

Marco Valtorta wrote these notes (mainly around 1982). Blaine Nelson typed them on
October 2-4, 2002. The main reference is: Bertelè, Umberto and Francesco Brioschi.
Non-Serial Dynamic Programming. Academic Press, 1972. Another reference used in
notes written later is: Shenoy, Prakhash P. “Valuation-Based Systems for Discrete
Optimization.” In: P.P. Bonissone, M. Henrion, L.N. Kanal, and J.F. Lemmer (eds.).
Uncertainty in Artificial Intelligence 6. Elsevier, 1991, pp.385-400.

Marco Valtorta

An Application of
Dynamic

Programming:
Globally Optimum Selection of

Storage Patterns

Overview

This talk has two goals:

a) A review of the fundamentals of
dynamic programming, and an
introduction to nonserial dynamic
programming;

b) An application of the techniques to

some of the issues involved in the
problem of determining globally
optimum storage patterns.

Dynamic Programming

Dynamic programming is a problem
solving method which is especially
useful to solve the problems to which
Bellman’s Principle of Optimality
applies:

“An optimal policy has the property
that whatever the initial state and the
initial decision are, the remaining
decisions constitute an optimal policy
with respect to the state resulting
from the initial decision.”

Example:
The shortest path problem in a directed
staged network:

 0

c3
1.1

1.2

2.1

2.2

3

c6

c7

c4
c1

c2

c5

1

4

3

5
2

5

7

The principle of optimality can be stated
as follows:

If the shortest path from 0 to 3 goes
through X, then:

1. that part from 0 to X is the shortest
path from 0 to X, and

2. that part from X to 3 is the shortest
path from X to 3.

The previous statement leads to a
forward and a backward algorithm for
finding the shortest path in a directed
staged network.

I shall now give a more formal definition
of the “dynamic programming problem.”
[Brioschi and Bretelè, 1972]

The statement of the nonserial (NSPD)
unconstrained dynamic programming
problem is





Ti

i
i

XX
XfXf)(min)(min

where
 X = {x1, x2, …, xn}
is a set of discrete variables, jxS being the
definition set of the variable xj (| jxS | =

jx);

 T = {1, 2, …, t}; and XX i  .

The function f(x) is called the objective
function, and the functions fi(X

i) are the
components of the objective function.

Some useful definitions are now given.

Two variables Xx and Xy are said
to interact if there exists a component
fk(X

k) such that both x and y belong to
Xk.

The interaction graph G = (X, L) of a
nonserial unconstrained problem is an
undirected graph, without self-loops and
parallel edges, defined by the following:

a) The vertex set X of the graph is the
set of variables of the problem.

b) Two vertices are adjacent if and
only if the corresponding variables
interact.

Example:
The interaction graph of a serial problem







1

1
1),(min

n

i
iii

X
xxf is given below:

 x1 x2 xn-1 xn …

Rather than formally stating the way to
solve a nonserial problem, I will present
an example.

Example:

}) x, x,(xf

) x, x,(xf) x, x,(xf { min

6543

54323211
X





X = {x1, x2, x3, x4, x5, x6}
X1 = {x1, x2, x3}; X2 = {x3, x4, x5};
X3 = {x4, x5, x6};

f1 x1 x2 x3 f2 x3 x4 x5 f3 x4 x5 x6

1 0 0 0 4 0 0 0 0 0 0 0
3 0 0 1 8 0 0 1 5 0 0 1
5 0 1 0 0 0 1 0 6 0 1 0
8 0 1 1 5 0 1 1 3 0 1 1
2 1 0 0 3 1 0 0 5 1 0 0
6 1 0 1 5 1 0 1 1 1 0 1
2 1 1 0 8 1 1 0 4 1 1 0
4 1 1 1 2 1 1 1 3 1 1 1

1xS = 2xS =…= 6xS = Sx = {0, 1}
| 1xS | = 1x = | 2xS | = 2x =…=| 6xS | = 6x = 2
T = {1, 2, 3}

The interaction graph of the problem is:

I choose to eliminate variable x6 first.
To do so, I consider with which variable
x6 interacts: x4 and x5. For every
assignment to x4 and x5, I compute the
value of x6 for which f3 is minimal (note
that x6 is a member of X3 only, i.e., it is
only involved in the component f3). This
leads to the following table:

x1

x2

x3

x4

x5

x6

x6* h1 x4 x5

0 0 0 0
1 3 0 1
1 1 1 0
1 3 1 1

Bellman’s Principle of Optimality holds
because, once he optimal values for x4
and x5 have been determined, the
optimal value for x6 is x6*. Therefore,
we can consider a new problem, in which
x6 does not appear (x6 has been
eliminated):

}) x,(xh

) x, x,(xf) x, x,(xf { min

541

54323211
}{x-X 6





The interaction graph for the new
problem is:

x1

x2

x3

x4

x5

At this point, I note that x1 and x2
interact only with x3 in f1, so I decide to
eliminate them in block, by building the
following table.

x1* x2* h2 x3

0 0 1 0
0 0 3 1

The new problem to be solved is:

}) x,(xh

) x, x,(xf)(xh {min

541

543232
} x, x,{x-X 216





The corresponding interaction graph is:

I eliminate x4 and x5 in block, by
considering both f2 and h1 to build h3.

