Objects and Relations

o Often features are made from relationships between objects
and functions of objects.

@ It is useful to view the world as consisting of objects and
relationships amongst the objects.

@ Reasoning in terms of objects and relationships can be simpler
than reasoning in terms of features, as you can express general
knowledge that covers all individuals.

@ Sometimes you may know some individual exists, but not
which one.

@ Sometimes there are infinitely many objects you want to refer
to (e.g., set of all integers, or the set of all stacks of blocks).
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Role of Semantics in Automated Reasoning

in(kim,r123). kim\</\\
part_of(r123,cs_building). ”23\5)5
in(X,Y) « 'r0‘23

part_ofiZ,Y) A cs_building \)D

in(X,2). in(s,e
part_of(s,e
* personl-\

!
$ in(kim,cs_building)
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Features of Automated Reasoning

@ The user can have meanings for symbols in their head.

@ The computer doesn’t need to know these meanings to derive
logical consequents.

@ The user can interpret any answers according to their
meaning.
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Representational Assumptions of Datalog

@ An agent's knowledge can be usefully described in terms of
individuals and relations among individuals.

@ An agent's knowledge base consists of definite and positive
statements.

@ The environment is static.
@ There are only a finite number of individuals of interest in the
domain. Each individual can be given a unique name.

— Datalog
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Syntax of Datalog

variable starts with upper-case letter.

constant starts with lower-case letter or is a sequence of
digits (numeral).

predicate symbol starts with lower-case letter.

@ term is either a variable or a constant.

atomic symbol (atom) is of the form p or p(t1,...,t,) where
p is a predicate symbol and t; are terms.
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Syntax of Datalog (cont)

e definite clause is either an atomic symbol (a fact) or of the

form:
2 = biA - Aby

head body

where a and b; are atomic symbols.

e query is of the form 7by A -+ A bp,.

@ knowledge base is a set of definite clauses.
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Example Knowledge Base

in(kim, R) «
teaches(kim, cs322) A
in(cs322, R).
grandfather(william, X) «—
father(william, Y') A\
parent(Y, X).
slithy(toves) «—
mimsy A borogroves N\

outgrabe(mome, Raths).
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Semantics: General Idea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:

@ what objects (individuals) are in the world

@ the correspondence between symbols in the computer and
objects & relations in world
» constants denote individuals
» predicate symbols denote relations
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Formal Semantics

An interpretation is a triple | = (D, ¢, 7), where

@ D, the domain, is a nonempty set. Elements of D are
individuals.

@ ¢ is a mapping that assigns to each constant an element of
D. Constant ¢ denotes individual ¢(c).

@ 7 is a mapping that assigns to each n-ary predicate symbol a
relation: a function from D" into { TRUE, FALSE}.
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Example Interpretation

Constants: phone, pencil, telephone.
Predicate Symbol: noisy (unary), left_of (binary).

o D= (<7, %},
o ¢(phone) = T, ¢(pencil) = N, ¢(telephone) = B.

o m(noisy): | (#<) Fase | (B) TrUE| (D) FALSE |
7r(left of ):
(=<,9<) FaLse | (°<,T) TRUE | (><,N) TRUE
(T,5<) FALSE | (B, T)  ratse | (T, N)  TRUE
(X, 5<)  FaLsE | (N, B)  ratse | (N, D) FaLsE

@©D. Poole and A. Mackworth 2008

Artificial Intelligence, Lecture 12.2, Page 3



Important points to note

@ The domain D can contain real objects. (e.g., a person, a
room, a course). D can't necessarily be stored in a computer.

e 7(p) specifies whether the relation denoted by the n-ary

predicate symbol p is true or false for each n-tuple of
individuals.

o If predicate symbol p has no arguments, then 7(p) is either
TRUE Or FALSE.

@©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 12.2, Page 4



Truth in an interpretation

A constant ¢ denotes in | the individual ¢(c).
Ground (variable-free) atom p(t1,...,t,) is

e true in interpretation | if w(p)(t],...,t,) = TRUE, where t;
denotes t/ in interpretation / and

o false in interpretation | if w(p)(t,...,t),) = FALSE.

Ground clause h < by A ... A by, is false in interpretation / if his

false in | and each b; is true in I, and is true in interpretation /
otherwise.
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Example Truths

In the interpretation given before:

noisy(phone) true
noisy (telephone) true
noisy(pencil) false
left _of (phone, pencil ) true
left _of (phone, telephone) false
noisy(pencil) < left_of (phone, telephone) true
noisy(pencil) < left_of (phone, pencil) false

noisy(phone) < noisy(telephone) A noisy(pencil)  true
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Models and logical consequences (recall)

@ A knowledge base, KB, is true in interpretation / if and only if
every clause in KB is true in /.

