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Marco Valtorta

An Application of
Dynamic
Programming:

Globally Optimum Selection of
Storage Patterns

Overview

This talk has two goals:

a) A review of the fundamentals of
dynamic programming, and an
introduction to nonserial dynamic
programming;

b) An application of the techniques to
some of the 1ssues involved in the
problem of determining globally
optimum storage patterns.



Dynamic Programming

Dynamic programming 1s a problem
solving method which 1s especially
useful to solve the problems to which
Bellman’s Principle of Optimality
applies:
“An optimal policy has the property
that whatever the 1nitial state and the
initial decision are, the remaining
decisions constitute an optimal policy
with respect to the state resulting
from the initial decision.”

Example:
The shortest path problem in a directed
staged network: 1




The principle of optimality can be stated
as follows:

If the shortest path from 0 to 3 goes
through X, then:
1.  that part from O to X is the shortest
path from 0 to X, and

2. that part from X to 3 is the shortest
path from X to 3.

The previous statement leads to a
forward and a backward algorithm for
finding the shortest path in a directed
staged network.

I shall now give a more formal definition

of the “dynamic programming problem.”
[Brioschi and Bretele, 1972]



The statement of the nonserial (NSPD)
unconstrained dynamic programming
problem i1s

min f(X)zmxinZ f (X"

ieT

where

X = {Xl, X2y ey Xn}
is a set of discrete variables, S, being the
definition set of the variable x; (|Sx, | =

O-Xj )9

T={1,2,....t};and X' = X.
The function f(x) is called the objective
function, and the functions f;(X') are the

components of the objective function.

Some useful definitions are now given.



Two variables X € X and Y € X are said
to interact 1f there exists a component
fi(X*) such that both x and y belong to
X",

The 1nteraction graph G = (X, L) of a
nonserial unconstrained problem 1s an
undirected graph, without self-loops and
parallel edges, defined by the following:
a) The vertex set X of the graph 1s the
set of variables of the problem.
b) Two vertices are adjacent 1f and
only 1f the corresponding variables
interact.

Example:
The interaction graph of a serial problem

mlnz f, (XI ) |+1) 1S glven below:



Rather than formally stating the way to
solve a nonserial problem, I will present
an example.

Example:

InXin{fl(X19X29X3)+f2(X39X49X5)

+f3(X49X59X6)}

Xlz {Xla X29 X39 X49 XS? )2(6}
X3 - {Xln X2, X3}; X" = {X3’ x4, XS};
X — {X49 X3, X6};

f1 [X1 X2 X3 fr [X3 X4 Xs {3 [X4 X5 Xo
110 0 O 410 0 O 0]j0 0 O
310 0 1 10 0 1 50 0 1
510 1 0 010 1 O 610 1 O
(0 1 1 50 1 1 310 1 1
211 0 0 311 0 0 511 0 0
6|1 0 1 5(1 0 1 111 0 1
211 1 O 11 1 0 411 1 O
411 1 1 211 1 1 311 1 1




S, =S.=..=5,=S,= {0, 1
S| =0y, =S| = 0 =...=|Sy| = 0 =2

T=1{1,2,3}

The interaction graph of the problem is:

I choose to eliminate variable xg first.

To do so, I consider with which variable
X¢ Interacts: x4 and xs. For every
assignment to x4 and xs, I compute the
value of x4 for which f3 is minimal (note
that X6 is a member of X° only, i.e., it is
only involved in the component f_o,) This
leads to the following table:




X6>x< h1 X4 X5

0 0O (0 O
1 3 [0 1
1 1 (1 O
1 3 |1 1

Bellman’s Principle of Optimality holds
because, once he optimal values for x4
and x5 have been determined, the
optimal value for x6 1s x6*. Therefore,
we can consider a new problem, in which
x6 does not appear (x6 has been
eliminated):

min { f,(x,,X,,X;)+1,(X;,x,,X5)
X-{x4}

+h,(x,,X5) }
The interaction graph for the new

problem 1s: a @
(xs
(x (x5



At this point, I note that x; and x;
interact only with x5 1n f;, so I decide to
eliminate them in block, by building the

following table.
X1*  X* |hy |x3
0 0 1 |0
0 0 3 |1

The new problem to be solved is:

min  {h,(x;)+1,(x;,X,,X5)

X-{Xg,X1,X5 §

+h(x,,x5)}

The corresponding interaction graph is:

I eliminate x4 and x5 in block, by
considering both f; and h; to build hs.



