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Syntax Analysis

syntax analysis
covers
lecture
This.
Syntax error!

e Words (tokens) need to appear in the right order to form
correct sentences (programs)

! o
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Syntax Analysis

syntax analysis This analysis
covers covers
lecture lecture
This. syntax.

Syntax error!

e Words (tokens) need to appear in the right order to form
correct sentences (programs) (not necessarily meaningfull).

Mraditional example (Noam Chomsky 1957): Colorless green ideas sleep furiously.. _
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Syntax Analysis

syntax analysis This analysis
covers covers
lecture lecture
This. syntax.
Syntax error! (semantic error)

Words (tokens) need to appear in the right order to form
correct sentences (programs) (not necessarily meaningfull).

e Syntax analyser, commonly called parser,

e ...analyses token sequence to build program structure.

Essential tool and theory used here: Context-free languages.

Mraditional example (Noam Chomsky 1957): Colorless green ideas sleep furiously.. _
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Contents and Goals of this Part

@ Context-Free Grammars and Languages

@® Top-Down Parsing, LL(1)
Recursive Parsing Functions (Recursive-descent)
First- and Follow-Sets
Look-Ahead Sets and LL(1) Parsing

© Bottom-Up Parsing, SLR
Parser Generator Yacc
Shift-Reduce Parsing

@ Precedence and Associativity
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Contents and Goals of this Part

@ Context-Free Grammars and Languages

@® Top-Down Parsing, LL(1)
Recursive Parsing Functions (Recursive-descent)
First- and Follow-Sets
Look-Ahead Sets and LL(1) Parsing

© Bottom-Up Parsing, SLR
Parser Generator Yacc
Shift-Reduce Parsing

@ Precedence and Associativity
Goals:

e Use suitable context-free grammars to describe syntactic
structure (especially for programming languages);

e Use parser generators and explain their inner workings;
e Know and use recursive-descent (top-down) parsing;

e Understand concepts and limitations of context-free parsing.
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Context-Free Grammars

Definition (Context-Free Grammar)

A context-free grammar is given by

e a set of terminals X (the alphabet of the resulting language),
e a set of nonterminals N,
e a start symbol S € N

e a set P of productions X — a with a single nonterminal
X € N on the left and a (possibly empty) right-hand side
a € (XU N)* of terminals and nonterminals.

G:S — aSB
S = ¢
S - B
B — Bb
B — b
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mmars

Definition (Context-Free Grammar)

A context-free grammar is given by

e a set of terminals X (the alphabet of the resulting language),

e a set of nonterminals N,

e a start symbol S € N

e a set P of productions X — a with a single nonterminal
X € N on the left and a (possibly empty) right-hand side
a € (XU N)* of terminals and nonterminals.

G:S — aSB
S = ¢
S - B
B — Bb
B — b

languages over their terminal alphabet .

e Each nonterminal describes a set of words.

e Nonterminals recursively refer to each other.

(cannot do that with regular expressions)

o Context-free grammars describe (context-free)
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Definition (Context-Free Grammar)

A context-free grammar is given by

e a set of terminals X (the alphabet of the resulting language),

e a set of nonterminals N,

e a start symbol S € N

e a set P of productions X — a with a single nonterminal
X € N on the left and a (possibly empty) right-hand side
a € (XU N)* of terminals and nonterminals.

G:S — aSB
S — ¢
S - B
B — Bbl|b

(alternative notation)

languages over their terminal alphabet .

e Each nonterminal describes a set of words.

e Nonterminals recursively refer to each other.

(cannot do that with regular expressions)

o Context-free grammars describe (context-free)

Slide 5/45 — J.Berthold — Compilers: Syntax Analysis — 11/2013




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example, Derivation of Words

Intuitive: Nonterminals describing sets

G:S — aSB(1)
S - ¢ (20 S = {a-x-y|xeS,yeBtu{e}u B
-
S - B (3 (1) @ 0
B — Bb (4) B = {x-b|xeB}u{b}
—_— ~~
B — b (5 () (5)
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Example, Derivation of Words

Intuitive: Nonterminals describing sets

G:S — aSB(1)
S - ¢ (20 S = {a-x-y|xeS,yeBtu{e}u B
-
S - B (3) (1) 2 ©
B — Bb (4) B = {x-b|xeB}U{b}
—_— =~
B — b (5) (4) (5)

e Starting from the start symbol S,...
e words of the language can be derived. . .
e by successively replacing nonterminals with right-hand sides.

S aSB > 2aSBB @
Y
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Example, Derivation of Words

Intuitive: Nonterminals describing sets

G:S — aSB(1)
S - ¢ (20 S = {a-x-y|xeS,yeBtu{e}u B
-
S - B (3) (1) 2 ©
B — Bb (4) B = {x-b|xeB}U{b}
—_— =~
B — b (5) (4) (5)

e Starting from the start symbol S,...
e words of the language can be derived. . .
e by successively replacing nonterminals with right-hand sides.

S aSB > 2aSBB = aaSbB @
Y
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Example, Derivation of Words

Intuitive: Nonterminals describing sets

G:S — aSB(1)
S - ¢ (20 S = {a-x-y|xeS,yeBtu{e}u B
-
S - B (3) (1) 2 ©
B — Bb (4) B = {x-b|xeB}U{b}
—_— =~
B — b (5) (4) (5)

e Starting from the start symbol S,...
e words of the language can be derived. . .
e by successively replacing nonterminals with right-hand sides.

s aSB =Y aaSBB 2 aaSbB =Y aaaSBbB @
o
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Example, Derivation of Words

Intuitive: Nonterminals describing sets

G:S — aSB(1)
S - ¢ (20 S = {a-x-y|xeS,yeBtu{e}u B
-
S - B (3) (1) 2 ©
B — Bb (4) B = {x-b|xeB}U{b}
—_— =~
B — b (5) (4) (5)

e Starting from the start symbol S,...
e words of the language can be derived. . .
e by successively replacing nonterminals with right-hand sides.

S 2 aSB > 2aSBB 2 aaSbB = aaaSBbB
é aaa_BbB .@
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Example, Derivation of Words

Intuitive: Nonterminals describing sets

G:S — aSB(1)
S - ¢ (20 S = {a-x-y|xeS,yeBtu{e}u B
-
S - B (3) (1) 2 ©
B — Bb (4) B = {x-b|xeB}U{b}
—_— =~
B — b (5) (4) (5)

e Starting from the start symbol S,...
e words of the language can be derived. . .
e by successively replacing nonterminals with right-hand sides.

S 2 aSB 2 2aSBB 2 aaShB = aaaSBbB
é aaa_BbB é aaaBbbB
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Example, Derivation of Words

Intuitive: Nonterminals describing sets

G:S — aSB(1)
S - ¢ (20 S = {a-x-y|xeS,yeBtu{e}u B
-
S - B (3) (1) 2 ©
B — Bb (4) B = {x-b|xeB}U{b}
—_— =~
B — b (5) (4) (5)

e Starting from the start symbol S,...
e words of the language can be derived. . .
e by successively replacing nonterminals with right-hand sides.

