J. Pappas
GRASP Laboratory, University of Pennsylvania

Philadelphia, PA 19104, USA
{hadaskg,fainekos,pappasg}@grasp.upenn.edu

Abstract— Given a robot model and a class of admissible
environments, this paper provides a framework for automat-
ically and verifiably composing controllers that satisfy high
level task specifications expressed in suitable temporal logics.
The desired task specifications can express complex robot
behaviors such as search and rescue, coverage, and collision
avoidance. In addition, our framework explicitly captures
sensor specifications that depend on the environment with
which the robot is interacting, resulting in a novel paradigm
for sensor-based temporal logic motion planning. As one robot
is part of the environment of another robot, our sensor-based
framework very naturally captures multi-robot specifications.
Our computational approach is based on first creating discrete
controllers satisfying so-called General Reactivity(1) formulas.
If feasible, the discrete controller is then used in order to guide
the sensor-based composition of continuous controllers result-
ing in a hybrid controller satisfying the high level specification,
but only if the environment is admissible.

Index Terms— Motion planning, temporal logics, sensor-
based planning, controller synthesis, hybrid control.

I. INTRODUCTION

Motion planning and task planning are two fundamental
problems in robotics that have been addressed from differen
perspectives. Bottom-up motion planning techniques concen-
trate on creating control inputs or closed loop controllers for
detailed robot models that steer it from one configuration to
another [1], [2]. Such controllers can either assume perfect
knowledge of the environment [3] or receive information
about the environment through the use of sensors [4]. On the
other hand, top-down task planning approaches are usually
focused on finding coarse, typically discrete, robot actions
in order to achieve more complex tasks [5]. Such goals
may include final goals for multiple robots [6] or temporal
ordering or sequencing of goals [7].

The natural hierarchical decomposition of task planning
layers residing higher than motion planning layers has re-
sulted in a lack of approaches that address the integrated
system, until very recently. The modern paradigm of hy-
brid systems, coupling continuous and discrete systems,
has enabled the formal integration of high level discrete
actions with low level controllers in a unified framework.
This has inspired a variety of approaches that translate high
level, discrete tasks to low level, continuous controllers in
a verifiable and computationally efficient manner [8]–[10]

∗This work is partially supported by National Science Foundation EHS
0311123, National Science Foundation ITR 0324977, and Army Research
Office MURI DAAD 19-02-01-0383.

or compose local controllers in order to construct global
plans [11]–[13].

This paper follows the spirit of our previous work [8],
[9] where complex task specifications are expressed as
linear temporal logic formulas [14]. However, this paper
contributes in two very significant and novel directions. The
first novelty is that the temporal logic we consider explicitly
models sensor inputs. This enables our task descriptions to
depend on possibly dynamic environment, capturing multi-
robot search and rescue style missions. In a multi-robot
setting, one robot is part of the environment of another robot,
hence it is very natural to consider a variety of other multi-
robot missions as well. The interpretation or execution of
such tasks has a very natural game-theoretic flavor between
the robot and the environment (or other robots). Depending
on the the environment, the execution of the task may be
different, but it will satisfy the task if the environment is
admissible.

The second novelty in this paper is the use of a very recent
fragment of linear temporal logic which is called General
Reactivity (1) (GR(1)) [15]. By restricting to GR(1) formu-
las, the complexity of translating a formula to an automaton
becomes polynomial (from double exponential in the size
of the formula). This dramatic acceleration in computation
does not come at a major expense of expressivity, as a large
number of (but not all) tasks specified in practice is naturally
captured in the fragment of interest.

As in [8], [9], the solution of the discrete synthesis algo-
rithm is integrated with the controllers in [11] resulting in an
overall hybrid controller that is orchestrating the composition
of low level controllers based on the sensorial interaction
with the environment. The overall closed loop system is
guaranteed, by construction, to satisfy the desired specifi-
cation but only if the robot operates in an environment that
satisfies whatever assumptions that were explicitly modeled,
as another temporal logic formula, in the synthesis process.
This leads to a very natural assume-guarantee decomposition
between the robot and its environment.

II. PROBLEM FORMULATION

The goal of this paper is to construct controllers for
mobile robots that generate continuous trajectories satisfying
given specifications. Furthermore, we would like to achieve
such specifications while interacting, using sensors, with a
variety of environments. To achieve this, we need to specify

a robot model, assumptions on admissible environments, and
the desired system specification.