@ A model of a set of clauses is an interpretation in which all
the clauses are true.

e If KB is a set of clauses and g is a conjunction of atoms, g is
a logical consequence of KB, written KB = g, if g is true
in every model of KB.

e That is, KB |= g if there is no interpretation in which KB is
true and g is false.
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User’'s view of Semantics

1. Choose a task domain: intended interpretation.
2. Associate constants with individuals you want to name.

3. For each relation you want to represent, associate a predicate
symbol in the language.

4. Tell the system clauses that are true in the intended
interpretation: axiomatizing the domain.

5. Ask questions about the intended interpretation.

6. If KB |= g, then g must be true in the intended interpretation.
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Computer's view of semantics

@ The computer doesn't have access to the intended
interpretation.

@ All it knows is the knowledge base.

@ The computer can determine if a formula is a logical
consequence of KB.

e If KB |= g then g must be true in the intended interpretation.

e If KB [~ g then there is a model of KB in which g is false.
This could be the intended interpretation.
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Role of Semantics in an RRS

in(kim,r123). kim\</\\
part_of(r123,cs_building). ”23\5)5
in(X,Y) « 'r0‘23

part_ofiZ,Y) A cs_building \)D

in(X,2). in(s,e
part_of(s,e
* personl-\

!
$ in(kim,cs_building)
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Variables

@ Variables are universally quantified in the scope of a clause.

@ A variable assignment is a function from variables into the
domain.

@ Given an interpretation and a variable assignment,
each term denotes an individual and
each clause is either true or false.

@ A clause containing variables is true in an interpretation if it is
true for all variable assignments.
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Queries and Answers

A query is a way to ask if a body is a logical consequence of the
knowledge base:

by A\ - A bp.

An answer is either

@ an instance of the query that is a logical consequence of the
knowledge base KB, or

@ no if no instance is a logical consequence of KB.
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Example Queries

in(kim, r123).
KB = { part_of (r123, cs_building).
in(X,Y) < part_of (Z,Y) A in(X, Z).

Query Answer
?part_of (r123, B).
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Example Queries

in(kim, r123).
KB = { part_of (r123, cs_building).
in(X,Y) < part_of (Z,Y) A in(X, Z).

Query Answer
?part_of (r123,B). part_of (r123, cs_building)
?part_of (r023, cs_building).
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Example Queries

in(kim, r123).
KB = { part_of (r123, cs_building).
in(X,Y) < part_of (Z,Y) A in(X, Z).

Query Answer

?part_of (r123,B). part_of (r123, cs_building)
?part_of (r023, cs_building). no

?in(kim, r023).
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Example Queries

in(kim, r123).
KB = { part_of (r123, cs_building).
in(X,Y) < part_of (Z,Y) A in(X, Z).

Query Answer

?part_of (r123,B). part_of (r123, cs_building)
?part_of (r023, cs_building). no

?in(kim, r023). no

?in(kim, B).
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Example Queries

in(kim, r123).
KB = { part_of (r123, cs_building).
in(X,Y) < part_of (Z,Y) A in(X, Z).

Query Answer
?part_of (r123,B). part_of (r123, cs_building)
?part_of (r023, cs_building). no
?in(kim, r023). no
?in(kim, B). in(kim, r123)
in(kim, cs_building)
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Logical Consequence

Atom g is a logical consequence of KB if and only if:
@ gisafactin KB, or

@ there is a rule
g«— b1 A .. .N\Dbg

in KB such that each b; is a logical consequence of KB.
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Debugging false conclusions

To debug answer g that is false in the intended interpretation:
o If g is a fact in KB, this fact is wrong.

@ Otherwise, suppose g was proved using the rule:

g«— by A ...Abg

where each b; is a logical consequence of KB.
» If each b; is true in the intended interpretation, this clause is
false in the intended interpretation.
» If some b; is false in the intended interpretation, debug b;.
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Electrical Environment

o) outside power
51 w5
Wl —@7 circuit breaker
52 W2 cb2
w3
3 ‘@_017
w0 switch
T~
w6
. wo-way
P2 @ switch
1] —@
Pl @ light
I} —
2 power
( ) outlet
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Axiomatizing the Electrical Environment

% light(L) is true if L is a light

light(h).  light(h).

% down(S) is true if switch S is down
down(sy). up(s2).  up(ss).

% ok(D) is true if D is not broken
ok(h). ok(h).  ok(cb1). ok(chy).