Note that
h; = min {h (x,,x;)+1,(X;,X,,X;)}

{X4’X5}

X4>x< X5>X< h3 X3
1 0 1 {0
0 0 3 |1

Now the problem to be solved is

min {h,(X;)+h;(x3)}=

X_{X69X13X23X49X5}

EI}li]}fl{hz(X3) + h3(X3)}

The corresponding interaction graph 1s

@ , and the solution 1s

x3* = 0, which corresponds to
h, +h, :2:mXin{f1 +1, +1,}



To find out the optimal values of all the
variables (an optimizing arrangement)
we use Bellman’s principle of optimality
and the tables we have built.

The computational “cost” of solving a
nonserial dynamic programming
problem is the sum of two terms of
functional evaluation and table lookups.
However, “the maximum number of
interacting variables of interacting
variables 1s also a reasonable index of

the computing time.” [Bertele and
Brioschi, 1972].

I shall now introduce the reordering
optimization problem.

Our elimination reordering is the ordered
sequence of the eliminated variables



(the first variable to be eliminated 1s the
first in the ordering).

The dimension of the ordering w, D(w)
is the maximum of the degrees of the
vertices 1n w, at the time of their
elimination. This definition might be
modified for the block elimination case.

Example:

The elimination ordering for the solution
given in the previous example 1s

w1 = {X¢, X1, X2, X4, X5, X3}.

[ts vector dimension 1s
diw)=1{2,2,1,2,1, 0}

Its dimension 1s:

D(Wl) = 2.

One could solve the same problem by
eliminating variables 1n this order:



W2 = {X3, X6, X2, X1, X4, X5,
whose dimension 1s

D(Wz) — 4,

as can be easily verified.

In a sitmplified formulation, the
secondary optimization problem is the
problem of finding the elimination
ordering with minimal dimension.

A general solution to the secondary
optimization problem is computationally
very heavy [Brioschi and Bertele,
chapter 3] so that heuristic criteria are
used instead. The simplest criterion
“which often determines an optimal or
near optimal ordering” is a greedy
criterion, as expressed 1n the minimum
degree algorithm: at any step, we
eliminate a minimum degree vertex in
the current interaction graph.



Globally optimum storage patterns

In this part of the talk, I shall map a
simplified version of the storage pattern
problem into the formalism described 1n
the previous section, describe some
examples, and draw some considerations.

I shall not consider the case in which
loops are present. The problem has been
described 1n a previous talk. It can be
stated formally as follows:

Get a program 1n the form of a sequence
of binary operations and assignments on
matrices, M; be.

mxinf(x)zmxiani(x‘)

ieT



where
X = {Xl, X2y teeg Xig eee Xn} and
X; = shape( M; )

5, = {all possible shapes for M;} =
CANNOT READ

f(X") = cost of performing an operation
i, with the elements of X' as shapes.
X' cX.

T=1{I1,2,...,t}, where [T| =t 1s the
number of operations performed by the
program.

I X| = n 1s the number of matrices the
program deals with.



Examples:

E .= A+B;
F .= C*D;
G = E-F.

Leta, b, ¢, d, e, f, be the shapes of A, B,
C,.D,E,F.

min {f,(a,b,e)+f,(c,d,f)+f,(e,f,g)}

{a,b,c,d,e, f}

The 1nteraction graph corresponding to
the above program 1is:

(2—o

The dimension of the elimination
ordering {a, b, c, d, e, f, g} 1s two.



D := A+B:;

E .= B*C;
F :=D-E;
G .= F+B;

min{f, (a,b,d) +f,(b,c,e)+f,(d, e, ) +f,(f, b, g)}

w=1{a,c,b,gd e}

D(w) = 3.

Note: the interaction graph 1s not a
series-parallel graph, but the program
graph 1s.