S 2 aSB > 2aSBB 2 aaSbB = aaaSBbB @

2 3aa BbB 2 aaaBbbB = aaaBbbb = aaabbbb °
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Derivation Relation

Definition (Derivation =)

Let G = (X, N,S, P) be a grammar.
The derivation relation = on (X U N)* is defined as follows:

e For an X € N and a production (X — ) € P of the
grammar, a; Xay = afas for all ag, an € (XU N)*.

e Describes one derivation step using one of the productions.
e Can indicate used production by a number (:k>)

e Can indicate left-most (or right-most) derivation (=k>/, ér)
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Derivation Relation

Definition (Derivation =)

Let G = (X, N,S, P) be a grammar.
The derivation relation = on (X U N)* is defined as follows:

e For an X € N and a production (X — ) € P of the
grammar, a; Xay = afas for all ag, an € (XU N)*.

e Describes one derivation step using one of the productions.
e Can indicate used production by a number (:k>)

e Can indicate left-most (or right-most) derivation (=k>/, =k>r)
G:S — aSB(1)

S =2 ¢ (D 51 .61 ,.5882 a2 BB
S - B (3
B — Bb (4)
B — b (5
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Derivation Relation

Definition (Derivation =)
Let G = (X, N,S, P) be a grammar.
The derivation relation = on (X U N)* is defined as follows:

e For an X € N and a production (X — ) € P of the
grammar, a; Xay = afas for all ag, an € (XU N)*.

e Describes one derivation step using one of the productions.
e Can indicate used production by a number (:k>)

e Can indicate left-most (or right-most) derivation (=k>/, =k>r)
G:S — aSB(1)

; - 65 (:2)’) S22 aSB 2 2aSBB 2 aa BB
- (3) 2 2aBbB = aabbB = aabbb

B — Bb (4)

B — b (5)
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Extended Derivation Relation (Transitive Closure)

Definition (Transitive Derivation Relation =*)

Let G = (X, N, S, P) be a grammar and = its derivation relation.
The transitive derivation relation of G is defined as:
o ="« forall e (XUN)* (derived in O steps).
e For a, € (XU N)*, a =" (3 if there exists a v € (X U N)*
such that a = « and 7 =* 3 (derived in at least one step).

More generally, this is known as the transitive closure of a relation.
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Extended Derivation Relation (Transitive Closure)

Definition (Transitive Derivation Relation =*)

Let G = (X, N, S, P) be a grammar and = its derivation relation.
The transitive derivation relation of G is defined as:
o ="« forall e (XUN)* (derived in O steps).
o For a, 8 € (XUN)*, a="* (3 if there exists a vy € (X U N)*
such that a = « and 7 =* 3 (derived in at least one step).

More generally, this is known as the transitive closure of a relation.
In our previous examples, we saw S =* aaabbbb and S =" aabbb.
That means, both words are in the language of G.

Definition (Language of a Grammar)

Let G = (X, N, S, P) be a grammar and = its derivation relation.
The language of the grammar is L(G) = {w € £* | S =* w}.
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Syntax Tree and Directed Derivation

G:S — aSB(1) /S‘\
S - ¢ (2) &3 B
S - B (3) a/S‘\B\b
B — Bb (4) IPZN
B b (5 o P

e Syntax trees describe the derivation independent of the
direction.
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Syntax Tree and Directed Derivation

G:S — aSB(1) /SP\
S - ¢ (2) &3 B
S - B (3) a/SNB\b
B — Bb (4) PN
B > b (5) - is b

e Syntax trees describe the derivation independent of the
direction.

e Left-most derivation: depth-first left-to-right tree traversal.
e 53 aSB -2 2aSBB 2 aa BB 3 aaBbB 2 aabbB = aabbb
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Syntax Tree and Directed Derivation

G:S — aSB(1) /SP\ /?7\
) a/s B\ a/s\ B
S~ B (3 a S‘\B b a _i, B |
B — Bb (4) VN * T
B b (5  F° WP

e Syntax trees describe the derivation independent of the
direction.

e Left-most derivation: depth-first left-to-right tree traversal.

o S aSB > 2aSBB 2 aa BB = 2aBbB = aabbB = aabbb

Nevertheless: S =* aabbb can be derived in two ways.

e S aSB Y aaSBB 2 aaBBB 2 aabBB = aabbB = aabbb @

The grammar G is said to be ambiguous.
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Avoiding Ambiguity (Changed Grammar)

G:S — aSB Your
S o« grammar
S - B
B — Bb here
B — b

Modify the grammar to make it non-ambiguous. (describing the
same language), give a syntax tree for aabbb.

e |dea: generate extra bs separately
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Avoiding Ambiguity (Changed Grammar)

G: aSB

€
B
Bb
b

WW K nn
L1414

Modify the grammar to make it non-ambiguous. (describing the

G :

T W > >0

— AB (1)
— aAb(2)
— ¢ (3)
—  bB (4)
— ¢ (5)

same language), give a syntax tree for aabbb.

e |dea: generate extra bs separately by new start production

e Avoiding left-recursion (explained later)
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Avoiding Ambiguity (Changed Grammar)

G:S — aSB G:S — AB(1) A/l\
S o e A = aAb(2) /DL N
S - B A - 32 Ab b B

P
B — Bb B—>bB(4)aA3b £
B — b B —» < (5 |

Modify the grammar to make it non-ambiguous. (describing the
same language), give a syntax tree for aabbb.
e |dea: generate extra bs separately by new start production
e Avoiding left-recursion (explained later)
e Left-most derivation: (1 2 2 3 4 5)
S, AB 3, aAbB % aaAbbB 2 aa bbB 2| aabbbB 2 aabbb_ &
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Parsing
Token sequence e Producing a syntax tree from a token
L sequence.

Syntax analysis .
’ y y ‘ o Representation of the tree: left-most

v or right-most derivation
Syntax tree
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Parsing

Token sequence e Producing a syntax tree from a token

L sequence.
’ Syntax analysis‘

7

Syntax tree

o Representation of the tree: left-most
or right-most derivation

Two approaches

e Top-Down Parsing: Builds syntax tree from the root.
Builds a left-most derivation sequence

e Bottom-Up Parsing: Builds syntax tree from the leaves.
Builds a reversed right-most derivation sequence

e Both: use stack to keep track of derivation.
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Idea of Top-Down Parsing

S aabbb
A/\B e Recursive functions modelling the

VA NN productions ("recursive-descent")

fun parseS () = print "parsinguS:prodyl";
(* one production S -> A B *)
‘ parseA (); parseB(); match EOF
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Idea of Top-Down Parsing
S pabbb

TN
A

e Recursive functions modelling the
productions ("recursive-descent")

fun parseS () = print "parsinguS:prodyl";
(* one production S -> A B *)
parseA (); parseB(); match EOF

and parseA () =
(¥ choose A -> a A b or A -> <epsilon> *)
if should_use_production_2
then print "parsing A:prod. 2";
match #"a"; parseA(); match #"b"
else print "parsing A:prod. 3";()
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Idea of Top-Down Parsing

/S aabbb

A e Recursive functions modelling the
AN productions ("recursive-descent")
a A

fun parseS () = print "parsinguS:prodyl";
(* one production S -> A B *)
parseA (); parseB(); match EOF

and parseA () =
(¥ choose A -> a A b or A -> <epsilon> *)
if should_use_production_2
then print "parsing A:prod. 2";
match #"a"; parseA(); match #"b"
else print "parsing A:prod. 3";()
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Idea of Top-Down Parsing

/S aapbb
A e Recursive functions modelling the
AN productions ("recursive-descent")
a
/'?\ fun parseS () = print "parsinguS:prodyl";
a A (* one production S -> A B *)

parseA (); parseB(); match EOF

and parseA () =
(¥ choose A -> a A b or A -> <epsilon> *)
if should_use_production_2
then print "parsing A:prod. 2";
match #"a"; parseA(); match #"b"
else print "parsing A:prod. 3";()
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Idea of Top-Down Parsing
S aabpb

