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Marco Valtorta 

An Application of 
Dynamic 

Programming: 
Globally Optimum Selection of 

Storage Patterns 
 

Overview 
 
This talk has two goals: 

a) A review of the fundamentals of 
dynamic programming, and an 
introduction to nonserial dynamic 
programming; 

 
b) An application of the techniques to 

some of the issues involved in the 
problem of determining globally 
optimum storage patterns. 



Dynamic Programming 
 

Dynamic programming is a problem 
solving method which is especially 
useful to solve the problems to which 
Bellman’s Principle of Optimality 
applies: 

“An optimal policy has the property 
that whatever the initial state and the 
initial decision are, the remaining 
decisions constitute an optimal policy 
with respect to the state resulting 
from the initial decision.” 

 
Example: 
The shortest path problem in a directed 
staged network: 
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The principle of optimality can be stated 
as follows: 
 
If the shortest path from 0 to 3 goes 
through X, then: 

1. that part from 0 to X is the shortest 
path from 0 to X, and 

2. that part from X to 3 is the shortest 
path from X to 3. 

 
The previous statement leads to a 
forward and a backward algorithm for 
finding the shortest path in a directed 
staged network. 
 
I shall now give a more formal definition 
of the “dynamic programming problem.” 
[Brioschi and Bretelè, 1972] 
 



The statement of the nonserial (NSPD) 
unconstrained dynamic programming 
problem is  
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where 
 X = {x1, x2, …, xn} 
is  a set of discrete variables, jxS being the 
definition set of the variable xj ( | jxS | = 

jx ); 
 
 T = {1, 2, …, t}; and XX i  . 
 
The function f(x) is called the objective 
function, and the functions fi(X

i) are the 
components of the objective function. 
 
Some useful definitions are now given. 



Two variables Xx and Xy  are said 
to interact if there exists a component 
fk(X

k) such that both x and y belong to 
Xk. 
 
The interaction graph G = (X, L) of a 
nonserial unconstrained problem is an 
undirected graph, without self-loops and 
parallel edges, defined by the following: 

a) The vertex set X of the graph is the 
set of variables of the problem. 

b) Two vertices are adjacent if and 
only if the corresponding variables 
interact. 

 
Example: 
The interaction graph of a serial problem 
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Rather than formally stating the way to 
solve a nonserial problem, I will present 
an example. 
 
Example: 

} ) x, x,(xf 
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X = {x1, x2, x3, x4, x5, x6} 
X1 = {x1, x2, x3};  X2 = {x3, x4, x5}; 
X3 = {x4, x5, x6}; 
 
f1 x1 x2 x3  f2 x3 x4 x5  f3 x4 x5 x6

1 0 0 0  4 0 0 0  0 0 0 0 
3 0 0 1  8 0 0 1  5 0 0 1 
5 0 1 0  0 0 1 0  6 0 1 0 
8 0 1 1  5 0 1 1  3 0 1 1 
2 1 0 0  3 1 0 0  5 1 0 0 
6 1 0 1  5 1 0 1  1 1 0 1 
2 1 1 0  8 1 1 0  4 1 1 0 
4 1 1 1  2 1 1 1  3 1 1 1 



1xS  = 2xS =…= 6xS  = Sx = {0, 1} 
| 1xS | = 1x  = | 2xS | = 2x  =…=| 6xS | = 6x  = 2 
T = {1, 2, 3} 
 
The interaction graph of the problem is: 
 
 
 
 
 
 
 
