
Objects and Relations

Often features are made from relationships between objects
and functions of objects.

It is useful to view the world as consisting of objects and
relationships amongst the objects.

Reasoning in terms of objects and relationships can be simpler
than reasoning in terms of features, as you can express general
knowledge that covers all individuals.

Sometimes you may know some individual exists, but not
which one.

Sometimes there are infinitely many objects you want to refer
to (e.g., set of all integers, or the set of all stacks of blocks).
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Role of Semantics in Automated Reasoning

in(kim,cs_building)

in(kim,r123).
part_of(r123,cs_building).
in(X,Y) ←  
    part_of(Z,Y) ∧
    in(X,Z).

kim
r123
r023

cs_building
in( , )

part_of( , )
person( )
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Features of Automated Reasoning

The user can have meanings for symbols in their head.

The computer doesn’t need to know these meanings to derive
logical consequents.

The user can interpret any answers according to their
meaning.
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Representational Assumptions of Datalog

An agent’s knowledge can be usefully described in terms of
individuals and relations among individuals.

An agent’s knowledge base consists of definite and positive
statements.

The environment is static.

There are only a finite number of individuals of interest in the
domain. Each individual can be given a unique name.

=⇒ Datalog
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Syntax of Datalog

variable starts with upper-case letter.

constant starts with lower-case letter or is a sequence of
digits (numeral).

predicate symbol starts with lower-case letter.

term is either a variable or a constant.

atomic symbol (atom) is of the form p or p(t1, . . . , tn) where
p is a predicate symbol and ti are terms.
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Syntax of Datalog (cont)

definite clause is either an atomic symbol (a fact) or of the
form:

a︸︷︷︸ ← b1 ∧ · · · ∧ bm︸ ︷︷ ︸
head body

where a and bi are atomic symbols.

query is of the form ?b1 ∧ · · · ∧ bm.

knowledge base is a set of definite clauses.
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Example Knowledge Base

in(kim, R)←
teaches(kim, cs322) ∧
in(cs322, R).

grandfather(william, X )←
father(william, Y ) ∧
parent(Y , X ).

slithy(toves)←
mimsy ∧ borogroves ∧
outgrabe(mome, Raths).
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Semantics: General Idea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:

what objects (individuals) are in the world

the correspondence between symbols in the computer and
objects & relations in world

I constants denote individuals
I predicate symbols denote relations
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Formal Semantics

An interpretation is a triple I = 〈D, φ, π〉, where

D, the domain, is a nonempty set. Elements of D are

individuals.

φ is a mapping that assigns to each constant an element of
D. Constant c denotes individual φ(c).

π is a mapping that assigns to each n-ary predicate symbol a
relation: a function from Dn into {TRUE, FALSE}.
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Example Interpretation

Constants: phone, pencil , telephone.

Predicate Symbol: noisy (unary), left of (binary).

D = {",%,.}.
φ(phone) = %, φ(pencil) = ., φ(telephone) = %.

π(noisy): 〈"〉 FALSE 〈%〉 TRUE 〈.〉 FALSE

π(left of ):
〈","〉 FALSE 〈",%〉 TRUE 〈",.〉 TRUE

〈%,"〉 FALSE 〈%,%〉 FALSE 〈%,.〉 TRUE

〈.,"〉 FALSE 〈.,%〉 FALSE 〈.,.〉 FALSE
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Important points to note

The domain D can contain real objects. (e.g., a person, a
room, a course). D can’t necessarily be stored in a computer.

π(p) specifies whether the relation denoted by the n-ary
predicate symbol p is true or false for each n-tuple of
individuals.

If predicate symbol p has no arguments, then π(p) is either
TRUE or FALSE.
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Truth in an interpretation

A constant c denotes in I the individual φ(c).
Ground (variable-free) atom p(t1, . . . , tn) is

true in interpretation I if π(p)(t ′
1, . . . , t

′
n) = TRUE, where ti

denotes t ′
i in interpretation I and

false in interpretation I if π(p)(t ′
1, . . . , t

′
n) = FALSE.

Ground clause h← b1 ∧ . . . ∧ bm is false in interpretation I if h is

false in I and each bi is true in I , and is true in interpretation I
otherwise.
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Example Truths

In the interpretation given before:

noisy(phone) true
noisy(telephone) true
noisy(pencil) false
left of (phone, pencil) true
left of (phone, telephone) false
noisy(pencil)← left of (phone, telephone) true
noisy(pencil)← left of (phone, pencil) false
noisy(phone)← noisy(telephone) ∧ noisy(pencil) true
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Models and logical consequences (recall)

A knowledge base, KB, is true in interpretation I if and only if
every clause in KB is true in I .