X4

X5

x3

Note that
}) x, x,(xf) x,(xh { min h 5432541

} x,{x
3

54



x4* x5* h3 x3

1 0 1 0
0 0 3 1

Now the problem to be solved is

})(xh)(xh {min

 })(xh)(xh {min

3332
}{x

3332
} x, x, x, x,{x-X

3

54216





The corresponding interaction graph is

, and the solution is

x3* = 0, which corresponds to

}f f {fmin 2 h h 321
X

32 

x3

To find out the optimal values of all the
variables (an optimizing arrangement)
we use Bellman’s principle of optimality
and the tables we have built.

The computational “cost” of solving a
nonserial dynamic programming
problem is the sum of two terms of
functional evaluation and table lookups.
However, “the maximum number of
interacting variables of interacting
variables is also a reasonable index of
the computing time.” [Bertelè and
Brioschi, 1972].

I shall now introduce the reordering
optimization problem.
Our elimination reordering is the ordered
sequence of the eliminated variables

(the first variable to be eliminated is the
first in the ordering).

The dimension of the ordering w, D(w)
is the maximum of the degrees of the
vertices in w, at the time of their
elimination. This definition might be
modified for the block elimination case.

Example:
The elimination ordering for the solution
given in the previous example is
w1 = {x6, x1, x2, x4, x5, x3}.
Its vector dimension is
d(w1)= {2, 2, 1, 2, 1, 0}
Its dimension is:
D(w1) = 2.

One could solve the same problem by
eliminating variables in this order:

w2 = {x3, x6, x2, x1, x4, x5},
whose dimension is
D(w2) = 4,
as can be easily verified.

In a simplified formulation, the
secondary optimization problem is the
problem of finding the elimination
ordering with minimal dimension.
A general solution to the secondary
optimization problem is computationally
very heavy [Brioschi and Bertelè,
chapter 3] so that heuristic criteria are
used instead. The simplest criterion
“which often determines an optimal or
near optimal ordering” is a greedy
criterion, as expressed in the minimum
degree algorithm: at any step, we
eliminate a minimum degree vertex in
the current interaction graph.

Globally optimum storage patterns

In this part of the talk, I shall map a
simplified version of the storage pattern
problem into the formalism described in
the previous section, describe some
examples, and draw some considerations.

I shall not consider the case in which
loops are present. The problem has been
described in a previous talk. It can be
stated formally as follows:
Get a program in the form of a sequence
of binary operations and assignments on
matrices, Mi be.

)(min)(min 



Ti

i
i

XX
Xfxf

where
X = {x1, x2, …, xi, …, xn} and

xi = shape(Mi)

ixS = {all possible shapes for Mi} =
CANNOT READ

f(Xi) = cost of performing an operation
i, with the elements of Xi as shapes.

XXi  .

T = {1, 2, …, t}, where |T| = t is the
number of operations performed by the
program.

|X| = n is the number of matrices the
program deals with.

Examples:

E := A+B;
F := C*D;
G := E-F.

Let a, b, c, d, e, f, be the shapes of A, B,
C, D, E, F.

} g) f, (e,f f) d, (c,f e) b, (a,f {min 321
f} e, d, c, b, {a,



The interaction graph corresponding to
the above program is:

The dimension of the elimination
ordering {a, b, c, d, e, f, g} is two.

a

e

b c

f

d

g

 D := A+B;
 E := B*C;
 F := D-E;
 G := F+B;

} g) b, (f,f f) e, (d,f e) c, (b,f d) b, (a,f min{ 4321 

w = {a, c, b, g, d, e}
D(w) = 3.
Note: the interaction graph is not a
series-parallel graph, but the program
graph is.

a

e

b c

f

d

g

A C B

+ *

-

+

D E

F

G

 D := G+F;
 E := F-H;
 C := D*E;
 B := I-D;
 A := B*C;

The program graph is not a series
parallel graph

} d) f, (g,f e) h, (f,f

 c) e, (d,f b) d, (i,f a) c, (b,f min{

54

321




w = {i, g, b, a, f, b, e, d, c}
D(w) = 2

A

CB

-

*

-

+ D E

F G

*

H

I

a

e

b c

f

d

g h

i

 E := A*C;
 F := A+B;
 G := D+E;
 H := G+A;

} b) a, (g,f

 g) e, (d,f f) b, (a,f e) c, (a,f min{

4

321




w = {b, f, c, d, e, g, h, a}

the interaction graph
 after the elimination

 of b and f.

a

e

b c

f d

g

h

a

e

c

d

g

h

the interaction graph
 after the elimination

 of c and d.

the interaction graph
after the elimination of e.

