
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by
electronic mail to bhayes@amsci.org.

282 American Scientist, Volume 100

Computing Science

© 2012 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

The Manifest Destiny of Artificial Intelligence

Brian Hayes

Artificial intelligence began
with an ambitious research

agenda: To endow machines with
some of the traits we value most high-
ly in ourselves—the faculty of reason,
skill in solving problems, creativity,
the capacity to learn from experience.
Early results were promising. Comput-
ers were programmed to play checkers
and chess, to prove theorems in ge-
ometry, to solve analogy puzzles from
IQ tests, to recognize letters of the al-
phabet. Marvin Minsky, one of the pio-
neers, declared in 1961: “We are on the
threshold of an era that will be strongly
influenced, and quite possibly domi-
nated, by intelligent problem-solving
machines.”

Fifty years later, problem-solving
machines are a familiar presence in
daily life. Computer programs suggest
the best route through cross-town traf-
fic, recommend movies you might like
to see, recognize faces in photographs,
transcribe your voicemail messages
and translate documents from one lan-
guage to another. As for checkers and
chess, computers are not merely good
players; they are unbeatable. Even on
the television quiz show Jeopardy, the
best human contestants were trounced
by a computer.

In spite of these achievements, the
status of artificial intelligence remains
unsettled. We have many clever gad-
gets, but it’s not at all clear they add
up to a “thinking machine.” Their
methods and inner mechanisms seem
nothing like human mental processes.
Perhaps we should not be bragging
about how smart our machines have
become; rather, we should marvel at
how much those machines accomplish
without any genuine intelligence.

It is not only critics from outside the
field who express such qualms about
the direction of AI. Fifteen years ago
Minsky told an interviewer: “The bot-
tom line is that we really haven’t pro-
gressed too far toward a truly intel-
ligent machine. We have collections of
dumb specialists in small domains; the
true majesty of general intelligence still
awaits our attack.” At a recent math-
ematics meeting I heard Minsky offer a
similar assessment, lamenting the ne-
glect of the field’s deepest long-range
goals. His comments prompted me to
look back at the early literature of ar-
tificial intelligence, and then survey
some of the recent accomplishments.
Has AI strayed from the true path, or
has it found a better way forward?

Neats Versus Scruffies
At the outset, research in artificial in-
telligence was the project of a very
small community. An inaugural con-
ference in 1956 had just 10 participants.
They included Allen Newell and Her-
bert A. Simon of Carnegie Tech (now
Carnegie Mellon University); Minsky,
who had just begun his career at MIT;
and John McCarthy, who left MIT to
start a new laboratory at Stanford. A
major share of the early work in AI
was done by these four individuals
and their students.

It was a small community, but big
enough for schisms and factional strife.
One early conflict pitted “the neats”

against “the scruffies.” The neats em-
phasized the role of deductive logic;
the scruffies embraced other modes
of problem-solving, such as analogy,
metaphor and reasoning from example.
McCarthy was a neat, Minsky a scruffy.

An even older and deeper rift divides
the “symbolic” and the “connectionist”
approaches to artificial intelligence. Are
the basic atoms of thought ideas, prop-
ositions and other such abstractions?
Or is thought something that emerges
from patterns of activity in neural net-
works? In other words, is the proper
object of study the mind or the brain?

If an artificial intelligence needs a
brain, maybe it also needs a body, with
sensors that connect it to the physical
world; thus AI becomes a branch of ro-
botics. Still another faction argues that
if a machine is to think, it must have
something to think about, and so the
first priority is encoding knowledge in
computer-digestible form.

A backdrop to all of these diverg-
ing views within the AI community is
a long-running philosophical debate
over whether artificial intelligence
is possible at all. Some skeptics hold
that human thought is inherently
nonalgorithmic, and so a determinis-
tic machine cannot reproduce every-
thing that happens in the brain. (It’s
the kind of dispute that ends not with
the resolution of the issue but with
the exhaustion of the participants.)

Through the 1970s, most AI projects
were small, proof-of-concept studies.
The scale of the enterprise began to
change in the 1980s with the popu-
larity of “expert systems,” which ap-
plied AI principles to narrow domains
such as medical diagnosis or mineral
prospecting. This brief flurry of entre-
preneurial activity was followed by a
longer period of retrenchment known
as “the AI winter.”