N
A

e Recursive functions modelling the

AN productions ("recursive-descent")

a A

/l\ fun parseS () = print "parsing,S:prodyl";
ducti S -> A B

a A b (x one production *)

| parseA (); parseB(); match EOF
€ and parseA () =
(¥ choose A -> a A b or A -> <epsilon> *)
if should_use_production_2
then print "parsing A:prod. 2";
match #"a"; parseA(); match #"b"
else print "parsing A:prod. 3";()

Slide 12/45 — J.Berthold — Compilers: Syntax Analysis — 11/2013




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Idea of Top-Down Parsing

S aabbp
A/\B e Recursive functions modelling the
AN productions ("recursive-descent")
N L ST/ sl S
a '? b parseA (); parseB(); match EOF
€

and parseA () =
(¥ choose A -> a A b or A -> <epsilon> *)
if should_use_production_2
then print "parsing A:prod. 2";
match #"a"; parseA(); match #"b"
else print "parsing A:prod. 3";()

and parseB () =
(¥ choose B -> b B or B -> <epsilon> x*)
if should_use_production_4
then print "parsing B:prod. 4";
match #"b"; parseB () @
else print "parsing._.B:prod.._,5";().
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Idea of Top-Down Parsing

a Ab b B
VAN |
a Ab €
|
€

How can we
decide which
production
to use?

DEPARTMENT OF COMPUTER SCIENCE

e Recursive functions modelling the

productions

fun
(*

par

parseS () =

("recursive-descent")

print "parsing,S:prodyl";
one production S -> A B *)
seA (); parseB(); match EOF

and parseA () =

(* choose
if should_
then

else

and parseB () =

A ->a A Db or A -> <epsilon> x*)
use_production_2

print "parsing A:prod. 2";
match #"a"; parseA(); match #"b"
print "parsing A:prod. 3";()

(¥ choose B -> b B or B -> <epsilon> x*)

if should_
then

else

use_production_4

print "parsing B:prod. 4";
match #"b"; parseB () @
print "parsinguB:prod.u5"; ()
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Top-Down Parsing (LL(1) Parsing)

Token sequence e Producing a left-most derivation from
S a token sequence.

ntax analysis .
’ y y ‘ e Uses a stack (maybe the function call

stack) to keep track of derivation.
Syntax tree

e Called predictive parsing: needs to “guess” used productions.

Slide 13/45 — J.Berthold — Compilers: Syntax Analysis — 11/2013



UNIVERSITY OF COPENHAGEN DEPARTMENT

OF COMPUTER SCIENCE

Top-Down Parsing (LL(1) Parsing)

Token sequence e Producing a left-most derivation from
S a token sequence.

ntax analysis .
’ y y ‘ e Uses a stack (maybe the function call

stack) to keep track of derivation.
Syntax tree

e Called predictive parsing: needs to “guess” used productions.
e Information to choose the right production (look-ahead):

e For each right-hand side: What input token can come first?
e Special attention to empty right-hand sides. What can follow?
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Top-Down Parsing (LL(1) Parsing)

Token sequence e Producing a left-most derivation from
2 : a token sequence.

’Syntax anaIy5|s‘ e Uses a stack (maybe the function call
v stack) to keep track of derivation.

Syntax tree

e Called predictive parsing: needs to “guess” used productions.
e Information to choose the right production (look-ahead):

e For each right-hand side: What input token can come first?
e Special attention to empty right-hand sides. What can follow?

e A production A — « is chosen
o if look-ahead ¢ and oo =* ¢ (can start with ¢).
e or if look-ahead ¢ , @ =" ¢, and ¢ can follow A. @
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FIRST Sets and Property NULLABLE

Definition (FIRST set and NULLABLE)

Let G = (X, N, S, P) a grammar and = its derivation relation.
For all sequences of grammar symbols o € (X U N)*, define
e FIrsT(a) = {c € T | Igezuny- : @ =" cf}
(all terminals at the start of what can be derived from «)

true |, ifa="¢

e NULLABLE(«) :{ false , otherwise
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FIRST Sets and Property NULLABLE

Definition (FIRST set and NULLABLE)

Let G = (X, N, S, P) a grammar and = its derivation relation.
For all sequences of grammar symbols o € (X U N)*, define

e FIrsT(a) = {c € T | Igezuny- : @ =" cf}
(all terminals at the start of what can be derived from «)

true |, ifa="¢

e NULLABLE(«) :{ false , otherwise

Computing NULLABLE and FIRST for right-hand sides:

e Set equations recursively use results for nonterminals.
e Smallest solution found by computing a smallest fixed-point.

e Solved simultaneously for all right-hand sides of the
productions.
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Computing NUL

LABLE by Set Equations

NULLABLE(g)
NULLABLE(a) =
NULLABLE(af)
NULLABLE(A)

true

false for a € &

NULLABLE(a) A NULLABLE(S3) for o, 5 € (X U N)*
NULLABLE(a1) V ...V NULLABLE(a,),

using all productions for A, A — «; (i € {1..n})
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Computing NULLABLE by Set Equations

NULLABLE(g)
NULLABLE(a) =
NULLABLE(af)
NULLABLE(A)

true

false for a € &

NULLABLE(a) A NULLABLE(S3) for o, 5 € (X U N)*
NULLABLE(a1) V ...V NULLABLE(a,),

using all productions for A, A — «; (i € {1..n})

e Equations for nonterminals of the grammar:

G':S — AB
A — aAb|e
B — bB|e

NULLABLE(S) = NULLABLE(AB)
NULLABLE(A) = NULLABLE(aAb) V NULLABLE(¢)
NULLABLE(B) = NULLABLE(bB) V NULLABLE(¢)
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Computing NULLABLE by Set Equations

NULLABLE(g) = true
NULLABLE(a) = false forae X
NULLABLE(af) = NULLABLE(«) A NULLABLE(f) for o, 8 € (X U N)~
NULLABLE(A) = NULLABLE(1)V ...V NULLABLE(an),
using all productions for A, A — «; (i € {1..n})

e Equations for nonterminals of the grammar:

G':S — AB NULLABLE(S) = NULLABLE(AB)
A — aAb|e NULLABLE(A) = NULLABLE(aAb) V NULLABLE(¢)
B — bBjle NULLABLE(B) = NULLABLE(bB) V NULLABLE(¢)

e Equations for the right-hand side

NUuLLABLE(AB) = NuULLABLE(A) A NULLABLE(B)
NULLABLE(aAb) = NULLABLE(a) A NULLABLE(A) A NULLABLE(b)
NuLLABLE(bB) = NULLABLE(b) A NULLABLE(B)

NULLABLE(e) = true

Compute smallest solution of system, starting by false for all.
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Computing NULLABLE by Set Equations

NULLABLE(g) = true
NULLABLE(a) = false forae X
NULLABLE(af) = NULLABLE(«) A NULLABLE(f) for o, 8 € (X U N)~
NULLABLE(A) = NULLABLE(1)V ...V NULLABLE(an),
using all productions for A, A — «; (i € {1..n})

e Equations for nonterminals of the grammar:

G':S — AB NULLABLE(S) = NULLABLE(AB)
A — aAb|e NULLABLE(A) = NULLABLE(aAb) V NULLABLE(¢)
B — bBjle NULLABLE(B) = NULLABLE(bB) V NULLABLE(¢)

e Equations for the right-hand side

NUuLLABLE(AB) = NuULLABLE(A) A NULLABLE(B)