A model of a set of clauses is an interpretation in which all
the clauses are true.

If KB is a set of clauses and g is a conjunction of atoms, g is
a logical consequence of KB, written KB |= g , if g is true
in every model of KB.

That is, KB |= g if there is no interpretation in which KB is
true and g is false.
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User’s view of Semantics

1. Choose a task domain: intended interpretation.

2. Associate constants with individuals you want to name.

3. For each relation you want to represent, associate a predicate
symbol in the language.

4. Tell the system clauses that are true in the intended
interpretation: axiomatizing the domain.

5. Ask questions about the intended interpretation.

6. If KB |= g , then g must be true in the intended interpretation.
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Computer’s view of semantics

The computer doesn’t have access to the intended
interpretation.

All it knows is the knowledge base.

The computer can determine if a formula is a logical
consequence of KB.

If KB |= g then g must be true in the intended interpretation.

If KB 6|= g then there is a model of KB in which g is false.
This could be the intended interpretation.
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Role of Semantics in an RRS

in(kim,cs_building)

in(kim,r123).
part_of(r123,cs_building).
in(X,Y) ←  
    part_of(Z,Y) ∧
    in(X,Z).

kim
r123
r023

cs_building
in( , )

part_of( , )
person( )
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Variables

Variables are universally quantified in the scope of a clause.

A variable assignment is a function from variables into the
domain.

Given an interpretation and a variable assignment,
each term denotes an individual and
each clause is either true or false.

A clause containing variables is true in an interpretation if it is
true for all variable assignments.
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Queries and Answers

A query is a way to ask if a body is a logical consequence of the
knowledge base:

?b1 ∧ · · · ∧ bm.

An answer is either

an instance of the query that is a logical consequence of the
knowledge base KB, or

no if no instance is a logical consequence of KB.
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Example Queries

KB =


in(kim, r123).
part of (r123, cs building).
in(X , Y )← part of (Z , Y ) ∧ in(X , Z ).

Query Answer

?part of (r123, B).

part of (r123, cs building)
?part of (r023, cs building). no
?in(kim, r023). no
?in(kim, B). in(kim, r123)

in(kim, cs building)
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Example Queries

KB =


in(kim, r123).
part of (r123, cs building).
in(X , Y )← part of (Z , Y ) ∧ in(X , Z ).

Query Answer

?part of (r123, B). part of (r123, cs building)
?part of (r023, cs building).

no
?in(kim, r023). no
?in(kim, B). in(kim, r123)

in(kim, cs building)
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Example Queries

KB =


in(kim, r123).
part of (r123, cs building).
in(X , Y )← part of (Z , Y ) ∧ in(X , Z ).

Query Answer

?part of (r123, B). part of (r123, cs building)
?part of (r023, cs building). no
?in(kim, r023).

no
?in(kim, B). in(kim, r123)

in(kim, cs building)
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Example Queries

KB =


in(kim, r123).
part of (r123, cs building).
in(X , Y )← part of (Z , Y ) ∧ in(X , Z ).

Query Answer

?part of (r123, B). part of (r123, cs building)
?part of (r023, cs building). no
?in(kim, r023). no
?in(kim, B).

in(kim, r123)
in(kim, cs building)
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Example Queries

KB =


in(kim, r123).
part of (r123, cs building).
in(X , Y )← part of (Z , Y ) ∧ in(X , Z ).

Query Answer

?part of (r123, B). part of (r123, cs building)
?part of (r023, cs building). no
?in(kim, r023). no
?in(kim, B). in(kim, r123)

in(kim, cs building)
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Logical Consequence

Atom g is a logical consequence of KB if and only if:

g is a fact in KB, or

there is a rule

g ← b1 ∧ . . . ∧ bk

in KB such that each bi is a logical consequence of KB.
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Debugging false conclusions

To debug answer g that is false in the intended interpretation:

If g is a fact in KB, this fact is wrong.

Otherwise, suppose g was proved using the rule:

g ← b1 ∧ . . . ∧ bk

where each bi is a logical consequence of KB.
I If each bi is true in the intended interpretation, this clause is

false in the intended interpretation.
I If some bi is false in the intended interpretation, debug bi .
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Electrical Environment

light

two-way
switch

switch
off

on

power
outlet

circuit breaker

outside power
cb1

s1

w1
s2 w2

w0

l1

w3
s3

w4

l2
p1

w5

cb2

w6

p2
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Axiomatizing the Electrical Environment

% light(L) is true if L is a light
light(l1). light(l2).
% down(S) is true if switch S is down
down(s1). up(s2). up(s3).
% ok(D) is true if D is not broken
ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). =⇒

yes
?light(l6). =⇒ no
?up(X ). =⇒ up(s2), up(s3)
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Axiomatizing the Electrical Environment