Robot Model: We will assume that a mobile robot (or
possibly several mobile robots) is operating in a polygonal
workspace P . The motion of the robot is expressed as

ṗ(t) = u(t) p(t) ∈ P ⊆ R2 u(t) ∈ U ⊆ R2 (1)

where p(t) is the position of the robot at time t, and u(t) is
the control input. We will also assume that the workspace
P is partitioned using a finite number of cells P1, . . . , Pn,
where P = ∪n

i=1Pi and Pi ∩ Pj = ∅ if i 6= j. Furthermore,
we will also assume that each cell is a convex polygon.
The partition naturally creates boolean propositions Y =
{r1, r2 . . . , rn} which are true if the robot is located in Pi,
for example r1 is true iff p ∈ P1. Since {Pi} is a partition
of P , exactly one ri can be true at any time.

Admissible environments: The robot interacts with its
environment using sensors, which in this paper are as-
sumed to be binary. The m binary sensor variables X =
{x1, x2, . . . , xm} have their own (discrete) dynamics which
we do not model explicitly. Instead, we place high level
assumptions on the possible behavior of the sensor variables,
defining a class of admissible environments. These environ-
mental assumptions will be captured (in Section III) by a
suitable temporal logic formula ϕe. Our goal is to construct
controllers that achieve their desired specification not for any
arbitrary environment, but rather for all possible admissible
environments satisfying ϕe.

System Specification: The desired system specification for
the robot will be expressed as a suitable formula ϕs in the
so-called linear temporal logic (LTL) [14]. Informally, LTL
will be used (in Section III) to specify a variety of robot
tasks that are linguistically expressed as:

• Coverage: “Go to rooms P1,P2,P3,P4 in any order”.
• Sequencing: “First go to room P5, then to room P2”.
• Conditions: “If you see Mika, go to room P3, otherwise

stay where you are”.
• Avoidance: “Don’t go to corridor P7 ”.

Furthermore, LTL is compositional, enabling the construc-
tion of complicated robot task specifications from simple
ones. Putting everything together, we can describe the prob-
lem that will be addressed in this paper.

Problem 1: [Sensor-based temporal logic motion plan-
ning] Given robot model (1), initial position p(0), and suit-
able temporal logic formula ϕe modeling our assumptions on
admissible environments, construct (if possible) a controller
so that the robot’s resulting trajectories p(t) satisfy the
system specification ϕs in any admissible environment.
The approach presented in the paper can be easily general-
ized to the case where the initial position of the robot is not
specified, but may belong in a number of cells.

In order to make Problem 1 formal, we need to precisely
define the syntax, semantics, and class of temporal logic
formulas that are considered in this paper.

III. TEMPORAL LOGICS

Loosely speaking, Linear Temporal Logic (LTL) [14] con-
sists of the standard propositional logic with some temporal
operators that allow us to express requirements on sequences
of propositions.

A. LTL Syntax and Semantics

Syntax: Let AP be a set of atomic propositions. In our
setting AP = X ∪ Y , including both sensor and system
propositions. LTL formulas are constructed from atomic
propositions π ∈ AP according to the following grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕU ϕ

As usual, the boolean constants True and False are defined
as True = ϕ ∨ ¬ϕ and False = ¬True respectively. Given
negation (¬) and disjunction (∨), we can define conjunction
(∧), implication (⇒), and equivalence (⇔). Furthermore,
we can also derive additional temporal operators such as
“Eventually” 3ϕ = True U ϕ and “Always” 2ϕ = ¬3¬ϕ.

Semantics: The semantics of an LTL formula ϕ is defined
on an infinite sequence σ of truth assignments to the atomic
propositions π ∈ AP . For a formal definition of the
semantics we refer the reader to [14]. Informally, the formula
©ϕ expresses that ϕ is true in the next “step” (the next
position in the sequence) and the formula ϕ1 U ϕ2 expresses
the property that ϕ1 is true until ϕ2 becomes true. The
sequence σ satisfies formula 2ϕ if ϕ is true in every position
of the sequence, and satisfies the formula 3ϕ if ϕ is true
at some position of the sequence. Sequence σ satisfies the
formula 23ϕ if ϕ is true infinitely often.

B. Special class of LTL formulas

Following [15], we consider a special class of tempo-
ral logic formulas. We first recall that we have divided
our atomic propositions into sensor propositions X =
{x1, . . . , xm}, and system propositions Y = {r1, . . . , rn}.