NuLLABLE(aAb) = NULLABLE(a) A NULLABLE(A) A NULLABLE(b) = false
NuLLABLE(bB) = NULLABLE(b) A NULLABLE(B) = false

NULLABLE(e) = true

Compute smallest solution of system, starting by false for all.
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Computing NULLABLE by Set Equations

NULLABLE(g)
NULLABLE(a) =
NULLABLE(af)
NULLABLE(A)

true
false for a € ¥

NULLABLE(a) A NULLABLE(S3) for o, 5 € (X U N)*
NULLABLE(a1) V ...V NULLABLE(a,),
using all productions for A, A — «; (i € {1..n})

e Equations for nonterminals of the grammar:

G':S — AB
A — aAb|e
B — bB|e

e Equations for the

NULLABLE(AB)

NULLABLE(aAb)
NULLABLE(bB)

NULLABLE(g)

NULLABLE(S)
NULLABLE(A)
NULLABLE(B)

true

right-hand side

NULLABLE(A) A NULLABLE(B)
NULLABLE(a) A NULLABLE(A) A NULLABLE(b) = false
NULLABLE(b) A NULLABLE(B) = false

NULLABLE(AB) = true
NULLABLE(aAb) V NULLABLE(g) = true
NULLABLE(bB) V NULLABLE(g) = true

Compute smallest solution of system, starting by false for all.
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Computing FIRST by Set Equations

FirsT(e) = 0
FrsT(a) = aforaeX
. FIrRsT(a) UFIRST(B) , if NULLABLE(«x)
First(af) = FIrRsT(x) , otherwise
FIRsT(A) = FIRsT(a1)U...UFIRST(an),
using all productions for A, A — «; (i € {1..n})
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Computing FIRST by Set Equations

FirsT(e) = 0
FrsT(a) = aforaeX
. FIrRsT(a) UFIRST(B) , if NULLABLE(«x)
First(af) = FIrRsT(x) , otherwise
FIRsT(A) = FIRsT(a1)U...UFIRST(an),
using all productions for A, A — «a; (i € {1..n})

e Equations for nonterminals of the grammar:

G':S — AB FirsT(S) = FIRST(AB)
A — aAb|e FIrRsT(A) = FIRST(aAb) U FIRST(¢)
B — bBjle FIrsT(B) = FIRST(bB) U FIRST(¢)
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Computing FIRST by Set Equations

FirsT(e) = 0
FrsT(a) = aforaeX
. FIrRsT(a) UFIRST(B) , if NULLABLE(«x)
First(af) = FIrRsT(x) , otherwise
FIRsT(A) = FIRsT(a1)U...UFIRST(an),
using all productions for A, A — «a; (i € {1..n})

e Equations for nonterminals of the grammar:

G':S — AB FIrsT(S) = FIRST(AB) = FIRST(A) U FIRST(B)
A — aAb|e FIrRsT(A) = FIrsT(aAb) U FIRST(¢)
B — bBjle FIRST(B) = FIRST(bB) U FIRST(¢)
e Equations for the right-hand side
FirsT(aAB) = FIrsT(a)
FirsT(bB) = FirsT(b)
FIrsT(g) = 0
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Computing FIRST by Set Equations

FirsT(e) = 0
FrsT(a) = aforacX
. FIrRsT(a) UFIRST(B) , if NULLABLE(«x)
First(af) = FIrRsT(x) , otherwise
FIRsT(A) = FIRsT(a1)U...UFIRST(an),
using all productions for A, A — «a; (i € {1..n})

e Equations for nonterminals of the grammar:

G':S — AB FIrsT(S) = FIRST(AB) = FIRST(A) U FIRST(B)
A — aAb|e FIrRsT(A) = FIrsT(aAb) U FIRST(¢)
B — bBjle FIRST(B) = FIRST(bB) U FIRST(¢)

e Equations for the right-hand side

FirsT(aAB) = First(a) = {a}
FIRST(bB) = First(b) = {b}
FIrsT(g) = 0

Compute smallest solution of system, starting by ) for all sets.

Slide 16/45 — J.Berthold — Compilers: Syntax Analysis — 11/2013




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Computing FIRST by Set Equations

FirsT(e) = 0
FrsT(a) = aforacX
. FIrRsT(a) UFIRST(B) , if NULLABLE(«x)
First(af) = FIrRsT(x) , otherwise
FIRsT(A) = FIRsT(a1)U...UFIRST(an),
using all productions for A, A — «a; (i € {1..n})

e Equations for nonterminals of the grammar:

G':S — AB FIrRsT(S) = FIRST(AB) = FIRST(A) U FIRsT(B) = {a, b}
A — aAb|e FIrRsT(A) = FirsT(aAb) U FIrsT(e) = {a}
B — bBjle FIrsT(B) = FIRST(bB)UFIRST(g) = {b}

e Equations for the right-hand side

FirsT(aAB) = First(a) = {a}
FIRST(bB) = First(b) = {b}
FIrsT(g) = 0

Compute smallest solution of system, starting by ) for all sets.
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ForLLow Sets for Nonterminals

FIRST Sets are often not enough.
In production X — «, if NULLABLE(«), we need to know what
can follow X (FIRST set of v cannot provide this information).
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ForLLow Sets for Nonterminals

FIRST Sets are often not enough.
In production X — «, if NULLABLE(«), we need to know what
can follow X (FIRST set of v cannot provide this information).

Definition (FOLLOW Set of a Nonterminal)

Let G = (X, N,S, P) a grammar and = its derivation relation.
For each nonterminal X € N, define

e FoLLow(X) = {c € ¥ | 3, ge(zuny+ : S =" aXcB}
(all input tokens that follow X in sequences derivable from S)
To recognise the end of the input
e add a new character $ to the alphabet
e add start production S’ — S$ to the grammar.
Thereby, we always have $ € FoLLow(S).
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Set Equations for FOLLOW Sets

FoLLOW sets solve a collection of set constraints.

Constraints derived from right-hand sides of grammar productions
For X € N, consider all productions Y — aX/3 where X occurs on the right.

e FIrsT(S) C FoLLow(X)
e |f NULLABLE(S) or 8 = e: FoLLow(Y) C FoLLow(X)

If X occurs several times, each occurrence contributes separate equations.
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Set Equations for FOLLOW Sets

FoLLOW sets solve a collection of set constraints.

Constraints derived from right-hand sides of grammar productions
For X € N, consider all productions Y — aX/3 where X occurs on the right.

e FIrsT(S) C FoLLow(X)
e |f NULLABLE(S) or 8 = e: FoLLow(Y) C FoLLow(X)

If X occurs several times, each occurrence contributes separate equations.

S"—S$ ... FirsT($)={%$} C FoLLow(S)
S—AB ... FIrsT(B)={b} C FoLLOW(A)
FoLLow(S) C FOLLOW(A) (B nullable)

Example: ForLow(S) C ForLow(B)
A— aAb ... FIrsT(b) ={b} C FoLLOW(A)
B—bB ... FoLLow(B) C ForLow(B)

A — ¢ and B — ¢ do not contribute.
Solve iteratively, starting by ) for all nonterminals.
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Set Equations for FOLLOW Sets

FoLLOW sets solve a collection of set constraints.

Constraints derived from right-hand sides of grammar productions
For X € N, consider all productions Y — aX/3 where X occurs on the right.

e FIrsT(S) C FoLLow(X)
e |f NULLABLE(S) or 8 = e: FoLLow(Y) C FoLLow(X)

If X occurs several times, each occurrence contributes separate equations.