% light(L) is true if L is a light
light(l1). light(l2).
% down(S) is true if switch S is down
down(s1). up(s2). up(s3).
% ok(D) is true if D is not broken
ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). =⇒ yes
?light(l6). =⇒

no
?up(X ). =⇒ up(s2), up(s3)
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Axiomatizing the Electrical Environment

% light(L) is true if L is a light
light(l1). light(l2).
% down(S) is true if switch S is down
down(s1). up(s2). up(s3).
% ok(D) is true if D is not broken
ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). =⇒ yes
?light(l6). =⇒ no
?up(X ). =⇒

up(s2), up(s3)

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 12.3, Page 13



Axiomatizing the Electrical Environment

% light(L) is true if L is a light
light(l1). light(l2).
% down(S) is true if switch S is down
down(s1). up(s2). up(s3).
% ok(D) is true if D is not broken
ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). =⇒ yes
?light(l6). =⇒ no
?up(X ). =⇒ up(s2), up(s3)
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connected to(X , Y ) is true if component X is connected to Y

connected to(w0, w1)← up(s2).

connected to(w0, w2)← down(s2).

connected to(w1, w3)← up(s1).

connected to(w2, w3)← down(s1).

connected to(w4, w3)← up(s3).

connected to(p1, w3).

?connected to(w0, W ). =⇒

W = w1

?connected to(w1, W ). =⇒ no
?connected to(Y , w3). =⇒ Y = w2, Y = w4, Y = p1

?connected to(X , W ). =⇒ X = w0, W = w1, . . .
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connected to(X , Y ) is true if component X is connected to Y

connected to(w0, w1)← up(s2).

connected to(w0, w2)← down(s2).

connected to(w1, w3)← up(s1).

connected to(w2, w3)← down(s1).

connected to(w4, w3)← up(s3).

connected to(p1, w3).

?connected to(w0, W ). =⇒ W = w1

?connected to(w1, W ). =⇒

no
?connected to(Y , w3). =⇒ Y = w2, Y = w4, Y = p1

?connected to(X , W ). =⇒ X = w0, W = w1, . . .
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connected to(X , Y ) is true if component X is connected to Y

connected to(w0, w1)← up(s2).

connected to(w0, w2)← down(s2).

connected to(w1, w3)← up(s1).

connected to(w2, w3)← down(s1).

connected to(w4, w3)← up(s3).

connected to(p1, w3).

?connected to(w0, W ). =⇒ W = w1

?connected to(w1, W ). =⇒ no
?connected to(Y , w3). =⇒

Y = w2, Y = w4, Y = p1

?connected to(X , W ). =⇒ X = w0, W = w1, . . .
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connected to(X , Y ) is true if component X is connected to Y

connected to(w0, w1)← up(s2).

connected to(w0, w2)← down(s2).

connected to(w1, w3)← up(s1).

connected to(w2, w3)← down(s1).

connected to(w4, w3)← up(s3).

connected to(p1, w3).
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?connected to(X , W ). =⇒

X = w0, W = w1, . . .
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connected to(X , Y ) is true if component X is connected to Y

connected to(w0, w1)← up(s2).

connected to(w0, w2)← down(s2).

connected to(w1, w3)← up(s1).

connected to(w2, w3)← down(s1).

connected to(w4, w3)← up(s3).

connected to(p1, w3).

?connected to(w0, W ). =⇒ W = w1

?connected to(w1, W ). =⇒ no
?connected to(Y , w3). =⇒ Y = w2, Y = w4, Y = p1

?connected to(X , W ). =⇒ X = w0, W = w1, . . .
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% lit(L) is true if the light L is lit

lit(L)← light(L) ∧ ok(L) ∧ live(L).

% live(C ) is true if there is power coming into C

live(Y )←
connected to(Y , Z ) ∧
live(Z ).

live(outside).

This is a recursive definition of live.
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Recursion and Mathematical Induction

above(X , Y )← on(X , Y ).

above(X , Y )← on(X , Z ) ∧ above(Z , Y ).

This can be seen as:

Recursive definition of above: prove above in terms of a base
case (on) or a simpler instance of itself; or

Way to prove above by mathematical induction: the base case
is when there are no blocks between X and Y , and if you can
prove above when there are n blocks between them, you can
prove it when there are n + 1 blocks.
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Limitations

Suppose you had a database using the relation:

enrolled(S , C )

which is true when student S is enrolled in course C .
You can’t define the relation:

empty course(C )

which is true when course C has no students enrolled in it.
This is because empty course(C ) doesn’t logically follow from a
set of enrolled relations. There are always models where someone
is enrolled in a course!
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Reasoning with Variables

An instance of an atom or a clause is obtained by uniformly
substituting terms for variables.