 
I choose to eliminate variable x6 first.  
To do so, I consider with which variable 
x6 interacts: x4 and x5.  For every 
assignment to x4 and x5, I compute the 
value of x6 for which f3 is minimal (note 
that x6 is a member of X3 only, i.e., it is 
only involved in the component f3).  This 
leads to the following table: 

x1 

x2 

x3 

x4 

x5 

x6 



x6* h1 x4 x5

0 0 0 0 
1 3 0 1 
1 1 1 0 
1 3 1 1 

 
Bellman’s Principle of Optimality holds 
because, once he optimal values for x4 
and x5 have been determined, the 
optimal value for x6 is x6*.  Therefore, 
we can consider a new problem, in which 
x6 does not appear (x6 has been 
eliminated): 
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 ) x, x,(xf  ) x, x,(xf { min
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The interaction graph for the new 
problem is: 
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At this point, I note that x1 and x2 
interact only with x3 in f1, so I decide to 
eliminate them in block, by building the 
following table. 

x1* x2* h2 x3

0 0 1 0 
0 0 3 1 

 

The new problem to be solved is: 
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The corresponding interaction graph is: 
 
 
 
 
 
I eliminate x4 and x5 in block, by 
considering both f2 and h1 to build h3. 

X4 

X5 

x3 



Note that  
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x4* x5* h3 x3

1 0 1 0 
0 0 3 1 

 
Now the problem to be solved is 
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The corresponding interaction graph is 
 

, and the solution is  
 
x3* = 0, which corresponds to  

}f  f  {fmin  2  h  h 321
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To find out the optimal values of all the 
variables (an optimizing arrangement) 
we use Bellman’s principle of optimality 
and the tables we have built. 
 
The computational “cost” of solving a 
nonserial dynamic programming 
problem is the sum of two terms of 
functional evaluation and table lookups.  
However, “the maximum number of 
interacting variables of interacting 
variables is also a reasonable index of 
the computing time.” [Bertelè and 
Brioschi, 1972]. 
 
I shall now introduce the reordering 
optimization problem.   
Our elimination reordering is the ordered 
sequence of the eliminated variables  



(the first variable to be eliminated is the 
first in the ordering). 
 
The dimension of the ordering w, D(w) 
is the maximum of the degrees of the 
vertices in w, at the time of their 
elimination.  This definition might be 
modified for the block elimination case. 
 
 
Example: 
The elimination ordering for the solution 
given in the previous example is  
w1 = {x6, x1, x2, x4, x5, x3}. 
Its vector dimension is 
d(w1)= {2, 2, 1, 2, 1, 0} 
Its dimension is: 
D(w1) = 2. 
 
One could solve the same problem by 
eliminating variables in this order: 



w2 = {x3, x6, x2, x1, x4, x5}, 
whose dimension is 
D(w2) = 4, 
as can be easily verified. 
 
In a simplified formulation, the 
secondary optimization problem is the 
problem of finding the elimination 
ordering with minimal dimension.   
A general solution to the secondary 
optimization problem is computationally 
very heavy [Brioschi and Bertelè, 
chapter 3] so that heuristic criteria are 
used instead.  The simplest criterion 
“which often determines an optimal or 
near optimal ordering” is a greedy 
criterion, as expressed in the minimum 
degree algorithm: at any step, we 
eliminate a minimum degree vertex in 
the current interaction graph. 
 



Globally optimum storage patterns 
 
In this part of the talk, I shall map a 
simplified version of the storage pattern 
problem into the formalism described in 
the previous section, describe some 
examples, and draw some considerations. 
 
I shall not consider the case in which 
loops are present.  The problem has been 
described in a previous talk.  It can be 
stated formally as follows: 
Get a program in the form of a sequence 
of binary operations and assignments on 
matrices, Mi be. 
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where 
X = {x1, x2, …, xi, …, xn} and  

xi = shape( Mi ) 
 

ixS  = {all possible shapes for Mi} = 
CANNOT READ 
 
f(Xi) =  cost of performing an operation 
i, with the elements of Xi as shapes. 

XXi  . 
 
T = {1, 2, …, t}, where |T| = t is the 
number of operations performed by the 
program. 
 
|X| = n is the number of matrices the 
program deals with. 
 



Examples: 
 

E := A+B; 
F := C*D; 
G := E-F. 
 

Let a, b, c, d, e, f, be the shapes of A, B, 
C, D, E, F. 
 