S"—S$ ... FirsT($)={%$} C FoLLow(S)
S—AB ... FIrsT(B)={b} C FoLLOW(A)
FoLLow(S) C FOLLOW(A) (B nullable)

Example: ForLow(S) C ForLow(B)
A— aAb ... FIrsT(b) ={b} C FoLLOW(A)
B—bB ... FoLLow(B) C ForLow(B)

A — ¢ and B — ¢ do not contribute.
Solve iteratively, starting by ) for all nonterminals.
ForLLow(S) = FoLLow(B) = {$}
FoLLow(A) = {$, b} PY
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Putting it Together: Look-ahead Sets and LL(1)

After computing NULLABLE and FIRST for all right-hand sides
and FOLLOW for all nonterminals, a parser can be constructed.

Definition (Look-ahead Sets of a Grammar)

For every production X — « of a context-free grammar G, we
define the Look-ahead set of the production as:

(X — a) = FirsT(a) U FoLLow(X) , if NUL.LABLE(Oz)
F1rsT(a) , otherwise
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Putting it Together: Look-ahead Sets and LL(1)
After computing NULLABLE and FIRST for all right-hand sides
and FOLLOW for all nonterminals, a parser can be constructed.

Definition (Look-ahead Sets of a Grammar)

For every production X — « of a context-free grammar G, we

define the Look-ahead set of the production as:

(X — a) = FirsT(a) U FoLLow(X) , if NUL.LABLE(Oz)
F1rsT(a) , otherwise

LL(1) Grammars

If for each nonterminal X € N in grammar G, all productions of X
have disjoint look-ahead sets, the grammar G is LL(1)
(left-to-right, left-most, look-ahead 1).

For an LL(1) grammar, a parser can be constructed which
constructs a left-most derivation for valid input with one token
look-ahead (predicting the next production from look-ahead). ()

DEPARTMENT OF COMPUTER SCIENCE
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Recursive Descent with Look-Ahead

The grammar in our example is LL(1):

G:S — AB la(S§ - AB) = FirsT(AB)UFoLLow(S) = {a, b,$}
A — aAb la(A — aAb) = FirsT(aAB) ={a}
A — ¢ la(A = ¢) = FIrsT(e) UFoLLow(A) = {b,$}
B — bB la(B— bB) = FIrsT(bB) = {b}
B — ¢ la(B — ¢) = FirsT(e) UFoLLow(B) = {$}

fun parseS ()
= if next = #"a" orelse next = #"b" orelse next = EOF
then parseA(); parseB(); match EOF else error

and parseA () (* choose by look-ahead *)
= if next = #"a" then match #"a"; parseA(); match #"b"
else if next = #"b" orelse next = EOF then ()
else error

and parseB () = if next = #"b" then match #"b"; parseB()
else if next = EOF then ()

else error @
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Table-Driven LL(1) Parsing

e Stack, contains unprocessed part of production, initially S$.
e Parser Table: action to take, depends on stack and next input

e Actions (pop consumes input, derivation only reads it)
Pop: remove terminal from stack (on matching input).
Derive: pop nonterminal from stack, push right-hand side (in table).

e Accept input when stack empty at end of input.

Look-ahead/Input:
Stack: a b

S AB,1 | AB,1 | AB, 1
A aAb, 2 € 3 € 3
B error bB, 4 )
a pop error error
b error pop error
$

error error accept
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Table-Driven LL(1) Parsing

e Stack, contains unprocessed part of production, initially S$.

e Parser Table: action to take, depends on stack and next input

e Actions (pop consumes input, derivation only reads it)

Pop: remove terminal from stack (on matching input).
Derive: pop nonterminal from stack, push right-hand side (in table).

e Accept input when stack empty at end of input.

Look-ahead/Input:

Example run (input aabbb):

Stack: a b
S AB,1 | AB,1 | AB, 1
A aAb, 2 € 3 € 3
B error bB, 4 )
a pop error error
b error pop error
$ error error | accept

Input Stack Action Output
aabbb$ S$ derive £
aabbb$ AB$ derive 1
aabbb$ aAbB$ pop 12

abbb$ AbBS$ | derive 12
abbb$  aAbbBS pop 122
bbb$ AbbB$ | derive | 122
bbb$ bbB$ pop 1223
bb$ bB$ pop 1223
b$ B$ derive 1223
b$ bB$ pop 12234
$ B$ derive 12234
$ $ accept 122345
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Eliminating Left-Recursion and Left-Factorisation

Problems that often occur when constructing LL(1) parsers:
e Identical prefixes: Productions X — af | ary.
Requires look-ahead longer than the common prefix c.

Solution: Left-Factorisation, introducing new productions
X —=aYadY —[5|7.
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Eliminating Left-Recursion and Left-Factorisation

Problems that often occur when constructing LL(1) parsers:

e Identical prefixes: Productions X — af | ary.
Requires look-ahead longer than the common prefix c.

Solution: Left-Factorisation, introducing new productions
X —=aYadY —[5|7.

e Left-Recursion: a nonterminal reproducing itself on the left.
Direct: production X — Xa | 3, or indirect: X =* Xa.
Cannot be analysed with finite look-ahead!

X — Xa | B, thus FIRST(X) C FIRST(Xa) U FIRST()
Solution: new (nullable) nonterminals and swapped recursion.
X = pBX" and X' = aX' | ¢
Also works in case of multiple left-recursive productions.
For indirect recursion: first transform into direct recursion.
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© Bottom-Up Parsing, SLR
Parser Generator Yacc
Shift-Reduce Parsing
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Bottom-Up Parsing

LL(1) Parser works top-down. Needs to guess used productions.
Bottom-Up approach: build syntax tree from ge,aves.

™~

'S S8 (0) 5§

S - AB (1) /\
A — aAb (2) /‘\ /\
A = ¢  (3) a A b

B — bB (4) VAN \5
B —» ¢ (5 a AD ¢

‘ 3

€

Abb 2, aaAbbb =, aa bbb

52552 ABA, AbB 2, Ab_ 2, 2
Right-most derivation: 1 4 5 2 2
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Bottom-Up Parsing: ldea for a Machine

G":S' — S$ (0)

X S — AB(1)
I~ A = aAb(2)

S §$ A 5 e (3)
/1\ B — bB(4)
B B — ¢ (5

/I\ /\

a A b
AN |5
a A b €
|3
€
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Bottom-Up Parsing: ldea for a Machine

G’':S' = S$ (0)
S S = AB(1)

Stack | Input Action ™~ A —  aAb(2)
€ aabbb$ || shift S $ A = e (3
a abbb$ shift /1\ B - bB E4;
aa_ bbb$ reduce 3 B B = < (5
aal bbb$ shift
aadb | bb$ reduce 2 / ‘\ / \
ad bb$ shift a Ab
adb | b$ reduce 2 I ‘5
A b$ shift a A b €
Ab_ $ reduce 5 ‘3
AbB | $ reduce 4 c
AB $ reduce 1
S $ accept
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Bottom-Up Parsing: ldea for a Machine

G":S" — S$(0)

g S = AB(1)
Stack | Input Action ™~ A —  aAb(2)
e aabbb$ || shift S $ A > e (3
a abbb$ shift /1\ B - bB E4;
aa_ bbb$ reduce 3 B B = < (5
aal bbb$ shift
aadb | bb$ reduce 2 / ‘\ / 4\
ad bb$ shift b B
adb | b$ reduce 2 / ‘\ K
A b$ shift €
Ab_ $ reduce 5 ‘3
AbB | $ reduce 4 c
AB $ reduce 1
S $ accept
Questions:

e When to accept (solved: separate start production)
e When to shift, when to reduce? Especially R — ¢.
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mosmlyac: Yet Another Compiler Compiler in MosML

e Generates bottom-up parser from a grammar specification

e Grammar specification also includes token datatype
declaration and other declarations.