Night(h). —
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Axiomatizing the Electrical Environment

% light(L) is true if L is a light

light(h).  light(h).

% down(S) is true if switch S is down
down(sy). up(s2).  up(ss).

% ok(D) is true if D is not broken
ok(h). ok(h).  ok(cb1). ok(chy).

?light(h). = yes
2ight(ls). —
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Axiomatizing the Electrical Environment

% light(L) is true if L is a light

light(h).  light(h).

% down(S) is true if switch S is down
down(sy). up(s2).  up(ss).

% ok(D) is true if D is not broken
ok(h). ok(h).  ok(cb1). ok(chy).

?light(h). = yes
?light(ls). = no
tup(X). =
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Axiomatizing the Electrical Environment

% light(L) is true if L is a light

light(h).  light(h).

% down(S) is true if switch S is down
down(sy). up(s2).  up(ss).

% ok(D) is true if D is not broken
ok(h). ok(h).  ok(cb1). ok(chy).

?light(h). = yes
?light(ls). = no
tup(X). = up(s2), up(ss)
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connected_to(X, Y) is true if component X is connected to Y

connected _to(wp, wi1) < up(sz

connected _to(wy, wa) «— down

)
(
) < up(s1)
) (
)

«— down 51).
connected _to(wa, wz) < up(s3).

( .
( 52).
connected _to(wy, w3 .
connected _to(wa, w3
(
(

connected _to(p1, w3).

?connected_to(wp, W). —
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connected_to(X, Y) is true if component X is connected to Y

connected _to(wp, w1) < up(s2).
connected_to(wp, wa) «— down(sy).
) < up(s1).
) < down(sy).
connected _to(wa, wz) < up(s3).

(
(
connected _to(wy, w3
connected _to(wa, w3
(
(

connected _to(p1, w3).

?connected_to(wp, W). — W =w
?connected_to(wy, W). =
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connected_to(X, Y) is true if component X is connected to Y

connected _to(wp, w1) < up(s2).
connected _to(wy, wa) «— down(sp).
) — up(s1)-
) (

)-

(
(
connected _to(wi, w3
connected _to(ws, w3) < down(sy).
connected _to(wa, ws) < up(s3

(

connected _to(p1, w3).

?connected_to(wp, W). — W =w
?connected_to(wy, W). = no
?connected_to(Y,w3). —
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connected_to(X, Y) is true if component X is connected to Y

connected _to(wp, w1) < up(s2).
connected_to(wp, wa) «— down(sy).
) < up(s1)-
) (

)-

(
(
connected _to(wi, w3
connected _to(ws, w3) < down(sy).
connected _to(wa, ws) < up(s3

(

connected _to(p1, w3).

W:W1
no
Y=w, Y=w Y=p

?connected_to(wy, W).
?connected _to(wy, W).
?connected_to( Y, ws).
?connected_to( X, W).

HH
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connected_to(X, Y) is true if component X is connected to Y

connected_to(wp, wi) «— up(sy).
connected_to(wp, wa) «— down(sy).
connected _to(wi, ws) < up(s1).
connected _to(ws, w3) < down(sy).
connected _to(wa, wz) < up(s3).

(

connected _to(p1, w3).

W:W1

no

Y:W2,Y:W4, Y:pl
X:W(),W:WL...

?connected _to(wy, W).
?connected _to(wy, W).
?connected_to( Y, ws).
?connected_to( X, W).

HH
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% lit(L) is true if the light L is lit
lit(L) — light(L) A ok(L) A live(L).
% live(C) is true if there is power coming into C

live(Y) «—
connected_to(Y, Z) A
live(Z).

live(outside).

This is a recursive definition of live.
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Recursion and Mathematical Induction

above(X,Y) «— on(X,Y).
above(X,Y) < on(X, Z) A above(Z,Y).

This can be seen as:

@ Recursive definition of above: prove above in terms of a base
case (on) or a simpler instance of itself; or

@ Way to prove above by mathematical induction: the base case
is when there are no blocks between X and Y, and if you can
prove above when there are n blocks between them, you can
prove it when there are n 4+ 1 blocks.
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Suppose you had a database using the relation:
enrolled(S, C)

which is true when student S is enrolled in course C.
You can't define the relation:

empty _course(C)

which is true when course C has no students enrolled in it.

This is because empty_course(C) doesn't logically follow from a
set of enrolled relations. There are always models where someone
is enrolled in a course!
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Reasoning with Variables

@ An instance of an atom or a clause is obtained by uniformly
substituting terms for variables.

@ A substitution is a finite set of the form {V;/t1,..., Va/ta},
where each V; is a distinct variable and each t; is a term.

