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The problem

● How can we describe symbolic high level tasks and 
automatically formulate them into sensing and 
control?

● The paper:
–  presents a framework to develop hybrid controllers 

that satisfy high level specifications.
– solves both the motion planning and the task 

planning problems.
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The Novelties

● The linear temporal logic formulation considers 
sensor inputs.

● The use of General Reactivity reduces the 
complexity to polynomial from double 
exponential.

● But only if the environment is modeled properly 
and satisfies the assumptions.



  

Problem Formulation

● Robot model:

● Admissible environments (   ):
● System Specification (    ):

– Coverage

– Sequencing

– Conditions

– Avoidance

● Given the robot model,       , and      construct a 
controller that satisfies      .



  

Linear Temporal Logic (LTL)

       is true until           becomes true.

     is true at least one time (eventually).

     is true always.

      is true in the next step.

Conjunction.

Disjunction.

Negation.

Atomic proposition.



  

Special class of LTL formulas

The possible evolution of state of the environment.

The possible evolution of the state of the system.

Goal assumptions for the environment and the system.

Formulas constraining the initial values for sensor and system proposition.



  

Example



  

Discrete Synthesis

● The synthesis can be seen as a game between the 
system and the environment.

● Each step the environment makes a transition and 
then the system makes its own transition.

● When the robot wins, no matter the transition of the 
environment, we extract an automaton for the 
system, else the desired behavior is unrealizable.

● The winning condition is given as a General 
Reactivity formula



  

Discrete Synthesis

● Initial states of the players:
● Transitions:
● Winning condition:
● Output automaton is modeled as a tuple:

Set of input propositions.

Initial state.

Set of states.

Set of output propositions.

State labeling function.

Transition relation.



  

Controller Composition

● According to the execution of the automaton simple 
controllers are used for every transition to construct a 
hybrid controller.

● For each step:
– The robot determines the sensors' readings.

– The next automaton state is selected according to δ.

– The next region the robot should go is extracted from γ.

– When the robot reaches the new region proceed to the 
next step.



  

Single Robot - Nursery Scenario



  

Single Robot - Nursery Scenario



  

Multi Robot - Search and Rescue



  

Multi Robot - Search and Rescue



  

Discussion

● The method requires a fair amount of experience with 
temporal logic.

● The method is very sensitive to wrong formulation of the 
environment and there is no feedback or straight forward 
method to find the mistakes.

● The paper does not compare the algorithm with another 
method such as [8] [9] [10].

● The method may have some serious problems with real 
multi-robot systems (the 2 UAVs should fly in different 
altitudes) computationally and while developing. 

● It can be improved computationally by finding some 
redundancy in the system and simplify the propositions.
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