The present era must be the AI
spring, for there has been an extraor-
dinary revival of interest. Last year Pe-

Will AI create
mindlike machines,
or will it show how
much a mindless
machine can do?

Brian Hayes is senior writer for American Scien-
tist. Additional material related to the Comput-
ing Science column appears at http://bit-player.
org. Address: 11 Chandler St. #2, Somerville, MA
02144. E-mail: brian@bit-player.org

2012 July–August 283www.americanscientist.org © 2012 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

ter Norvig and Sebastian Thrun were
teaching an introductory AI course at
Stanford and opened it to free enroll-
ment over the Internet. They attract-
ed 160,000 online students (though
“only” 23,000 successfully completed
the course). The revival comes with a
new computational toolkit and a new
attitude: Intelligent machines are no
longer just a dream for the future but
a practical technology we can exploit

here and now. I’m going to illustrate
these changes with three examples of
AI then and now: machines that play
games (in particular checkers), ma-
chines that translate languages and ma-
chines that answer questions.

Gaming the System
The game of checkers was the subject of
one of the earliest success stories in AI.
Arthur L. Samuel of IBM started work

on a checkers-playing program in the
early 1950s and returned to the project
several times over the next 20 years.
The program was noteworthy not only
for playing reasonably well—quite
early on, it began beating its creator—
but also for learning the game in much
the same way that people do. It played
against various opponents (including
itself!) and drew lessons from its own
wins and losses.

A game of checkers played 50 years ago (July 12, 1962) pitted Robert Nealey, a former champion of Connecticut, against a computer program writ-
ten by Arthur L. Samuel of IBM. Nealey played the white pieces. The first eight moves for each side are shown here; after the computer’s 27th
move, Nealey resigned. Samuel’s program was designed to improve its strategy by learning from experience, much as a human player would.
Later programs achieved stronger performance by relying instead on the computer’s capacity to sift through billions of candidate moves.

284 American Scientist, Volume 100 © 2012 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

Samuel explained the program’s
operation in terms of goals and sub-
goals. The overall goal was to reach
a winning position, where the oppo-
nent has no legal move. The program
identified subgoals that would mark
progress toward the goal. Experienced
players pointed out that the program’s
main weakness was the lack of any
sustained strategy or “deep objective.”

The subsequent history of computer
checkers is dominated by the work
of Jonathan Schaeffer and his col-
leagues at the University of Alberta.
In 1989 they began work on a pro-
gram called Chinook, which quickly
became a player of world-champion
caliber. It played twice against Mari-
on Tinsley, who was the preeminent
human checkers player of the era.
(Tinsley won every tournament he
entered from 1950 to 1994.) In a 1992
match, Tinsley defeated Chinook 4–2
with 33 draws. A rematch two years
later ended prematurely when Tins-
ley withdrew because of illness. The
six games played up to that point had
all been draws, and Chinook became
champion by forfeit. Tinsley died a few
months later, so there was never a final
showdown over the board.

Chinook’s approach to the game
was quite unlike that of Samuel’s ear-
lier program. There was no hierarchy

of goals and subgoals, and no attempt
to imitate the strategic thinking of hu-
man players. Chinook’s strength lay
entirely in capacious memory and
rapid computation. At the time of the
second Tinsley match, the program
was searching sequences of moves to
a minimum depth of 19 plies. (A ply is
a move by one side or the other.) Chi-
nook had a library of 60,000 opening
positions and an endgame database
with precomputed outcomes for every
position with eight or fewer pieces on
the board. There are 443,748,401,247
such positions.

More recently, Schaeffer and his
colleagues have gone on from creat-
ing strong checkers players to solv-
ing the game altogether. After a series
of computations that ended in 2007,
they declared that checkers is “weakly
solved.” The weak solution identifies a
provably optimal line of play from the
starting position to the end—which
turns out to be a draw. Neither player
can improve his or her (or its) outcome
by departing from this canonical se-
quence of moves. (A “strong” solution
would give the correct line of play
from any legally reachable board posi-
tion.) By the time this proof was com-
pleted, the endgame database encom-
passed all positions with 10 or fewer
pieces (almost 40 trillion of them).