These special formulas are LTL formulas of the form
ϕ = (ϕe ⇒ ϕs). ϕe is an assumption about the sensor
propositions, and thus about the behavior of the environment,
and ϕs represents the desired behavior of the system. Both
ϕe and ϕs have the following structure

ϕe = ϕe
i ∧ ϕe

t ∧ ϕe
g , ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g

where
• ϕe

i , ϕs
i - Non-temporal boolean formulas constraining

(if at all) the initial value(s) for the sensor propositions
X and system propositions Y respectively.

• ϕe
t - represents the possible evolution of the state of the

environment. It consists of a conjunction of formulas
of the form 2Bi where each Bi is a boolean formula
constructed from subformulas in X ∪ Y ∪©X , where
©X = {©x1, . . . ,©xn}. Intuitively, formula, ϕe

t

constrains the next sensor values ©X based on the
current sensor X and system Y values.

• ϕs
t - represents the possible evolution of the state of

the system. It consists of a conjunction of formulas of

Fig. 1: The workspace of Example 1. The initial position
of the robot is marked with a star.

the form 2Bi where each Bi is a boolean formula in
X ∪ Y ∪©X ©Y .

• ϕe
g , ϕs

g - represent goal assumptions for the environment
and desired goal specifications for the system. Both
formulas consist of a conjunction of formulas of the
form 23Bi where each Bi is a boolean formula.

The formula φ = (ϕe
g ⇒ ϕs

g) which will be discussed in
section IV, is a Generalized Reactivity(1) (GR(1)) formula.

Despite the structural restrictions of this class of LTL
formulas, there does not seem to be a significant loss in
expressivity. Furthermore, the structure of the formula very
naturally reflects the structure of most sensor-based robotic
tasks. We illustrate this with a relatively simple example.

Example 1: Consider a robot that is moving in the
workspace shown in Fig. 1 consisting of four areas la-
belled P1, ..., P4 (which define the system propositions Y =
{r1, . . . , r4}). Initially, the robot is placed somewhere in
region P1. In natural language, the desired specification for
the robot is: Look for Waldo in regions P2 and P4, if you
find him, stay where you are, and if not, keep looking.

Since Waldo is part of the environment, we consider one
sensor proposition X = {sWaldo} which becomes true if our
sensor has detected Waldo. Our assumptions about Waldo are
captured by ϕe = ϕe

i ∧ϕe
t ∧ϕe

g . The robot initially does not
see Waldo, thus ϕe

i = (¬sWaldo). Since we can only sense
Waldo in regions P2 and P4, we encode the requirement
that in other regions the value of sWaldo cannot change.
Furthermore, we assume (for simplicity) that once the robot
detects Waldo, Waldo doesn’t move. These requirements are
captured by the formula

ϕe
t =

{
2((¬r2 ∧ ¬r4) ⇒ (©sWaldo ⇔ sWaldo))∧

2(sWaldo ⇒ ©sWaldo)

We place no further assumptions on the environment propo-
sitions which means that ϕe

g = 23True , completing the
modeling of our environment assumptions. Notice that the
environment is admissible whether Waldo is there or not.

We now turn to modeling the robot and the desired
specification, captured by ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g . Initially,
the robot starts somewhere in region r1, hence ϕs

i = (r1 ∧
¬r2 ∧¬r3 ∧¬r4). ϕs

t models the possible changes in in the
robot state. The first four subformulas represent the possible
transitions between regions, for example, from region P1

the robot can move to adjacent regions P2, P4, or stay in
P1. The next four subformulas capture the mutual exclusion
constraint, that is at any step, exactly one of r1, r2, r3, and
r4 is true. For a given decomposition of workspace P , the

generation of these formulas is easily automated. The final
subformula is part of the desired specification and states that
if the robot is in region P2 (or P4) and it sees Waldo when
he senses1 it should remain in region P2 (respectively P4)
in the next step as well.