} g) f, (e,f  f) d, (c,f  e) b, (a,f {min 321
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The interaction graph corresponding to 
the above program is: 
 
 
 
 
 
 
The dimension of the elimination 
ordering {a, b, c, d, e, f, g} is two. 
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 D := A+B; 
 E := B*C; 
 F := D-E; 
 G := F+B; 

} g) b, (f,f  f) e, (d,f  e) c, (b,f  d) b, (a,f min{ 4321 

 
 
 
 
 
 
w = {a, c, b, g, d, e} 
D(w) = 3. 
Note: the interaction graph is not a 
series-parallel graph, but the program 
graph is. 
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 D := G+F; 
 E := F-H; 
 C := D*E; 
 B := I-D; 
 A := B*C; 
 
The program graph is not a series 
parallel graph 
 

} d) f, (g,f  e) h, (f,f

  c) e, (d,f  b) d, (i,f  a) c, (b,f min{
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w = {i, g, b, a, f, b, e, d, c} 
D(w) = 2 

A

CB 

- 

* 

- 

+ D E 

F G

* 

H

I 

a 

e 

b c 

f 

d 

g h 

i 



 E := A*C; 
 F := A+B; 
 G := D+E; 
 H := G+A; 
 

} b) a, (g,f 

 g) e, (d,f  f) b, (a,f  e) c, (a,f min{
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w = {b, f, c, d, e, g, h, a} 
 
 
 

the interaction graph 
 after the elimination 

 of b and f. 
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the interaction graph 
 after the elimination 

 of c and d. 
 
 
 
 

the interaction graph  
after the elimination of e. 

 
 
 
 
D(w) = 2. 
 
The examples indicate the in many cases 
of practical significance the dimension of 
the ordering obtained by using the 
minimal degree algorithm is bounded by 
a constant independent of the number of 
matrices in the program.   
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Moreover, the dimension of the ordering 
seems to be usually less than the 
maximum number of operations in which 
a matrix is involved. 
But there are cases in which “the 
maximal degree [of the interaction 
graph] is not an upper bound to the 
dimension,” as it is shown in the 
following example. 
 
Example: 
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I eliminate x1 first 
x1* h1 x8 x2 x5

. . . . . 

. . . . . 
The new problem is: 

} . f  ) x, x, x,(xf  ) x, x,(xh { min 3631225281
{x1}-X



 
The corresponding interaction graph is: 
 
 
 
 
 
 
 
Note that the degree of modes x8, x2, x5 
has increased from three to four.  It can 
be shown that, whichever order of 
elimination one chooses, the dimension 
of the problem presented in this example 
is four. 
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For completeness, I would like to point 
out that I could not find an example in 
which the dimension of the problem was 
greater than the maximal degree, when 
each component involves only three 
variables. 
 

Open Problems 
 
For which programs in the maximum 
number of operations in which a matrix 
is involved an upper bound on the 
dimension of the corresponding storage 
problems? 
How many such problems are there? 
What is the average dimension of the 
optimal storage problem? 
 



Non-Serial Dynamic Programming 
 
Example: 
 
Five variables A, B, C, D, E 
Two values per variable: WA = (the frame of A) = {a, ~a) 

etc. 
 
A problem: z) y, (w,F   w)(v,F  z)  x,(v,F  z) y,  x, w,F(v, 321   
 
Find the minimum value of F and a configuration  
(v, w, x, y, z) that minimizes F. 
 
References:  Don Rose 
 
Bertelè, Umberto and Francesco Brioschi.  Non-Serial 
Dynamic Programming. Academic Press, 1972. 
 
Prakash P. Shenoy.  “Valuation-Based Systems for Discrete 
Optimization.”  In: P.P. Bonissone, M. Henrion, L.N. Kanal 
and J.F. Lemmer (Eds.). Uncertainty in Artificial 
Intelligence. Vol. 6, 1991, pp. 385-400. 

