Where's Waldo? Sensor-Based Temporal Logic Motion Planning

Hadas Kress-Gazit, Georgios E. Fainekos and George J. Pappas

Presented by Marios Xanthidis

The problem

- How can we describe symbolic high level tasks and automatically formulate them into sensing and control?
- The paper:
 - presents a framework to develop hybrid controllers that satisfy high level specifications.
 - solves both the motion planning and the task planning problems.

The problem

Bottom-up motion planning:

 "Principles of Robot Motion: Theory, Algorithms, and Implementations"

H. Choset, K. M. Lynch, L. Kavraki, W. Burgard, S. A. Hutchinson, G. Kantor, and S. Thrun

- "Planning Algorithms"

S. M. LaValle

 "Exact robot navigation using artificial potential functions"

Elon Rimon and Daniel E. Kodischek

Top-down task planning:

- "Artificial Intelligence, A Modern Approach"

S. Russell and P. Norvig

"OBDD-based universal planning for synchronized agents in non-deterministic domains"

R.M. Jensen and M. M. Veloso

- "MBP: A model based planner"

P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, , and P. Traverso

Integrated systems:

- "Temporal logic motion planning for mobile robots"

Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas

- "Hybrid controllers for path planning: A temporal logic approach"

Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas

"A fully automated framework for control of linear systems from LTL specifications"

M. Kloetzer and C. Belta

"Composition of Local Potential Functions for Global Robot Control and Navigation"

David C. Conner, Alfred A. Rizzi, and Howie Choset

"Integrated planning and control for convex-bodied nonholonomic systems using local feedback control policies"

D. Conner, H. Choset, and A. Rizzi

"Computing smooth feedback plans over cylindrical algebraic decompositions"

S. Lindemann and S. LaValle

Integrated systems:

- "Temporal logic motion planning for mobile robots"

Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas

- "Hybrid controllers for path planning: A temporal logic approach"

Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas

"A fully automated framework for control of linear systems from LTL specifications"

M. Kloetzer and C. Belta

"Composition of Local Potential Functions for Global Robot Control and Navigation"

David C. Conner, Alfred A. Rizzi, and Howie Choset

 "Integrated planning and control for convex-bodied nonholonomic systems using local feedback control policies"

D. Conner, H. Choset, and A. Rizzi

"Computing smooth feedback plans over cylindrical algebraic decompositions"

S. Lindemann and S. LaValle

The Novelties

- The linear temporal logic formulation considers sensor inputs.
- The use of General Reactivity reduces the complexity to polynomial from double exponential.

• But only if the environment is modeled properly and satisfies the assumptions.

Problem Formulation

- Robot model: $\dot{p}(t) = u(t)$ $p(t) \in P \subseteq \mathbb{R}^2$ $u(t) \in U \subseteq \mathbb{R}^2$ $\mathcal{Y} = \{r_1, r_2 \dots, r_n\}$
- Admissible environments (ϕ_e): $\mathcal{X} = \{x_1, x_2, \dots, x_m\}$
- System Specification (ϕ_s):
 - Coverage
 - Sequencing
 - Conditions
 - Avoidance
- Given the robot model, p(0), and ϕ_e construct a controller that satisfies ϕ_s .

Linear Temporal Logic (LTL)

 $\phi ::= \pi |\neg \phi| \phi_1 \lor \phi_2 | \phi_1 \land \phi_2 | \bigcirc \phi | \Box \phi | \Diamond \phi | \phi_1 U \phi_2$

- π : Atomic proposition.
- $\neg \phi$: Negation.
- $\phi_1 \lor \phi_2$: Disjunction.
- $\phi_1 \wedge \phi_2$: Conjunction.
- $\bigcirc \phi: \phi$ is true in the next step.
- $\Box \phi$: ϕ is true always.
- $\begin{array}{lll} \Diamond \phi: & \phi \text{ is true at least one time (eventually).} \\ \phi_1 U \phi_2: & \phi_1 \text{ is true until } \phi_2 \text{ becomes true.} \end{array}$

Special class of LTL formulas $\varphi = (\varphi_e \Rightarrow \varphi_s)$ $\varphi_e = \varphi_i^e \land \varphi_t^e \land \varphi_g^e$ $\varphi_s = \varphi_i^s \land \varphi_t^s \land \varphi_g^s$

 φ^e_i, φ^s_i : Formulas constraining the initial values for sensor and system proposition.

- φ_t^e : The possible evolution of state of the environment.
 - $\Box B_i$, B_i constructing from subformulas in $X \cup Y \cup \bigcirc X$
- φ_{t}^{s} : The possible evolution of the state of the system.
 - $\Box B_i$, B_i constructing from subformulas in $X \cup Y \cup \bigcirc X \cup \bigcirc Y$
- φ_a^e, φ_a^s : Goal assumptions for the environment and the system.