ϕs
t =

∧
2(r1 ⇒ (©r1 ∨©r2 ∨©r4))∧
2(r2 ⇒ (©r1 ∨©r2 ∨©r3))∧
2(r3 ⇒ (©r2 ∨©r3 ∨©r4))∧
2(r4 ⇒ (©r1 ∨©r3 ∨©r4))∧
2((©r1 ∧ ¬© r2 ∧ ¬© r3 ∧ ¬© r4)
∨(¬© r1 ∧©r2 ∧ ¬© r3 ∧ ¬© r4)
∨(¬© r1 ∧ ¬© r2 ∧©r3 ∧ ¬© r4)
∨(¬© r1 ∧ ¬© r2 ∧ ¬© r3 ∧©r4))∧

i∈{2,4} 2((ri ∧©sWaldo) ⇒ ©ri)

Finally, the requirement that the robot keeps looking in
regions P2, P4 unless it has found Waldo is captured by

ϕs
g = 23(r2 ∨ sWaldo)

∧
23(r4 ∨ sWaldo)

This completes our modeling of the robot specification as
well. Combining everything together, we get the required
formula ϕ = (ϕe ⇒ ϕs).

Having modelled a scenario using ϕ, our goal is now
to synthesize a controller generating trajectories that will
satisfy the formula if the scenario is possible (if the formula
is realizable). This is the goal of the next two sections.

IV. DISCRETE SYNTHESIS

Given an LTL formula, the realization or synthesis prob-
lem consists of constructing an automaton whose behaviors
satisfy the formula if such an automaton exists. In general,
creating such an automaton is proven to be doubly exponen-
tial in the size of the formula [16]. However, by restricting
ourselves to the special class of LTL formulas, we can use
the efficient algorithm recently introduced in [15] which is
polynomial O(n3) time, where n is the number of valuations
of the sensor and state variables. We present the algorithm
informally, and refer the reader to [15] for a full description.

The synthesis process is viewed as a game played between
the system (robot) and the environment (as the adversary).
Starting from some initial state, both the robot and the
environment make transition to the state of the system. The
winning condition for the game is given as a GR(1) formula
φ. The way the game is played is that at each step, first the
environment makes a transition according to its transition
relation and then the system makes its own transition. If the
system can satisfy φ no matter what the environment does,
we say that the system is winning and we can extract an
automaton for our robot. However, if the environment can
falsify φ we say that the environment is winning and the
desired behavior is unrealizable.

Relating the formulas of section III-B to the game men-
tioned above, the initial states of the players are given by ϕe

i

1As explained in Section IV, at each step the robot first senses the
environment and then moves, therefore we need to refer to the truth value
of ©sWaldo

and ϕs
i . The possible transitions the players can make are

given by ϕe
t and ϕs

t , and the winning condition is given
by the GR(1) formula φ = (ϕe

g ⇒ ϕs
g). Note that the

system is winning, i.e. φ is satisfied if ϕs
g is true, which

means that the desired robot behavior is satisfied, or ϕe
g

is false, which means that the environment did not reach
its goals (either because the environment was faulty or the
system prevented it from reaching its goals). This implies
that when the environment does not satisfy ϕe

g there is no
guarantee about the behavior of the system. Furthermore, if
the environment does not “play fair”, i.e. violates its assumed
behavior ϕe

i ∧ ϕe
t , the automaton is no longer valid.

The synthesis algorithm [15] takes the GR(1) formula ϕ
and first checks whether it is realizable. If it is, the algorithm
extracts a possible (but not necessarily unique) automaton
which implements a strategy that the robot should follow in
order to satisfy the desired behaviour. The automaton that
is generated by the algorithm can be modeled as a tuple
A = (X ,Y, Q, q0, δ, γ) where:

• X is the set of input (environment) propositions
• Y is the set of output (system) propositions
• Q ⊂ N is the set of states
• q0 ∈ Q is the initial state
• δ : Q × 2X → 2Q is the transition relation, i.e.

δ(q, X) = Q′ ⊆ Q where q ∈ Q is a state and X ⊆ X
is the subset of sensor propositions that are true.

• γ : Q → 2Y is the state labeling function where γ(q) =
y and y ∈ 2Y is the set of state propositions that are
true in state q. Note that in our case, since the only
outputs are the regions, and there is only one output
proposition that is true at every state, γ(q) = y ∈ Y .

Note that this automaton can be nondeterministic2. An ad-
missible input sequence is a sequence X1, X2, ... ,Xj ∈ 2X

that satisfies ϕe. A run of this automaton under an admissible
input sequence is a sequence of states σ = q0, q1, This
sequence starts at the initial state and follows the transition
relation δ and the truth values of the input propositions,
i.e. for all j ≥ 0, qj+1 ∈ δ(qj , Xj). An interpretation of
a run σ is a sequence y0, y1, ... where yi = γ(qi) is the
label of the ith state in the run. We use this sequence of
labels to construct the discrete path the robot must follow.
As mentioned before, when given a non-admissible input
sequence, i.e. an input sequence that violates any part of
ϕe, the automaton is no longer relevant and we will not be
able to construct a correct path for the robot.