@ The application of a substitution o = {Vi/t1,..., V,/ty} to
an atom or clause e, written ec, is the instance of e with
every occurrence of V; replaced by t;.
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Application Examples

The following are substitutions:

e 01 ={X/AY/b,Z/C,D/e}

e 0, ={A/X,Y/b,C/Z,D/e}

e o3 ={A/V,X/V,Y/b,C/W,Z/W,D/e}
The following shows some applications:
e p(A,b,C,D)o1 = p(A,b,C,e)

e p(X,Y,Z,e)o1 =p(A,b,C,e)
p(A, b, C,D)oy = p(X, b, Z, e)
p(X,Y,Z, e)oa =p(X,b,Z,¢€)
p(A,b,C,D)os = p(V,b, W, e)
p(X,Y,Z,e)oz =p(V,b,W,e)
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@ Substitution o is a unifier of e; and & if ej0 = ey0.

@ Substitution o is a most general unifier (mgu) of e; and e if

» o is a unifier of ; and &; and
» if substitution ¢’ also unifies e; and e, then ec’ is an instance
of eo for all atoms e.

@ If two atoms have a unifier, they have a most general unifier.
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Unification Example

p(A, b, C,D) and p(X, Y, Z,e) have as unifiers:
e 01 ={X/AY/b,Z/C,D/e}
e o, ={A/X,Y/b,C/Z,D/e}
o3 ={A/V,X/V,Y/b,C/W,Z/W,D/e}
oa={A/a,X/a,Y/b,C/c,Z/c,D/e}
os ={X/A,Y/b,Z/A C/A D/e}
o6 ={X/A,Y/b,Z/C,D/e, W /a}
The first three are most general unifiers.
The following substitutions are not unifiers:
e o;={Y/b,D/e}
e o ={X/a,Y/b,Z/c,D/e}
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Bottom-up procedure

@ You can carry out the bottom-up procedure on the ground
instances of the clauses.

@ Soundness is a direct corollary of the ground soundness.

@ For completeness, we build a canonical minimal model. We
need a denotation for constants:
Herbrand interpretation: The domain is the set of constants
(we invent one if the KB or query doesn’t contain one). Each
constant denotes itself.
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Definite Resolution with Variables

@ A generalized answer clause is of the form
yes(ti, ..., tk) —airNaxA...Aam,
where ty, ..., t, are terms and ay,...,a, are atoms.

@ The SLD resolution of this generalized answer clause on a;
with the clause

a< by A...N\bp,
where a; and a have most general unifier 0, is
(ves(ty, ..., tx) «—
aiA...ANaj_1 AbiA .. Abp A ajp1A ... ANam)b.
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To solve query 7B with variables Vi, ..., V,:

Set ac to generalized answer clause yes(V4,..., Vi) < B;
While ac is not an answer do
Suppose ac is yes(ty,...,tx) «—arAaxA...ANap

Select atom a; in the body of ac;

Choose clause a < by A ... A by in KB;

Rename all variables in a < by A ... A bp;

Let 0 be the most general unifier of a; and a.
Fail if they don't unify;

Set ac to (yes(t1,...,tk) < a1 A ... Aaj—1A

b1/\.../\bp/\a;+1/\.../\am)0
end while.
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live(Y') < connected_to(Y,Z) A live(Z). live(outside).
connected _to(we, ws). connected_to(ws, outside).
?live(A).

yes(A) « live(A).

yes(A) « connected_to(A, Z1) A live(Z1).

yes(we) «— live(ws).

)
yes(wg) < connected _to(ws, Z3) A live(Za).
yes(wg) < live(outside).

) <

ves(we
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Function Symbols

@ Often we want to refer to individuals in terms of components.
@ Examples: 4:55 p.m. English sentences. A classlist.

@ We extend the notion of term . So that a term can be
f(t1,...,t,) where f is a function symbol and the t; are
terms.

@ In an interpretation and with a variable assignment, term
f(t1,...,ts) denotes an individual in the domain.

@ One function symbol and one constant can refer to infinitely
many individuals.
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@ A list is an ordered sequence of elements.

@ Let's use the constant nil to denote the empty list, and the
function cons(H, T) to denote the list with first element H

and rest-of-list T. These are not built-in.

@ The list containing sue, kim and randy is
cons(sue, cons(kim, cons(randy, nil)))

e append(X,Y,Z) is true if list Z contains the elements of X
followed by the elements of Y

append(nil, Z, Z).
append(cons(A, X), Y, cons(A, Z))«— append(X, Y, Z).
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