 



Figure 2.  The valuation network for the optimization problems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  The factors of the objective function, F1, F2, and F3. 
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A valuation is a function from 
configurations to values ( usually 
integers or reals). 
 
Projection of configurations simply 
means dropping coordinates. 
Ex.  (~a, ~c, e) is a projection of x = (~a, 
b, ~c, d, e) 
config. of     config of 
h = (A, C, E)   g = (A, B, C, D, E) 
 (~a, ~c, e) = x↓h  

 
Combination Values © Values → Values 

Values   Values → Values 
for hgWx   (x is a configuration of hg  ) 



gfor 
valuation

hgfor 
valuation

)())(( gxGxHG 




 

hfor 
valuation

)( hxH 

 

    =G(x↓g) + H(x↓h) 
 
 
Ex:  F( v, w, x, y, z ) = F1   F2   F3 

© =(for NSDP)=

pointwise sum



Marginalization is a mapping 
hg V  h}g | {V :h   s.t. if G is a valuation 

for g and hg  , then G↓h is a valuation 
for h.  We call G↓h the marginal of G for 
h. 
 
For NSDP, we define 

} Wy | )y,x{G( MIN  )x(G h-g
h   

for all hWx . 
 
Note that F↓φ(▲) |  Wφ={▲}, represents 
the minimum value for F. 
 
Solution for a valuation.  Suppose H is a 
valuation for h.  We call hWx  a solution 
for H if H(x) = H↓φ (▲) 
 



The Axioms 
 
A1  (Communtativity and Associativity 

of Combination)   
Suppose u, v, w are values.  Then  
u©w = w©u and u©(v©w)=(u©v) ©w 

 
A2  (Consonence of Marginalization)  

Suppose G is a valuation for g, and 
ghk  .  Then 

 (G↓h) ↓k = G↓k. 
 
A3  (Distributivity of marginalization 

over combinations)   
Suppose G and H are valuations for g 
and h, repectively.  Then 

   
)()( hgg HGHG    

 
Note that Axiom 3 states that 

gHG  )( can be computed without 
computing HG  ! 



 
Figure 3.  A rooted Markov tree of the optimization problem. 

 
 

Ø 

A 

{A,C,E} 

{A,B,E}

{B,D,E} 

{B,E}

{A,B}

{A,E} 



Figure 4.  The construction of the rooted Markov tree for the 
optimization problem. 
 

1.  The initial hypergraph.  Variables 
 are shown as squares and subsets are 
 shown as black disks.  The elements 

 of each subset are indicated by dotted 
 lines. 

 
 

2.  The Markov tree fragment after C 
 is marked.  Subset {A, E} is added to 
 the hypergraph.  Subset {A, C, E} is 

 now arranged. 
 
 

3.  The Markov tree fragment after D 
 is marked.  Subset {B, E} is added to 
 the hypergraph.  Subset {B, D, E} is 

 now arranged. 
 
 
 

4.  The Markov tree fragment after E 
 is marked.  Subset {A, B, E} is added 

 to the hypergraph.  Subsets {A, E}, 
 {B,E}, and {A, B, E} are now arranged. 

 
 
 
 
 

5.  The Markov tree fragment after B 
 and then A are marked.  Subset {A} 
 and Ø are added to the hypergraph. 

  All subsets are now arranged. 
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Figure 5.  The propagation of valuations in the optimization 
problem.  The valuation messages are shown as rectangles 
overlapping the corresponding edges.  The valuations associated 
with the vertices are shown as diamonds linked to the 
corresponding vertices by dotted lines. 
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Figure 6.  The details of the valuation messages for the  
optimization problem. 
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Figure 7.  The propagation of configuration messages in the 
optimization problem.  The configuration messages are shown as 
rectangles with rounded corners overlapping the corresponding 
edges.  Note that the direction of messages is opposite to the 
direction of the edges.  The solutions for the five variables are 
shown as inverted triangles attached to the vertices (where they are 
stored) by dotted lines. 
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