D(w) = 2.

The examples indicate the in many cases
of practical significance the dimension of
the ordering obtained by using the
minimal degree algorithm is bounded by
a constant independent of the number of
matrices in the program.

a

e

g

h

a

g

h

Moreover, the dimension of the ordering
seems to be usually less than the
maximum number of operations in which
a matrix is involved.
But there are cases in which “the
maximal degree [of the interaction
graph] is not an upper bound to the
dimension,” as it is shown in the
following example.

Example:

}) x, x, x,(xf

) x, x, x,(xf

) x, x, x,(xf

) x, x, x,(xf

) x, x, x,(xf

) x, x, x,(xf

) x, x, x,(xf

) x, x, x,(xf {min

41788

38677

27566

16455

85344

74233

63122

52811
X











x1

x2

x3

x7 x5

x4

x6

x8

I eliminate x1 first
x1* h1 x8 x2 x5

.

.
The new problem is:

} . f) x, x, x,(xf) x, x,(xh { min 3631225281
{x1}-X



The corresponding interaction graph is:

Note that the degree of modes x8, x2, x5
has increased from three to four. It can
be shown that, whichever order of
elimination one chooses, the dimension
of the problem presented in this example
is four.

x2

x3

x7 x5

x4

x6

x8

For completeness, I would like to point
out that I could not find an example in
which the dimension of the problem was
greater than the maximal degree, when
each component involves only three
variables.

Open Problems

For which programs in the maximum
number of operations in which a matrix
is involved an upper bound on the
dimension of the corresponding storage
problems?
How many such problems are there?
What is the average dimension of the
optimal storage problem?

Non-Serial Dynamic Programming

Example:

Five variables A, B, C, D, E
Two values per variable: WA = (the frame of A) = {a, ~a)

etc.

A problem: z) y, (w,F w)(v,F z) x,(v,F z) y, x, w,F(v, 321 

Find the minimum value of F and a configuration
(v, w, x, y, z) that minimizes F.

References: Don Rose

Bertelè, Umberto and Francesco Brioschi. Non-Serial
Dynamic Programming. Academic Press, 1972.

Prakash P. Shenoy. “Valuation-Based Systems for Discrete
Optimization.” In: P.P. Bonissone, M. Henrion, L.N. Kanal
and J.F. Lemmer (Eds.). Uncertainty in Artificial
Intelligence. Vol. 6, 1991, pp. 385-400.

Figure 2. The valuation network for the optimization problems.

Figure 1. The factors of the objective function, F1, F2, and F3.

A F2 B

F1 F3

D C

E

 ECAWw ,,)(1 wF
a c e
a c ~e
a ~c e
a ~c ~e

~a c e
~a c ~e
~a ~c e
~a ~c ~e

1
3
5
8
2
6
2
4

 BAWw ,)(1 wF

a b
a ~b

~a b
~a ~b

4
8
0
5

 EDBWw ,,)(1 wF

b d e
b d ~e
b ~d e
b ~d ~e

~b d e
~b d ~e
~b ~d e
~b ~d ~e

0
5
6
3
5
1
4
3

A valuation is a function from
configurations to values (usually
integers or reals).

Projection of configurations simply
means dropping coordinates.
Ex. (~a, ~c, e) is a projection of x = (~a,
b, ~c, d, e)
config. of config of
h = (A, C, E) g = (A, B, C, D, E)
 (~a, ~c, e) = x↓h

Combination Values © Values → Values

Values  Values → Values
for hgWx  (x is a configuration of hg )



gfor
valuation

hgfor
valuation

)())((gxGxHG 




 

hfor
valuation

)(hxH 

 =G(x↓g) + H(x↓h)

Ex: F(v, w, x, y, z) = F1  F2  F3

© =(for NSDP)=

pointwise sum

Marginalization is a mapping
hg V h}g | {V :h  s.t. if G is a valuation

for g and hg  , then G↓h is a valuation
for h. We call G↓h the marginal of G for
h.

For NSDP, we define

} Wy |)y,x{G(MIN)x(G h-g
h 

for all hWx .

Note that F↓φ(▲) | Wφ={▲}, represents
the minimum value for F.