D := G+F;

A x
2 7 N\
E := F-H;
C = D*E; //l
1 D E

B :=1-D; /-I-\ PR
— K.
A = B*C; G ’ H

The program graph is not a series
parallel graph

min{ f,(b,c,a)+1,(1,d,b)+1,(d,e,c)+
+f,(f,h,e)+1f.(g,f,d)}

w=1{1,gb,af,b,e d, c}
D(w) =2



E = A*C;

F := A+B;
G ;= D+E;
H = Gt+A;

min{f, (a,c,e)+f,(a,b, )+ f,(d, e, g)+
+f,(g,a,b)}

@ e the interaction graph
a after the elimination
of b and f.



the interaction graph
G after the elimination

of ¢ and d.
(&
(b

e the interaction graph

/ after the elimination of e.

D(w) = 2.

The examples indicate the in many cases
of practical significance the dimension of
the ordering obtained by using the
minimal degree algorithm 1s bounded by
a constant independent of the number of
matrices in the program.



Moreover, the dimension of the ordering
seems to be usually less than the
maximum number of operations in which
a matrix 1s involved.

But there are cases in which “the
maximal degree [of the interaction
graph] 1s not an upper bound to the
dimension,” as it 1S shown 1n the
following example.

Example:

mXin{ £, (X, Xg, X5, X5) +
@ +1,(X,, X, X3, X4) +
@ @ +15(X5, X5, Xy, X5) +
@ @ +1,(Xy, X5, X5, Xg) +
‘ + 1, (X, Xy, X, X ) +

+1(Xg, X5, X7, X,) +
+1,(X,, X¢, Xg, X3) +

+f8(X89X79X19X4)}



I eliminate x; first
X1* |h; |Xg Xp X5

The new problem is:

min {hl(X89X29X5)+f2(X29X19X39X6)+f3 Tt

X-{x1}

The corresponding interaction graph 1is:

Note that the degree of modes xg, X», X5
has increased from three to four. It can
be shown that, whichever order of

elimination one chooses, the dimension

of the problem presented 1n this example
1s four.



For completeness, I would like to point
out that I could not find an example in
which the dimension of the problem was
greater than the maximal degree, when
each component involves only three
variables.

Open Problems

For which programs in the maximum
number of operations in which a matrix
1s involved an upper bound on the
dimension of the corresponding storage
problems?

How many such problems are there?
What 1s the average dimension of the
optimal storage problem?



Non-Serial Dynamic Programming

Example:

Five variables A, B, C, D, E
Two values per variable: W, = (the frame of A) = {a, ~a)
etc.

A pTOblem: F(Va Wa X’ Y) Z) - Fl (V) X) Z) + F2 (V) W) + F3 (W7 Y7 Z)

Find the minimum value of F and a configuration
(v, W, X, y, z) that minimizes F.

References: Don Rose

Bertele, Umberto and Francesco Brioschi. Non-Serial
Dynamic Programming. Academic Press, 1972.

Prakash P. Shenoy. “Valuation-Based Systems for Discrete
Optimization.” In: P.P. Bonissone, M. Henrion, L.N. Kanal
and J.F. Lemmer (Eds.). Uncertainty in Artificial
Intelligence. Vol. 6, 1991, pp. 385-400.



Figure 2. The valuation network for the optimization problems.

A

ks

B

D

Figure 1. The factors of the objective function, F1, F2, and F3.

WeWice | Fi(w) weWyg | F (W) WeWgpe | F (W)
a c¢c e| 1 a b 4 b d e O
a ¢c~e| 3 a ~b 8 b d~e| 5

_a~c e| 5 ~a b 0 b~d e| 6
—a~c ~e| 8 ~a ~b 5 b~d~e| 3

~a c e| 2 ~b d e| 5

~a Cc ~e| 6 ~b d~e| 1

~a ~c e| 2 ~b~d e| 4

~a ~c ~¢| 4 ~b ~d ~e| 3




A valuation 1s a function from
configurations to values ( usually
integers or reals).

Projection of configurations simply

means dropping coordinates.

Ex. (~a, ~c, €) 1s a projection of x = (~a,

b, ~c, d, e)

config. of config of

h=(A, C, E) g=(A,B,C,D,E)
(Naa ~C, e) — th

Combination Values © Values — Values
Values ©® Values — Values

for X €W, (x.is a configuration of guwh)
(GOH)(X)=G(x") © H(X") =(for NSDP)=
- ~ / - ~ _J

valuation valuation valuation
for gUh forg forh

=G(x'®) +\H(§lh)

pointwise sum

Ex: F(v,w,x,y,z)=F1 ® F2 ® F3




Marginalization 1s a mapping
Yhi{v,lgohi >V, s.t. if G is a valuation
for gand g2h, then G*" is a valuation
for h. We call G*" the marginal of G for
h.