Example 2: Revisiting Example 1, Fig. 2 represents the
synthesized automaton that realizes the desired behavior.
The number at the top of each circle is the state and the
proposition that is written inside each circle is the state’s
label, i.e. the output proposition that is true in that state.
We can see that the robot will first search P2 and then,
if it doesn’t find Waldo, continue to search P4. If Waldo
is nowhere to be found, the robot will continue to look for
him forever. Note that this plan is not unique, since the robot

2By making a small change in the algorithm, the automaton may become
deterministic, i.e. for every input there will be a unique next state

could have started searching in P4. Furthermore, it is also
nondeterministic since the robot can go from state 2 to state
6 through either state 3 or 4.

Fig. 2: The synthesized automaton of Example 2

From the interpretation of a run of the automaton, we
extract a discrete path for the robot. What is left to do, is to
transform this discrete path to a continuous trajectory, as is
explained in the next section.

V. CONTROLLER COMPOSITION

In order to continuously implement the discrete solution
of the previous section, we construct a hybrid controller that
takes a set of simple controllers and composes them sequen-
tially according to the discrete execution of the automaton.

Initially, the robot is placed in region i0 such that γ(q0) =
ri0 . During the execution, at step j ≥ 1 the robot first
senses its environment3 and determines Xj . Then the next
automaton state is selected qj ∈ δ(qj−1, Xj) and the next
region ij the robot must go to is extracted by rij

= γ(qj).
When the robot reaches region ij , step j + 1 is performed.
By continuing this procedure, the discrete path ri0 , ri1 , ...
is extracted, and by combining the simple controllers, the
continuous path is achieved.

Following the work in [8], we utilize atomic controllers
that satisfy the so-called bisimulation property [17]. Such
controllers are guaranteed to drive the robot from one region
to another regardless of the initial state in the region.
There are several recent approaches for generating such
simple controllers, such as [11], [18].We use the framework
developed in [11] due to its computational properties and the
variety of regions it can be applied to. In this approach, the
control input is the gradient of a harmonic potential function.

We would like to emphasize that this method can employ
different and more realistic types of controllers, dealing with
convex bodied robots and nonholonomic constraints [19], as
long as they satisfy the bisimulation property.

VI. CASE STUDIES

In this section we give several examples of desired behav-
iors, the automata that implement them and the trajectories
which they induce. The polygonal environment we use for
the examples is shown in Fig. 3. In the following we refer
to region Pi as region i.

3An implicit assumption is that the sensing is performed only when
entering a region. Another approach would be to check the sensor values
every computation cycle and allow the controller to change before exiting
the current region.

A. Single robot - Nursery scenario

The desired behaviour is: “Starting in region 1, keep
checking whether a baby is crying in regions 2 or 4. If you
find a crying baby, go look for an adult in regions 6, 7 and
8. Keep looking until you find him. After finding the adult,
go back to monitoring the babies and so on...”

We can define two environment propositions here, one in-
dicating a crying baby was sensed and another indicating an
adult was found. In order to reduce the number of variables,
the computation time and the size of the automaton, we use
one environment proposition, CkBby, indicating whether the
robot should check on the babies (when the proposition is
true) or go look for an adult (when the proposition is false).
Initially CkBby is true. We assume that the proposition
becomes false in regions 2 and 4 if the robot senses a baby
crying and once it becomes false it stays false as long as it
is in 2 or 4 (a baby does not stop crying on her own and she
cannot be ignored). Furthermore, we assume that CkBby
becomes true in regions 6, 7 and 8 only if the robot sensed
an adult. Once it becomes true it stays true in these regions
(once the adult was found, the robot must return to check
on the babies). In all other regions, the truth value of the
proposition may not change.