Discrete Synthesis

- The synthesis can be seen as a game between the system and the environment.
- Each step the environment makes a transition and then the system makes its own transition.
- When the robot wins, no matter the transition of the environment, we extract an automaton for the system, else the desired behavior is unrealizable.
- The winning condition is given as a General Reactivity formula

Discrete Synthesis

- Initial states of the players: $\varphi^e_i, \quad \varphi^s_i$
- Transitions: $\varphi^e_t, \quad \varphi^s_t$
- Winning condition: $\varphi = \varphi_g^e \Rightarrow \varphi_g^s$
- Output automaton is modeled as a tuple: $A = (X, Y, Q, q_0, \delta, \gamma)$
 - X: Set of input propositions.
 - Y: Set of output propositions.
 - Q: Set of states.
 - q_0 : Initial state.
 - δ : Transition relation.
 - $\gamma: \quad \text{State labeling function.}$

Controller Composition

- According to the execution of the automaton simple controllers are used for every transition to construct a hybrid controller.
- For each step:
 - The robot determines the sensors' readings.
 - The next automaton state is selected according to δ .
 - The next region the robot should go is extracted from $\boldsymbol{\gamma}.$
 - When the robot reaches the new region proceed to the next step.

Single Robot - Nursery Scenario

$$\varphi_{e} = \begin{cases} CkBby \\ \wedge \Box(((r_{2} \lor r_{4}) \land \neg CkBby) \rightarrow (\neg \bigcirc CkBby))) \\ \wedge \Box(((r_{6} \lor r_{7} \lor r_{8}) \land CkBby) \rightarrow (\bigcirc CkBby))) \\ \wedge \Box(\neg (r_{2} \lor r_{4} \lor r_{6} \lor r_{7} \lor r_{8}) \\ \rightarrow (\bigcirc CkBby \leftrightarrow CkBby)) \\ \wedge \Box \diamond True \end{cases}$$
$$\varphi_{s} = \begin{cases} r_{1} \land_{i=2,...,10} \neg r_{i} \\ \wedge Transitions \land Mutual Exclusion \\ \wedge_{i\in\{2,4\}} \Box \diamond (r_{i} \lor \neg CkBby) \\ \wedge_{i\in\{6,7,8\}} \Box \diamond (r_{i} \lor CkBby) \end{cases}$$

Single Robot - Nursery Scenario

(a) Babies are not crying

(b) A baby in region 4 cries and the adult is in region 8

Multi Robot - Search and Rescue

$$\begin{split} \varphi_1^e &= \left\{ \begin{array}{l} \wedge \neg r_1^3 \wedge \neg r_3^3 \wedge \neg r_7^3 \wedge \neg r_8^3 \\ \wedge Mutual \ Exclusion \ between \ r_i^3, \ i \in \{1, 3, 7, 8\} \\ \wedge \Box \diamond True \end{array} \right. \\ \varphi_1^s &= \left\{ \begin{array}{l} r_1^4 \wedge_{i=1,2,3,5,\ldots,10} \neg r_i^1 \\ \wedge \ Transitions \ \wedge \ Mutual \ Exclusion \\ \wedge_{i \in \{1,3,7,8\}} \Box \diamond (r_i^1 \vee r_i^3) \\ \wedge_{i \in \{1,3,7,8\}} \Box \diamond (r_i^3 \rightarrow \neg \bigcirc help_i) \\ \wedge_{i \in \{1,3,7,8\}} \Box ((\neg r_i^3 \wedge help_i) \rightarrow \bigcirc help_i) \\ \wedge \Box \diamond True \\ \end{array} \right. \\ \varphi_3^s &= \left\{ \begin{array}{l} r_{10}^1 \wedge_{i=1,\ldots,9} \ \neg r_i^1 \\ \wedge \ Transitions \ \wedge \ Mutual \ Exclusion \\ \wedge \Box ((\wedge_{i \in \{1,3,7,8\}} \neg \bigcirc help_i) \\ \Rightarrow (\wedge_{j \in \{1,\ldots,10\}} \bigcirc r_j^3 \leftrightarrow r_j^3)) \\ \wedge_{i \in \{1,3,7,8\}} \Box \diamond (r_i^3 \vee \neg help_i) \\ \Rightarrow (\wedge_{j \in \{1,3,7,8\}} \Box \diamond (r_i^3 \vee \neg help_i) \\ \Rightarrow (\wedge_{j \in \{1,3,7,8\}} \Box \diamond (r_i^3 \vee \neg help_i) \\ \Rightarrow (\wedge_{j \in \{1,3,7,8\}} \Box \diamond (r_i^3 \vee \neg help_i) \\ \Rightarrow (\wedge_{j \in \{1,3,7,8\}} \Box \diamond (r_i^3 \vee \neg help_i) \\ \end{array} \right. \\ \end{split}$$

Multi Robot - Search and Rescue

(a) Robot 1 found someone in 1

(b) Robot 3 arrived at 1

(c) Robot 2 found someone in 3

(d) Robot 3 arrived at 3

Discussion

- The method requires a fair amount of experience with temporal logic.
- The method is very sensitive to wrong formulation of the environment and there is no feedback or straight forward method to find the mistakes.
- The paper does not compare the algorithm with another method such as [8] [9] [10].
- The method may have some serious problems with real multi-robot systems (the 2 UAVs should fly in different altitudes) computationally and while developing.
- It can be improved computationally by finding some redundancy in the system and simplify the propositions.