Schaeffer notes that his checkers-
playing program doesn’t need to know
much about checkers:

Perhaps the biggest contribu-
tion of applying AI technol-
ogy to developing game-playing
programs was the realization
that a search-intensive (“brute-
force”) approach could produce
high-quality performance using
minimal application-dependent
knowledge.

There is room here for a devil’s advo-
cate to offer a counterargument. Win-
ning isn’t everything, and playing
the game without understanding it
is not the most obvious route to wis-
dom. When Samuel began his work
on checkers, his aim was not just to
create an invincible opponent but to
learn something about how people play
games—indeed, to learn something
about learning itself. Progress toward
these broader goals could have influ-
ence beyond the world of board games.

But this position is difficult to de-
fend. It turns out that brute-force
methods like those of Chinook have
been highly productive in a variety
of other areas. They are not just tricks
for winning games; Schaeffer cites bio-
informatics and optimization among
other application areas. The anthropo-
centric scheme, taking human thought
patterns as the model for computer
programs, has been less fruitful so far.

The Vodka Is Strong
In The Hitchhiker’s Guide to the Galaxy,
Douglas Adams introduces the Babel
Fish: “If you stick one in your ear, you
can instantly understand anything
said to you in any form of language.”
Here in our little corner of the galaxy,
Babel Fish is the name of a web ser-
vice (part of Yahoo) that also performs
translation, though it’s limited to lan-
guages from Planet Earth. Google
and Microsoft offer similar services.
Depending on your needs and expec-
tations, the quality of the results can
seem either amazing or risible.

Efforts to build a translation machine
were already under way in the 1950s.
The simplest of the early schemes was
essentially an automated bilingual dic-
tionary: The machine would read each
word in the source text, look it up in the
dictionary, and return the correspond-
ing word or words in the target lan-
guage. The failure of this approach is
sometimes dramatized with the tale of

Chat échaudé craint l’eau froide A scalded cat fears cold water

Chat échaudé craint l’eau froide A scalded cat fears cold water

craint[(chat échaudé), (l’eau froide)] fears[(a scalded cat), (cold water)]

timet[(scaldata cattus), (frigus aqua)]

NP
VP

NP NP
VP

NP

lexical level

syntactic level

semantic level

interlingua

Machine translation has improved with the adoption of statistical methods that extract word
patterns from large collections of bilingual texts. Earlier programs, imitating the methods of
human translators, performed a multilevel analysis, looking not just at the words themselves
(the lexical level) but also at syntactic structures such as noun phrases (NP) and verb phrases
(VP) and at semantics, or meanings. At the top of the hierarchy is the interlingua, which is
meant to be a language-independent representation of meaning. The statistical approach takes
a shortcut directly from the lexical level of the source language to that of the target language.
The French-to-English translation shown here was generated by just such a program, that of
the Google Translate service. (So was the Latin used as a stand-in for an interlingua.)

2012 July–August 285www.americanscientist.org © 2012 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

the English→ Russian→ English trans-
lation that began with “The spirit is
willing but the flesh is weak” and end-
ed with “The vodka is strong but the
meat is rotten.” John Hutchins, in a his-
tory of machine translation, thoroughly
debunks that story, but the fact remains
that word-by-word dictionary lookup
was eventually dismissed as useless.

Later programs worked with higher-
level linguistic structures—phrases and
sentences rather than individual words.
In the early 1970s Yorick Wilks, who
was then at Stanford, built an English-
to-French translation program that ex-
plicitly tried to reproduce some of the
mental processes of a human transla-
tor. The program would read a sen-
tence, break it into component phrases,
try to assign meanings to the words
based on their local context, and then
generate corresponding phrases in the
target language.

Wilks’s project never got beyond the
prototype stage, but another translation
system with roots in the same era is still
in wide use and under active devel-
opment. systran, founded in 1968 by
Peter Toma, now powers the Babel Fish
service. It began as a dictionary-based
system but now has a complex struc-
ture with many modules.

In recent years a quite different ap-
proach to machine translation has
attracted more interest and enthusi-
asm. The idea is to ignore the entire
hierarchy of syntactic and seman-
tic structures—the nouns and verbs,
the subjects and predicates, even the
definitions of words—and simply
tabulate correlations between words
in a large collection of bilingual texts.
The early work on this statistical ap-
proach to translation was done by Pe-
ter F. Brown and his colleagues at IBM,

who had already applied analogous
ideas to problems of speech recogni-
tion. The method is now the basis of
translation services from both Google
and Microsoft.