Demo mosmlyac

Tradition: Lex and Yacc (GNU: flex and bison)

o Parser generators usually use LALR(1) Parsing?.

e We use SLR parsing instead:
Simple Left-to-right Right-most analysis with look-ahead 1.

2More information about LALR(1) and LR(1) parsing can be found in the Red-Dragon book. .
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Constructing an SLR-Parser: Items

Each production in the grammar leads to a number of items:

Shift ltems and Reduce Items of a Production

Let X — « be a production in a grammar.
The production implies:

e Shift items: [X — ayg ® ap] for every decomposition o = ajaz
(including a1 =€ and ap = ¢);

e One reduce item: [X — «e] per production.
Items give information about the next action:

e Either to shift an item to the stack and read input

e or to reduce the top of stack (a production’s right-hand side).
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Constructing an SLR-Parser: Items

Each production in the grammar leads to a number of items:

Shift ltems and Reduce Items of a Production

Let X — « be a production in a grammar.
The production implies:
e Shift items: [X — ayg ® ap] for every decomposition o = ajaz
(including a1 = € and ap = ¢);
e One reduce item: [X — «e] per production.
Items give information about the next action:
e Either to shift an item to the stack and read input
e or to reduce the top of stack (a production’s right-hand side).

e Stack of the parser will contain items, not grammar symbols.

e Therefore, no need to read into the stack for reductions.
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Constructing an SLR Parser: Production DFAs

Each production X — « suggests a DFA with items as states, and
doing the following transitions:

e From [X — a e af] to [X — aa e 3] for input tokens a.
These will be Shift action that read input later.

e From [X — ave Y] to [X — aY e 3] for nonterminals Y.
These will be Go actions later, without consuming input.

All items are states, start state is the first item [X — eq].

A — aAb \[AﬁoaAb]riﬂ[A—>aoAb]{_Aﬂ[A%aAob]rL’ﬁ[AﬁaAbo]H

A—e
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Constructing an SLR Parser: Production DFAs

Each production X — « suggests a DFA with items as states, and
doing the following transitions:

e From [X — a e af] to [X — aa e 3] for input tokens a.
These will be Shift action that read input later.

e From [X — ave Y] to [X — aY e 3] for nonterminals Y.
These will be Go actions later, without consuming input.

All items are states, start state is the first item [X — eq].

A — aAb \[AﬁoaAb]{iﬂ[A—>aoAb]r_Aﬂ[A%aAob]rL’ﬁ[A—mAbo]\

A—e

While traversing the DFA: items pushed on the stack.
When reaching a reduce item: use stack to back-track (later).
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SLR Parser Construction: Example

Productions

NFA

S— AB
B—e¢
B —bB
A—¢e

A — aAb

@Al
5
3 GRGL0]
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SLR Parser Construction: Example
Productions NFA

S— AB
B—e¢
B —bB
A—¢e

A — aAb

Extra e-transitions connect the DFAs for all productions:
e From [X — ave Y[3] to [Y — 7] for all productions Y —
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SLR Parser Construction: Example
Productions NFA

S—+ AB
B—e¢
B —bB
A—¢e

A — aAb

Extra e-transitions connect the DFAs for all productions:
e From [X — ave Y[3] to [Y — 7] for all productions Y —

When in front of a nonterminal Y in a production DFA:
try to run the DFA for one of the right-hand sides of Y productions. @
[
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SLR Parser Construction: Example(2)
Productions NFA

S— AB
B—e¢
B —bB
A—¢e

A — aAb

Next step: Subset construction of a combined DFA.
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SLR Parser Construction: Example(2)
Productions NFA

S— AB
B—e¢
B —bB
A—¢e

A — aAb

Next step: Subset construction of a combined DFA.

Blackboard. ..
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SLR Parsing: Internal DFA and Stack

e Transitions: Shift actions (terminals)

(i@é—*S» and Go actions (nonterminals).

poop
@ &0
b b b
® Jdo-*-@
e SLR Parse Table: actions indexed by symbols and DFA states

Shift n Terminal transition: push state n on stack, consume input
Go n Nonterminal transition: push state n on stack, (no input read)
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SLR Parsing: Internal DFA and Stack

a__ l 3 5 0 e Transitions: Shift actions (terminals)
& > S, . .
(3@ and Go actions (nonterminals).
e Final DFA states: contain reduce
items. Reduce actions need to be

foB
5 1
o —B> added to the transition table.
b b e Reduce action: remove items from
b stack corresponding to right-hand
2 5 4
@ .(@ side, then do a Go action with the

left-hand side.

e SLR Parse Table: actions indexed by symbols and DFA states

Shift n Terminal transition: push state n on stack, consume input
Go n Nonterminal transition: push state n on stack, (no input read)
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SLR Parsing: Internal DFA and Stack

e Transitions: Shift actions (terminals)

(i@ilu»() and Go actions (nonterminals).

e Final DFA states: contain reduce
items. Reduce actions need to be

foB
5 1
o —B> added to the transition table.
b b e Reduce action: remove items from
b stack corresponding to right-hand
2 5 4
@ .(@ side, then do a Go action with the

left-hand side.

e SLR Parse Table: actions indexed by symbols and DFA states
Shift n Terminal transition: push state n on stack, consume input
Go n Nonterminal transition: push state n on stack, (no input read)
Reduce p Reduce with production p
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SLR Parsing: Internal DFA and Stack

e Transitions: Shift actions (terminals)

(i@ilu»() and Go actions (nonterminals).

e Final DFA states: contain reduce
items. Reduce actions need to be

foB
5 1
o —B> added to the transition table.
b b e Reduce action: remove items from
b stack corresponding to right-hand
2 5 4
@ .(@ side, then do a Go action with the

left-hand side.

e SLR Parse Table: actions indexed by symbols and DFA states

Shift n Terminal transition: push state n on stack, consume input
Go n Nonterminal transition: push state n on stack, (no input read)
Reduce p Reduce with production p
Accept Parsing has succeeded (reduce with production 0).
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SLR Parser Construction: Conflicts

e After constructing a DFA: shift and go actions.

e Next: add reduce actions for states containing reduce items

SLR Parser Conflicts
Subset construction of the DFA might join conflicting items in one
DFA state. We call these conflicts

e Shift-Reduce conflict, if a DFA state contains both shift and
reduce items.
Typically, productions to € generate these conflicts.

e Reduce-Reduce conflict, if a DFA state contains reduce items
for two different productions.
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SLR Parser Construction: Conflicts

o After constructing a DFA: shift and go actions.

e Next: add reduce actions for states containing reduce items

SLR Parser Conflicts
Subset construction of the DFA might join conflicting items in one
DFA state. We call these conflicts

e Shift-Reduce conflict, if a DFA state contains both shift and
reduce items.
Typically, productions to € generate these conflicts.

e Reduce-Reduce conflict, if a DFA state contains reduce items
for two different productions.