Solution for a valuation. Suppose H is a
valuation for h. We call hWx a solution
for H if H(x) = H↓φ (▲)

The Axioms

A1 (Communtativity and Associativity

of Combination)
Suppose u, v, w are values. Then
u©w = w©u and u©(v©w)=(u©v) ©w

A2 (Consonence of Marginalization)

Suppose G is a valuation for g, and
ghk  . Then

 (G↓h) ↓k = G↓k.

A3 (Distributivity of marginalization

over combinations)
Suppose G and H are valuations for g
and h, repectively. Then

)()(hgg HGHG  

Note that Axiom 3 states that

gHG )(can be computed without
computing HG  !

Figure 3. A rooted Markov tree of the optimization problem.

Ø

A

{A,C,E}

{A,B,E}

{B,D,E}

{B,E}

{A,B}

{A,E}

Figure 4. The construction of the rooted Markov tree for the
optimization problem.

1. The initial hypergraph. Variables
 are shown as squares and subsets are
 shown as black disks. The elements

 of each subset are indicated by dotted
 lines.

2. The Markov tree fragment after C
 is marked. Subset {A, E} is added to
 the hypergraph. Subset {A, C, E} is

 now arranged.

3. The Markov tree fragment after D
 is marked. Subset {B, E} is added to
 the hypergraph. Subset {B, D, E} is

 now arranged.

4. The Markov tree fragment after E
 is marked. Subset {A, B, E} is added

 to the hypergraph. Subsets {A, E},
 {B,E}, and {A, B, E} are now arranged.

5. The Markov tree fragment after B
 and then A are marked. Subset {A}
 and Ø are added to the hypergraph.

 All subsets are now arranged.

A B

DC

E

A B

DC

E

A B

DC

E

A B

DC

E

A B

DC

E

Figure 5. The propagation of valuations in the optimization
problem. The valuation messages are shown as rectangles
overlapping the corresponding edges. The valuations associated
with the vertices are shown as diamonds linked to the
corresponding vertices by dotted lines.

 Ø

A

{A,C,E}

{A,B,E}

{B,D,E}

{B,E}

{A,B}

{A,E}

F3F1

F2

 

















 

}{

2

},{},{
3

},{
1

A
BAEBEA FFF

  }{

2

},{},{
3

},{
1

A
BAEBEA FFF


 





 

  },{},{
3

},{
1

BAEBEA FF
 

},{
3

EBF },{
1

EAF 

},{
1

EAF  },{
3

EBF 

Figure 6. The details of the valuation messages for the
optimization problem.

},,{ ECAW F1

A c e
A c ~e
A ~c e
A ~c ~e

~a c e
~a c ~e
~a ~c e
~a ~c ~e

1
3
5
8
2
6
2
4

},,{ EDBW F3

b d e
b d ~e
b ~d e
b ~d ~e

~b d e
~b d ~e
~b ~d e
~b ~d ~e

0
5
6
3
5
1
4
3

},{ EAW },{
1

EAF 
D

a e
a ~e

~a e
~a ~e

1
3
2
4

c
c

c|~c
c

},{ EBW },{
1

EAF 
 D

b e
b ~e

~b e
~b ~e

0
3
4
1

d
~d
~d
d

},,{ EBAW },{
1

EAF  },{
3

EBF  },{
3

},{
1

EBEA FF  

a b E
a b ~e
a ~b E
a ~b ~e

~a b E
~a b ~e
~a ~b E
~a ~b ~e

1
3
1
3
2
4
2
4

0
3
4
1
0
3
4
1

1
6
5
4
2
7
6
5

},{ BAW   },{},{
3

},{
1

BAEBEA FF
  E

a b
a ~b

~a b
~a ~b

1
4
2
5

e
~e
e

~e

},{ BAW   },{},{
3

},{
1

BAEBEA FF
  F2   2

},{},{
3

},{
1 FFF

BAEBEA 


a b
a ~b

~a b
~a ~b

1
4
2
5

4
8
0
5

5
12
2
10

}{AW   }{

2

},{},{
3

},{
1

A
BAEBEA FFF

 




  B

a
~a

5
2

b
b

W
 

















 

}{

2

},{},{
3

},{
1

A
BAEBEA FFF

A

▲ 2 ~a

Figure 7. The propagation of configuration messages in the
optimization problem. The configuration messages are shown as
rectangles with rounded corners overlapping the corresponding
edges. Note that the direction of messages is opposite to the
direction of the edges. The solutions for the five variables are
shown as inverted triangles attached to the vertices (where they are
stored) by dotted lines.

Ø

A

{A,C,E}

{A,B,E}

{B,D,E}

{B,E}

{A,B}

{A,E}

ΨA

ΨE

ΨD ΨC

ΨB ~a

▲

(~a,b)

(~a,e) (b,e)

(~a,e) (b,e)