Deliberately ignoring everything
we know about grammar and mean-
ing would seem to be a step back-
ward. However, all the information
encoded in grammar rules and dic-
tionary definitions is implicitly pres-
ent in a large collection of texts; after
all, that’s where the grammarians and
the lexicographers get it from in the
first place. Where do the bilingual texts
come from? Government bodies that
publish official documents in two or
more languages, such as Canada and
the European Union, have been an im-
portant source.

Suppose you have a large corpus
of parallel documents in French and
English, broken down into pairs of
matched sentences. With this resource
in hand, you are asked to provide an
English translation of the French prov-
erb Chat échaudé craint l’eau froide. Here
is one way to begin: Take each word
of the proverb, find all the French sen-
tences in the corpus that include this
word, retrieve the corresponding Eng-
lish sentences, and look for words that
appear in these sentences with unusu-
ally high frequency. In some cases the
outcome of this process will be easy to
interpret. If a French sentence includes
the word chat, the English version is
very likely to mention cat. Other cases
could be equivocal. The French craint
might be strongly correlated with
several English words, such as fears,
dreads and afraid. And occasionally it
might happen that no word stands out
clearly. By taking all the English words
identified in this way, and perhaps ap-

plying a threshold rule of some kind,
you can come up with a list of words
that have a good chance of appearing
in the translation.

Now the task is to put the select-
ed words in order, and thus make an
English sentence out of them. This too
can be done by a probabilistic process,
guided by the relative frequencies of
short sequences of words (n-grams) in
English text. The likeliest arrangement
of the words is taken as the translation.

In practice, statistical translation
programs are not quite as crude and
simple-minded as the algorithm pre-
sented here. In particular, the order-
ing of the English words is done by
an alignment process that starts with
the French sequence and allows for
insertions, deletions and transposi-
tions. Still, the entire translation is
done in total ignorance of meaning
and grammatical structure. It seems a
bit of a miracle when something sen-
sible comes out. For Chat échaudé craint
l’eau froide, Google Translate suggests:
A scalded cat fears cold water. My high
school French teacher would have giv-
en full credit for that answer.

This numerical or statistical approach
to translation seems utterly alien to the
human experience of language. As in
the case of game-playing, I am tempted
to protest that the computer has solved
the problem but missed the point. Sure-
ly a human translator works at a higher
level, seeking not just statistical correla-
tions but an equivalence of meaning
and perhaps also of mood and tone. In
the case at hand, the artful translator
might render a proverb with another
proverb: Once burned, twice shy. That
kind of deft linkage between languages
seems beyond the reach of programs
that merely shuffle symbols.

0.0 0.1 0.2 0.3 0.4 0.5

pas
ne

non
pas de tout

faux
ce

que
jamais

plus

probability

0.469
0.460
0.024
0.003
0.003
0.002
0.002
0.002
0.002

The proposal will not now be implemented.

Les propositions ne seront pas mises en application maintenant.

Candidate French translations of the English word not were identified by a program that has no understanding of either language; the list (left
panel) was generated simply by searching for words that appear with elevated frequency in French translations of English sentences that include
the word not. The most likely candidates are ne and pas, which together form the most common French negation. The final step in a statistical
translation algorithm is an alignment (right panel) that maps words of the source sentence to those of the target. Both of the examples shown here
are adapted from a 1990 article by Peter F. Brown and his colleagues, using a bilingual corpus of Canadian parliamentary proceedings.

286 American Scientist, Volume 100 © 2012 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

But are human readers really so dif-
ferent from the computer plodding
through its database of sentences?
How do people learn all those nuanced
meanings of thousands of words and
the elaborate rules for putting them
together in well-formed sentences? We
don’t do it by consulting dictionaries
and grammar books. Starting as young
children, we absorb this knowledge
from exposure to language itself; we
listen and talk, then later we read and
write. For the lucky polyglots among
us, these activities go on in multiple
languages at once, with fluid inter-
change between them. In other words,
we infer syntax and semantics from
a corpus of texts, just as the statistical
translator does. Most likely the mental
process underlying the acquisition of
language involves no explicit calcula-
tion of probabilities of n-grams, but it
also requires no dictionary definitions
or memorized conjugations of verbs.
In spirit at least, our experience of lan-
guage seems closer to statistical infer-
ence than to rule-based deduction.