In SLR parsing: FOLLOW sets of nonterminals are compared to
the look-ahead to resolve conflicts.
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SLR Parser Construction: The Parser Table

G':S — S$ (0)
S = AB(1)
A = aAb(2)
A = & (3
B — bB (4)
B — ¢ (5

e Parser Table:

a

0 ~NOOL P WN KO
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SLR Parser Construction: The Parser Table

G':S — S$ (0)
S = AB(1)
A = aAb(2)
A = & (3
B — bB (4)
B — ¢ (5

DEPARTMENT OF COMPUTER SCIENCE

e Parser Table:

a $ S A B
0|2 Gol Go3
1
2|2 Go 4
3 6 Go 7
4 5
5
6 6 Go 8
7
8
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SLR Parser Construction: The Parser Table

S$ (0)
AB (1)
aAb(2)
e (3)
bB (4)
e (5

e Parser Table:

a $ S A B
0|2 Gol Go3
1
212 Go 4
3 6 Go 7
4 5
5
6 6 Go 8
7
8
e FoLLOW Sets of Nonterminals:
FoLLow(S) = {$}
ForLow(A) = {b,$}
FoLLow(B) = {$}
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SLR Parser Construction: The Parser Table

S$ (0)

N
S = AB(1)
A = aAb(2)
A = & (3
B — bB (4)
B — ¢ (5

e Parser Table:

a b $ S A B
0|2 red3 red3| Gol Go3
1 acc.
212 red3 red3 Go 4
3 6 red.5 Go 7
4 5
5 red.2 red.2
6 6 red.5 Go 8
7 red.1
8 red.4
e FoLLOw Sets of Nonterminals:
FoLLow(S) = {$}
ForLow(A) = {b,$}
ForLow(B) = {$}

OF COMPUTER SCIENCE
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Table-Driven SLR Parsing

e Stack contains DFA states, initially start state 0.

e SLR Parse Table: actions and transitions

Shift: do a transition consuming input, push new state on stack
Reduce: pop length of right-hand-side from stack, then go to a new
state with left-hand side non-terminal, push new state on stack

e Accept input when accept state reached at end of input.

a b $ S A B
0|2 red3 red3| Gol Go3
1 acc.
212 red3 red3 Go 4
3 6 red.5 Go 7
4 5
5 red.2 red.2
6 6 red.5 Go 8
7 red.1
8 red.4 @
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Table-Driven SLR Parsing

e Stack contains DFA states, initially start state 0.

e SLR Parse Table: actions and transitions

Shift: do a transition consuming input, push new state on stack
Reduce: pop length of right-hand-side from stack, then go to a new
state with left-hand side non-terminal, push new state on stack

e Accept input when accept state reached at end of input.

a_ b $ S A B Example run (aabbb):
0|2 red3 red3 | Gol Go3 Stack | Input Action
1 acc. 0 aabbb$ shift
02 abbb$ shift
2 2 red.3 red.3 Go 4 022_ bbb$ reduce 3
0224 bbb$ shift
3 6 red.5 Go 7 02245 bb$ reduce 2
4 5 024 bb$ shift
0245 b$ reduce 2
5 red.2 red.2 3 | s shift
6 6 red.5 Go 8 036_ $ reduce 5
7 d.1 0368 $ reduce 4
red. 037 $ reduce 1
8 red.4 01 $ accept @
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Table-Driven SLR Parsing

e Stack contains DFA states, initially start state 0.

e SLR Parse Table: actions and transitions

Shift: do a transition consuming input, push new state on stack
Reduce: pop length of right-hand-side from stack, then go to a new
state with left-hand side non-terminal, push new state on stack

e Accept input when accept state reached at end of input.

a_ b $ S A B Example run (aabbb):
0|2 red3 red3 | Gol Go3 Stack | Input Action
1 acc. 0 aabbb$ shift
02 abbb$ shift
2 2 red.3 red.3 Go 4 022_ bbb$ reduce 3
0224 bbb$ shift
3 6 red.5 Go 7 02245 | ves Soice 2
4 5 024 bb$ shift
0245 b$ reduce 2
5 red.2 red.2 3 | s shift
6 6 red.5 Go 8 036_ $ reduce 5
7 d.1 0368 $ reduce 4
red. 037 $ reduce 1
8 red.4 01 $ accept @
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Contents

@ Precedence and Associativity
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Ambiguity, Precedence and Associativity

Arithmetic Expressions:

E - E+E|E-E ¢ In many cases, grammars are
E — ExE|EJE rewritten to remove ambiguity.
E — al(E) e Sometimes, ambiguity is resolved

by changes in the parser.

e In both cases: Precedence and associativity guide decisions.

Slide 36/45 — J.Berthold — Compilers: Syntax Analysis — 11/2013




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Ambiguity, Precedence and Associativity

Arithmetic Expressions:
e In many cases, grammars are

E - E+E|E-E
rewritten to remove ambiguity.

E — E«E|EJE
E — al(E) e Sometimes, ambiguity is resolved
by changes in the parser.

e In both cases: Precedence and associativity guide decisions.

Problems with this grammar:

@ Ambiguous derivation of a - a * a.
Want precedence of = over +, a+ (a- a).

® Ambiguous derivation of a - a - a.
Want a left-associative interpretation, (a — a) — a.
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Operator Precedence in the Grammar

e Introduce precedence levels to get operator priorities
e New Grammar: own nonterminal for each level
e Here: 2 levels, mathematical interpretation:

a—a-a=a—(a-a) Precedence of » and / over + and -.
More precedence levels could be added (exponentiation).

E - E+E|E-E
E — ExE|EJE
E — al(E)
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Operator Precedence in the Grammar

e Introduce precedence levels to get operator priorities
e New Grammar: own nonterminal for each level

e Here: 2 levels, mathematical interpretation:
a—a-a=a—(a-a) Precedence of » and / over + and -.
More precedence levels could be added (exponentiation).

E — E+E|E—E E - E+E|E-E|T
E — ExE|EJE T = T«T|T/T
E — al(E) T = al|(E)
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Operator Precedence in the Grammar

e Introduce precedence levels to get operator priorities
e New Grammar: own nonterminal for each level

e Here: 2 levels, mathematical interpretation:
a—a-a=a—(a-a) Precedence of » and / over + and -.
More precedence levels could be added (exponentiation).

E — E+E|E—E E - E+E|E-E|T
E — ExE|EJE T = T«T|T/T
E — al(E) T = al|(E)

NN
T N
E/—‘\E

OF COMPUTER SCIENCE
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About Operator Associativity

Definition (Operator Associativity)
A binary operator @ is called
e left-associative, if the expression a & b @ ¢ should be
evaluated from left to right, as (a® b) & c.
e right-associative, if the expression a @ b @ c should be
evaluated from right to left, as a® (b ® c¢).

e non-associative, if expressions a @ b @ c are disallowed,
(and associative, if both directions lead to the same result).
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About Operator Associativity

Definition (Operator Associativity)
A binary operator @ is called
o |left-associative, if the expression a ® b @ ¢ should be
evaluated from left to right, as (a® b) & c.
e right-associative, if the expression a @ b @ c should be
evaluated from right to left, as a® (b ® c¢).

e non-associative, if expressions a @ b @ c are disallowed,
(and associative, if both directions lead to the same result).

Examples:
e Arithmetic operators like - and /: left-associative.
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About Operator Associativity

Definition (Operator Associativity)
A binary operator @ is called
o |left-associative, if the expression a ® b @ ¢ should be
evaluated from left to right, as (a® b) & c.
e right-associative, if the expression a @ b @ c should be
evaluated from right to left, as a® (b ® c¢).

e non-associative, if expressions a @ b @ c are disallowed,
(and associative, if both directions lead to the same result).