A substitution is a finite set of the form {V1/t1, . . . ,Vn/tn},
where each Vi is a distinct variable and each ti is a term.

The application of a substitution σ = {V1/t1, . . . ,Vn/tn} to
an atom or clause e, written eσ, is the instance of e with
every occurrence of Vi replaced by ti .
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Application Examples

The following are substitutions:

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

The following shows some applications:

p(A, b,C ,D)σ1 = p(A, b,C , e)

p(X ,Y ,Z , e)σ1 = p(A, b,C , e)

p(A, b,C ,D)σ2 = p(X , b,Z , e)

p(X ,Y ,Z , e)σ2 = p(X , b,Z , e)

p(A, b,C ,D)σ3 = p(V , b,W , e)

p(X ,Y ,Z , e)σ3 = p(V , b,W , e)
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Unifiers

Substitution σ is a unifier of e1 and e2 if e1σ = e2σ.

Substitution σ is a most general unifier (mgu) of e1 and e2 if
I σ is a unifier of e1 and e2; and
I if substitution σ′ also unifies e1 and e2, then eσ′ is an instance

of eσ for all atoms e.

If two atoms have a unifier, they have a most general unifier.
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Unification Example

p(A, b,C ,D) and p(X ,Y ,Z , e) have as unifiers:

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
σ4 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e}
σ5 = {X/A,Y /b,Z/A,C/A,D/e}
σ6 = {X/A,Y /b,Z/C ,D/e,W /a}

The first three are most general unifiers.
The following substitutions are not unifiers:

σ7 = {Y /b,D/e}
σ8 = {X/a,Y /b,Z/c,D/e}
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Bottom-up procedure

You can carry out the bottom-up procedure on the ground
instances of the clauses.

Soundness is a direct corollary of the ground soundness.

For completeness, we build a canonical minimal model. We
need a denotation for constants:
Herbrand interpretation: The domain is the set of constants

(we invent one if the KB or query doesn’t contain one). Each
constant denotes itself.
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Definite Resolution with Variables

A generalized answer clause is of the form

yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am,

where t1, . . . , tk are terms and a1, . . . , am are atoms.

The SLD resolution of this generalized answer clause on ai

with the clause

a← b1 ∧ . . . ∧ bp,

where ai and a have most general unifier θ, is

(yes(t1, . . . , tk)←
a1∧ . . .∧ai−1 ∧ b1∧ . . .∧bp ∧ ai+1∧ . . .∧am)θ.
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To solve query ?B with variables V1, . . . , Vk :

Set ac to generalized answer clause yes(V1, . . . ,Vk)← B;
While ac is not an answer do

Suppose ac is yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am

Select atom ai in the body of ac;
Choose clause a← b1 ∧ . . . ∧ bp in KB;
Rename all variables in a← b1 ∧ . . . ∧ bp;
Let θ be the most general unifier of ai and a.

Fail if they don’t unify;
Set ac to (yes(t1, . . . , tk)← a1 ∧ . . . ∧ ai−1∧

b1 ∧ . . . ∧ bp ∧ ai+1 ∧ . . . ∧ am)θ
end while.
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Example

live(Y )← connected to(Y ,Z ) ∧ live(Z ). live(outside).

connected to(w6,w5). connected to(w5, outside).

?live(A).

yes(A)← live(A).

yes(A)← connected to(A,Z1) ∧ live(Z1).

yes(w6)← live(w5).

yes(w6)← connected to(w5,Z2) ∧ live(Z2).

yes(w6)← live(outside).

yes(w6)← .
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Function Symbols

Often we want to refer to individuals in terms of components.

Examples: 4:55 p.m. English sentences. A classlist.

We extend the notion of term . So that a term can be

f (t1, . . . , tn) where f is a function symbol and the ti are
terms.

In an interpretation and with a variable assignment, term
f (t1, . . . , tn) denotes an individual in the domain.

One function symbol and one constant can refer to infinitely
many individuals.
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Lists

A list is an ordered sequence of elements.

Let’s use the constant nil to denote the empty list, and the

function cons(H,T ) to denote the list with first element H

and rest-of-list T . These are not built-in.

The list containing sue, kim and randy is

cons(sue, cons(kim, cons(randy , nil)))

append(X ,Y ,Z ) is true if list Z contains the elements of X
followed by the elements of Y

append(nil ,Z ,Z ).

append(cons(A,X ),Y , cons(A,Z ))← append(X ,Y ,Z ).
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