Q and A
My final example comes from an area
of AI where algorithmic ingenuity
and high-performance computing
have yet to triumph fully. The task
is to answer questions formulated in
ordinary language.

In a sense, we already have an ex-
traordinary question-answering tech-
nology: Web search engines such as
Google and Bing put the world at our
fingertips. For the most part, however,
search engines don’t actually answer
questions; they provide pointers to
documents that might or might not
supply an answer. To put it another
way, search engines are equipped to
answer only one type of question:
“Which documents on the Web men-
tion X?,” where X is the set of key-
words you type into the search box.
The questions people really want to
ask are much more varied.

One early experiment in question
answering was a program called
Baseball, written at MIT circa 1960 by
Bert F. Green Jr., and three colleagues.
The program was able to understand
and answer questions such as “Who
did the Red Sox lose to on July 5,
1960?” This was an impressive feat
at the time, but the domain of dis-
course was very small (a single sea-
son of professional baseball games)
and the form of the queries was also

highly constrained. You couldn’t ask,
for example, “Which team won the
most games?”

For a glimpse of current research on
question answering we can turn to the
splendidly named KnowItAll project
of Oren Etzioni and his colleagues at
the University of Washington. Sev-
eral programs written by the Etzioni
group address questions of the “Who
did what to whom?” variety, extract-
ing answers from a large collection of
texts (including a snapshot of the web
supplied by Google). There’s a demo
at openie.cs.washington.edu. Instead
of matching simple keywords, the
KnowItAll programs employ a tem-
plate of the form X ∼ Y, where X and
Y are generally noun phrases of some
kind and “∼” is a relation between
them, as in “John loves Mary.” If you
leave one element of the template
blank, the system attempts to fill in all
appropriate values from the database
of texts. For example, the query “___
defeated the Red Sox” elicits a list of
59 entries. (But “___ defeated the Red
Sox on July 5, 1960” comes up empty.)

KnowItAll is still a research project,
but a few other question-answering
systems have been released into the
wild. True Knowledge parses natural-
language queries and tries to find
answers in a hand-crafted semantic
database. Ask.com combines question
answering with conventional keyword
Web searching. Apple offers the Siri
service on the latest iPhone. Wolfram
Alpha specializes in quantitative and
mathematical subjects. I have tried all of
these services except Siri; on the whole,
unfortunately, the experience has been
more frustrating than satisfying.

A bright spot on the question-
answering horizon is Watson, the
system created by David Ferrucci
and a team from IBM and Carnegie
Mellon to compete on Jeopardy. The
winning performance was dazzling.
On the other hand, even after read-
ing Ferrucci’s explanation of Watson’s
inner architecture, I don’t really un-
derstand how it works. In particular
I don’t know how much of its suc-
cess came from semantic analysis and
how much from shallower keyword
matching or statistical techniques.
When Watson responded correctly to
the clue “Even a broken one of these
on your wall is right twice a day,” was
it reasoning about the properties of
12-hour clocks in a 24-hour world? Or
did it stumble upon the phrase “right

twice a day” in a list of riddles that
amuse eight-year-olds?

Writing in Nature last year, Etzioni
remarked, “The main obstacle to the
paradigm shift from information re-
trieval to question answering seems
to be a curious lack of ambition and
imagination.” I disagree. I think the
main obstacle is that keyword search,
though roundabout and imprecise, has
proved to be a remarkably effective
way to discover stuff. In the case of
my baseball question, Google led me
straight to the answer: On July 5, 1960,
the Red Sox lost to the Orioles, 9 to
4. Once again, shallow methods that
look only at the superficial structure of
a problem seem to be outperforming
deeper analysis.

Applied Computer Science
Edward A. Feigenbaum, a veteran
of AI’s first-generation, has declared
that “computational intelligence is the
manifest destiny of computer science.”
The slogan “manifest destiny” once
expressed the sea-to-shining-sea ter-
ritorial ambitions of the young Unit-
ed States. Feigenbaum, by analogy, is
telling us there’s no stopping AI until
it reaches the level of human intelli-
gence. (And then why stop there?)