Following these assumptions, we can construct ϕe:

ϕe =

CkBby∧
2(((r2 ∨ r4) ∧ ¬CkBby) → (¬© CkBby)))∧
2(((r6 ∨ r7 ∨ r8) ∧ CkBby) → (©CkBby)))∧
2(¬(r2 ∨ r4 ∨ r6 ∨ r7 ∨ r8)
→ (©CkBby ↔ CkBby))∧

23True

As for the robot, we have ten system propositions
r1, ..., r10, one for each region. Constructing ϕs:

ϕs =

r1 ∧i=2,...,10 ¬ri∧

Transitions
∧

Mutual Exclusion∧
i∈{2,4} 23(ri ∨ ¬CkBby)∧
i∈{6,7,8} 23(ri ∨ CkBby)

The first and second lines encode the initial condition,
possible transitions and mutual exclusion requirement as in
Example 1. The rest of the formula describes the desired
behaviour, for example, the third line requires the robot to
infinitely often either visit region i, i ∈ {2, 4} or look for
an adult.

Running this example through the synthesis algorithm, the
computation time was 2 seconds and we got an automaton
with 41 states that realizes this specification. Sample simu-
lations are shown in Fig. 4.

Fig. 3: The environment used in section VI.

(a) Babies are not crying (b) A baby in region 4 cries and
the adult is in region 8

Fig. 4: Nursery Example

B. Multi robot - Search and Rescue

Our framework captures very naturally multi-robot sce-
narios where one robot becomes part of the environment
of another robot. In a natural decentralized model, each
robot is tasked by it’s own formula ϕi resulting in it’s own
synthesized automaton. The coordination between robots can
be done using the input (sensor) propositions, as shown in
the following scenario.

In this search and rescue scenario, we employ two UAV’s
that continuously search regions 1, 3, 7 and 8 for injured
people. Once an injured person was found, a ground vehicle
(ambulance) goes to the person’s location and helps out.
If there are no reports of people needing help, the ground
vehicle does not move. If the ground vehicle is in any of
the search regions, the UAV’s may skip it. We assume, for
simplicity, that the two UAV’s fly at different altitudes so
there can be no collisions between the agents.

The two UAV’s will be named robot 1 and 2 and initially
they are in regions 4 and 6 respectively. Other than the initial
region, the two formulas ϕ1, ϕ2 will be the same therefore
we describe ϕ1 only. Since the behavior of these robots
depend only on the location of the ground vehicle (denoted
as robot 3), we define four environment propositions r3

i , i ∈
{1, 3, 7, 8} indicating whether robot 3 is in either of these
regions.

ϕe
1 =

∧
¬r3

1

∧
¬r3

3

∧
¬r3

7

∧
¬r3

8∧
Mutual Exclusion between r3

i , i ∈ {1, 3, 7, 8}∧
23True

Robot 3 does not start in regions 1, 3, 7 or 8, and it cannot
be in two regions at the same time.

ϕs
1 =

r1
4 ∧i=1,2,3,5,...,10 ¬r1

i∧
Transitions

∧
Mutual Exclusion∧

i∈{1,3,7,8} 23(r1
i ∨ r3

i)

The robot has to infinitely often visit region i, unless robot
3 is there. This formula took 11 seconds to realize and the
automaton has 129 states.

Robot 3 (the ground vehicle) is initially in region 10.
The behavior of robot 3 depends on the sensing done by
robots 1 and 2 that is transmitted to it. For ϕ3 we define
four input propositions: helpi, i ∈ {1, 3, 7, 8} indicating
people needing help in the respective regions. To make the
automaton smaller, we assume that once the robot reaches
region i, the proposition helpi becomes false, and if helpj

is true, it stays true until the robot reaches region j.

ϕe
3 =

∧i∈{1,3,7,8}¬helpi∧

i∈{1,3,7,8} 2(r3
i → ¬© helpi)∧

i∈{1,3,7,8} 2((¬r3
i ∧ helpi) →©helpi)∧

23True

Robot 3 stays in place unless there is a need for help.

ϕs
3 =

r1
10 ∧i=1,...,9 ¬r1

i∧
Transitions

∧
Mutual Exclusion∧

2((∧i∈{1,3,7,8}¬© helpi)
⇒ (∧j∈{1,...,10}© r3

j ↔ r3
j))∧

i∈{1,3,7,8} 23(r3
i ∨ ¬helpi)

This formula took 60 seconds to realize and the automaton
has 282 states. Fig. 5 depicts four snapshots of a sample
simulation. In this simulation, robot 1 detects a person
(indicated by an X) in region 1, causing robot 3 to move to
region 1. Then, later on, robot 2 detects a person in region
3 and subsequently, robot 3 moves to region 3.