Examples:
e Arithmetic operators like - and /: left-associative.
e List constructors in functional languages: right-associative.
e Function arrows in types: right-associative.
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About Operator Associativity

Definition (Operator Associativity)
A binary operator @ is called
o |left-associative, if the expression a ® b @ ¢ should be
evaluated from left to right, as (a® b) & c.
e right-associative, if the expression a @ b @ c should be
evaluated from right to left, as a® (b ® c¢).

e non-associative, if expressions a @ b @ c are disallowed,
(and associative, if both directions lead to the same result).

Examples:
e Arithmetic operators like - and /: left-associative.
e List constructors in functional languages: right-associative.
e Function arrows in types: right-associative.
e ‘less-than’ (<) in C:
if (3 < 2 < 1) { fprintf(stdout, "Awesome!\n"); }
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About Operator Associativity

Definition (Operator Associativity)
A binary operator @ is called
o |left-associative, if the expression a ® b @ ¢ should be
evaluated from left to right, as (a® b) & c.
e right-associative, if the expression a @ b @ c should be
evaluated from right to left, as a® (b ® c¢).

e non-associative, if expressions a @ b @ c are disallowed,
(and associative, if both directions lead to the same result).

Examples:
e Arithmetic operators like - and /: left-associative.
e List constructors in functional languages: right-associative.
e Function arrows in types: right-associative.
e ‘less-than’ (<) in C: left-associative
if (3 < 2 < 1) { fprintf(stdout, "Awesome!\n"); }
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Establishing the Intended Associativity

e limit recursion to the intended side
e When operators are indeed associative, use same associativity
as comparable operators.

e Cannot mix left- and right-associative operators at same
precedence level.

E - E+4+E|E-E|T
T = Tx«T|T/T
T — al(E)
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Establishing the Intended Associativity

e limit recursion to the intended side

e When operators are indeed associative, use same associativity
as comparable operators.

e Cannot mix left- and right-associative operators at same
precedence level.

E - E+4+E|E-E|T E - E+4+T|E-T|T
T = Tx«T|T/T T — TxF|T/F|F
T — al(E) F — a|(E)

E

N

/N

F
l

»—M— o
p—T—
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Precedence and Associativity in SLR Parse Tables

Precedence and ambiguity usually materialise as shift-reduce
conflicts in SLR parsers.

E — E + Eoe],
E — E+E|E+E].. %E%Ewrl_;}
2 l(E) = [E — E ox E]

Shift-Reduce conflict!

Instead of rewriting the grammar, resolve conflicts by targeted
changes to parser table.

DEPARTMENT OF COMPUTER SCIENCE
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Precedence and Associativity in SLR Parse Tables

Precedence and ambiguity usually materialise as shift-reduce
conflicts in SLR parsers.

E — E + Eoe],
E — E+E|E+E].. %E%Ewrl_;}
2 l(E) = [E — E ox E]

Shift-Reduce conflict!
Instead of rewriting the grammar, resolve conflicts by targeted
changes to parser table.
e if operator symbol with higher precedence follows: Shift
e if operator should be right-associative: Shift

e if symbol of lower precedence or left-associative: Reduce

DEPARTMENT OF COMPUTER SCIENCE
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Example: Resolving Precedence and Ambiguity

Regular expressions: @ Precedence: star, sequence,
R — RIR alternative.
R — RR a | ba*is al(b(a*)).
R — R™ @® Left-associative derivations:
R — char|(R) al g1 ~is (a|B)y.

New grammar:

Your
grammar

here
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Example: Resolving Precedence and Ambiguity

Regular expressions:

R —

R
R
R

L1l

R'R

RR

R[*A

char | (R)

New grammar:

R —
R2 —
R3 —
R4 —

R'|'R2| R2
R2R3 | R3
R4™' | R4
char | (R)

@ Precedence: star, sequence,
alternative.

a | ba*is al(b(a")).
@® Left-associative derivations:
al g1 ~yis (a|f)]y.
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Example: Resolving Precedence and Ambiguity

Regular expressions: @ Precedence: star, sequence,
R — R|R alternative.
R — RR a | ba* is a|(b(a*))
R — R™ @® Left-associative derivations:
R — char|(R) al g1 ~is (alB)]y.
New grammar: Precedence/Associativity declarations:
-  mosmlyac file
R — R‘|‘R2 | R2 /token BAR STAR LPAREN RPAREN ...
'}.iéft BAR /* lowest precedence */
R2 — R2R3 l R3 %nonassoc CHAR LPAREN
ke /left seq /x pseudo-token for sequence */
R3 = R4 | R4 %nonassoc STAR /* highest precedence */
R4 — char|(R) 2 R BaR R PR
| RR %prec seq  { ... }
| R STAR {...}
| CHAR {...}
{...}

| LPAREN R RPAREN @
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Example: Resolving Precedence and Ambiguity

Regular expressions:

R — R|R

R — RR

R — R™

R — char|(R)

New grammar:

R — R|R2|R2

R2 — R2R3|R3
R3 — RA4™'|R4
R4 — char|(R)

@ Precedence: star, sequence,
alternative.
a | ba*is al(b(a*)).

@® Left-associative derivations:
al g1 ~yis (a|f)]y.

Precedence/Associativity declarations:

-  mosmlyac file
/token BAR STAR LPAREN RPAREN ...

%left BAR /* lowest precedence */
%nonassoc CHAR LPAREN

Jleft seq /% pseudo-token for sequence */
%nonassoc STAR /* highest precedence */

R : R BAR R { ...}
| RR %prec seq  { ... }
| R STAR {...}
| CHAR {...}
| LPAREN R RPAREN { ... }

Full example: Mosmlyac Demo (regutar expressions) @
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One word about the Syntax Trees

e Concrete Syntax contains many extra tokens for practical
reasons:

e Parentheses, braces, ... for grouping,
e Semicolons, commas, . ..to separate statements or arguments.
e begin, end ... (also a kind of parentheses).

e Following stage works on abstract syntax tree without those

begin id = num + Id i /d < num then id := id + num end

(AR
\\

M‘W

/

S
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One word about the Syntax Trees

e Concrete Syntax contains many extra tokens for practical
reasons:

e Parentheses, braces, ... for grouping,
e Semicolons, commas, . ..to separate statements or arguments.
e begin, end ... (also a kind of parentheses).

e Following stage works on abstract syntax tree without those

begin id .= num + id ; if id < num then id := id + num end

seq
assign cond
RN /N
id plus less assign
SN0 TN
num  id id num jd plus

id num
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More about Context-Free Languages

Context-Free languages are commonly processed using a stack
machine (Push-Down Automaton, PDA)

Can count one thing at a time, or remember input.
{a"b" | n € N} context-free.
{a"b"c" | n € N} not context-free!

Palindromes over ¥: context-free language.

However: non-deterministic (need to guess the middle).
Non-deterministic stack machines are more powerful than
deterministic ones (unlike NFAs and DFAs)!

Context-free languages are closed under union:
L1, Ly context-free ~ L1 U Ly context-free.

... but not closed under intersection (famous counter
examples above) and complement (by de Morgan's laws).

Slide 44/45 — ) Berthold — Compilers: Syntax Analysis — 11/2013

DEPARTMENT OF COMPUTER SCIENCE




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Summary

Context-free grammars and languages
e Writing and rewriting grammars can be tricky! :-)
Top-down parsing (recursive-descent)

e FIRST- and FOLLOW-sets;

e Look-ahead sets for decisions in recursive-descent parser.
Bottom-up parsing (shift-reduce parsing, SLR parsing)

e Items, grammar-implied NFA and subset construction;

e Reduce actions in transition table, stack of visited states.
Precedence and associativity

e Solved in the grammar or by manipulation of the SLR parser.
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