Feigenbaum’s declaration reiterates
Minsky’s prophecy from 50 years ago.
They may both be proved right, one
of these days. In the meantime, I see a
different kind of territorial aggrandize-
ment going on. AI is expanding into
turf that once belonged to other special-
ities. It looks like the destiny of artificial
intelligence may be to assimilate all the
rest of applied computer science.

I came to appreciate how much the
field has broadened as I was reading
Artificial Intelligence: A Modern Approach,
a recent textbook by Stuart Russell and
Norvig. (The third edition came out in
2010.) It’s a splendid book, and I rec-
ommend it not just for students of AI
but for anyone seriously interested in
computer science. And that’s the point:
Many of the ideas and methods intro-
duced here would be quite at home in
a text on algorithm design or optimiza-
tion theory. Some of the more tradition-
al AI themes are scarcely mentioned.

Russell and Norvig give a brief
history of AI, where recent develop-
ments are introduced under the ru-
bric “AI adopts the scientific meth-
od.” This characterization seems a bit
heavy-handed. Are we to conclude
that previous generations were un-

2012 July–August 287www.americanscientist.org © 2012 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

scientific, toiling in benighted pursuit
of cognitive phlogiston? The book’s
subtitle, “A Modern Approach,” re-
inforces this impression. I’m sure the
intent is not to be dismissive or scorn-
ful; it’s just that the questions that ani-
mated AI research in its first decades
no longer seem so urgent or central.
But that’s not because those questions
have all been answered.

Meanwhile, the brash new style of AI
plunges ahead. The roaring success of
all those “shallow” methods—such as
treating natural language as a sequence
of n-grams—is something I find both ex-
citing and perplexing. Exciting because
these are algorithms we can implement
and programs we can run; AI becomes
a technology rather than a daydream.
Perplexing because the shallow meth-
ods weren’t supposed to work, and now
we have to explain their unreasonable
effectiveness. Perhaps this is how we’ll
get back to those deeper questions that
Minsky warns we are neglecting.

Bibliography
Brown, P. F., et al. 1990. A statistical approach

to machine translation. Computational Lin-
guistics 169(2):79–85.

Etzioni, O. 2011. Search needs a shake-up. Na-
ture 476:25–26.

Feigenbaum, E. A. 2003. Some challenges and
grand challenges for computational intel-
ligence. Journal of the ACM 50:32–40.

Feigenbaum, E. A., and J. Feldman. 1963. Com-
puters and Thought. New York: McGraw-Hill.

Ferrucci, D., et al. 2010. Building Watson: An
overview of the DeepQA project. AI Maga-
zine 31(3):59–79.

Green, B. F., et al. 1961. Baseball: An automatic
question answerer. In Proceedings of the West-
ern Joint Computer Conference, February 1961,
Vol. 19., pp. 219–224.

Hutchins, J. 1986. Machine Translation: Past, Pres-
ent, Future. Chichester, U.K.: Ellis Horwood.

McCorduck, P. 2004. Machines Who Think: A
Personal Inquiry into the History and Prospects
of Artificial Intelligence. Twenty-Fifth An-
niversary Edition. Natick, MA: A. K. Peters.

Minsky, M. 1961. Steps toward artificial intel-
ligence. Proceedings of the IRE 49:8–30.

Nilsson, N. J. 2010. The Quest for Artificial Intel-
ligence: A History of Ideas and Achievements.
Cambridge: Cambridge University Press.

Russell, S. J., and P. Norvig. 2010. Artificial In-
telligence: A Modern Approach. Third edition.
Upper Saddle River, NJ: Prentice Hall.

Samuel, A. L. 1959. Some studies in machine
learning using the game of checkers. IBM
Journal of Research and Development 3:210–229.

Schaeffer, J., et al. 2007. Checkers is solved. Sci-
ence 317:1518–1522.

Wilks, Y. 1973. The artificial intelligence ap-
proach to machine translation. In Computer
Models of Thought and Language, R. C. Shank
and K. M. Colby, eds. San Francisco: W. H.
Freeman, pp. 114–151.