(a) Robot 1 found someone in 1 (b) Robot 3 arrived at 1

(c) Robot 2 found someone in 3 (d) Robot 3 arrived at 3

Fig. 5: Search and Rescue

VII. CONCLUSIONS - FUTURE WORK

In this paper, we have described a method of creating
controllers which are guaranteed to satisfy a user specified
behavior expressed in temporal logic. Furthermore, these
controllers behave in a reactive manner, i.e. the behavior of
the robot can depend on the local information it senses from
the environment in which it is operating. We have shown
that many complex robot behaviors can be expressed and
computed, both for a single robot and for multiple robots.

Writing LTL formulas requires some experience, and
might lead to unintended behaviors. Therefore, we plan to
examine how natural language can be automatically trans-
lated into logic, thus enabling “non-expert” users to take
advantage of this method. Furthermore, we would like to
create some feedback to the user that will help him figure out
what went wrong if the specification is unrealizable. Another

direction we are working on is experimenting with different
controllers and various robots, simulated and real.

ACKNOWLEDGEMENTS

We would like to thank David Conner for allowing us to
use his code for the potential field controllers. We would also
like to thank Nir Piterman, Amir Pnueli and Yaniv Sa’ar for
allowing us to use their code for the synthesis algorithm.

REFERENCES

[1] H. Choset, K. M. Lynch, L. Kavraki, W. Burgard, S. A. Hutchinson,
G. Kantor, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Boston, USA, 2005.

[2] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006.

[3] Elon Rimon and Daniel E. Kodischek. Exact robot navigation using
artificial potential functions. IEEE Transactions on Robotics and
Automation, 8(5):501–518, October 1992.

[4] H. Choset and J. Burdick. Sensor-based exploration: The hierarchical
generalized voronoi graph. The International Journal of Robotics
Research, 19:96–125, February 2000.

[5] S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach.
Prentice Hall, second edition, 2003.

[6] R.M. Jensen and M. M. Veloso. OBDD-based universal planning
for synchronized agents in non-deterministic domains. Journal of
Artificial Intelligence Research, 13:189–226, 2000.

[7] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, , and P. Traverso. MBP
: A model based planner. In In Proc. IJCAI’01 Workshop on Planning
under Uncertainty and Incomplete Information, 2001.

[8] Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas. Tem-
poral logic motion planning for mobile robots. In IEEE International
Conference on Robotics and Automation, pages 2020–2025, 2005.

[9] Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas.
Hybrid controllers for path planning: A temporal logic approach. In
IEEE Conference on Decision and Control, Seville, Spain, 2005.

[10] M. Kloetzer and C. Belta. A fully automated framework for control
of linear systems from ltl specifications. In 9th International Work-
shop on Hybrid Systems: Computation and Control, Santa Barbara,
California, 2006.

[11] David C. Conner, Alfred A. Rizzi, and Howie Choset. Composition of
Local Potential Functions for Global Robot Control and Navigation.
In IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems, pages
3546 – 3551, Las Vegas, NV, October 2003.

[12] D. Conner, H. Choset, and A. Rizzi. Integrated planning and
control for convex-bodied nonholonomic systems using local feedback
control policies. In Proceedings of Robotics: Science and Systems,
Cambridge, USA, June 2006.

[13] S. Lindemann and S. LaValle. Computing smooth feedback plans over
cylindrical algebraic decompositions. In Proceedings of Robotics:
Science and Systems, Cambridge, USA, June 2006.

[14] E. Allen Emerson. Temporal and modal logic. In Handbook of
theoretical computer science (vol. B): formal models and semantics,
pages 995–1072. MIT Press, Cambridge, MA, USA, 1990.

[15] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of Reactive(1)
Designs. In VMCAI, pages 364–380, Charleston, SC, Jenuary 2006.

[16] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 179–190.
ACM Press, 1989.

[17] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88:971–
984, 2000.

[18] Calin Belta and L.C.G.J.M. Habets. Constructing decidable hybrid
systems with velocity bounds. In IEEE Conference on Decision and
Control, Bahamas, 2004.

[19] David C. Conner, Howie Choset, and Alfred Rizzi. Towards prov-
able navigation and control of nonholonomically constrained convex-
bodied systems. In Proceedings of the 2006 IEEE International
Conference on Robotics and Automation (ICRA ’06), May 2006.