For NSDP, we define
G (x)=MIN{G(x,y)|y e W, }

for all xe W,

Note that F**(A) | W,={ A}, represents
the minimum value for F.

Solution for a valuation. Suppose H 1s a

valuation for h. We call xe W, a solution
for Hif H(x) = H'* (A)



The Axioms

Al (Communtativity and Associativity
of Combination)

Suppose u, v, w are values. Then
uOw =wOu anduO(vOw)=(uOv) Ow

A2 (Consonence of Marginalization)
Suppose G 1s a valuation for g, and
Kehcg. Then

(Glh) k= Gglk

A3 (Distributivity of marginalization
over combinations)
Suppose G and H are valuations for g
and h, repectively. Then

GOH)* =G@®(H "™

Note that Axiom 3 states that

(G ®H)" can be computed without
computing GO H !



Figure 3. A rooted Markov tree of the optimization problem.



Figure 4. The construction of the rooted Markov tree for the
optimization problem.

|_A—_| .......................................... . .......................................
@ [E]
[c]

1. The initial hypergraph. Variables
are shown as squares and subsets are
shown as black disks. The elements
of each subset are indicated by dotted
lines.

2. The Markov tree fragment after C
1s marked. Subset {A, E} is added to
the hypergraph. Subset {A, C, E} is
now arranged.

3. The Markov tree fragment after D
is marked. Subset {B, E} is added to
the hypergraph. Subset {B, D, E} is
now arranged.

4. The Markov tree fragment after E

1s marked. Subset {A, B, E} is added
to the hypergraph. Subsets {A, E},
{B,E}, and {A, B, E} are now arranged.

5. The Markov tree fragment after B
and then A are marked. Subset {A}
and O are added to the hypergraph.
All subsets are now arranged.



Figure 5. The propagation of valuations in the optimization
problem. The valuation messages are shown as rectangles
overlapping the corresponding edges. The valuations associated
with the vertices are shown as diamonds linked to the
corresponding vertices by dotted lines.

le

{
(((F#{A’E} ® F}MB,E})‘L{A,B} @ Fz) {A}J




Figure 6. The details of the valuation messages for the
optimization problem.

W{A,C,E} F
A ¢ el Wine, |[FYAE W,
A ¢ ~e|3 a e| 1 c
A~ e|>S a ~e| 3 c
A ~ ~e |38 ~a e| 2 cl~c
~a ¢ e|2 ~a ~e | 4 c
~a ¢ ~e| 6
~a ~C e| 2
~a ~c ~e | 4
W{B,D,E} F3 W{B,E} Fli{A’E} Yy
b d e 0 b e 0 d
b d -~e 5 b ~e 3 ~d
b ~d e 6 ~b e 4 ~d
b ~d ~e 3 ~b ~e 1 d
~b d e 5
~b d ~e 1
~b ~d e 4
~b ~d ~e 3
Winee N L L] A Wine, (H“A’E} ® Fg“B’E})“A,B} e
a b E 1 0 1 a b 1 e
a b ~e| 3 3 6 a ~b 4 ~e
a ~b E 1 4 5 ~a b 2 e
a ~b ~e | 3 1 4 ~a ~b 5 ~e
~a b E 2 0 2
~a b ~e 4 3 7
~a ~b E 2 4 6
~a ~b ~e 4 1 5
W{A,B} (FIL{A,E} ® F}L{B,E})“A’B} F, (FIL{A,E} ® F3¢{B,E} )“A’B} OF,
a b 1 4
a ~b 4 8 12
~a b 2 0
~a ~b 5 5 10
A.B} A la
e (I I " (((Fﬁzm@Fg“B’E*)“A’B}@FJM B
a 5 b
~a 2 b A 2 ~a




Figure 7. The propagation of configuration messages in the
optimization problem. The configuration messages are shown as
rectangles with rounded corners overlapping the corresponding
edges. Note that the direction of messages is opposite to the
direction of the edges. The solutions for the five variables are
shown as inverted triangles attached to the vertices (where they are

stored) by dotted lines.




