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Structure of a Compiler
Program text

↓
Lexical analysis Binary machine code

↓ ↑
Symbol sequence Assembly and linking

↓ ↑
Syntax analysis Ditto with named registers

↓ ↑
Syntax tree Register allocation

↓ ↑
Type Checking Symbolic machine code

↓ ↑
Syntax tree Machine code generation

↓ ↑
Intermediate code generation −→ Intermediate code
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Interpretation Recap

Compiler vs. Interpreter

source program
↓

Compiler

↓
target program

input
↓

Target Program

↓
output

source
program input
↓ ↓
Interpreter

↓
output

The interpreter directly executes one by one the operations specified
in the source program on the input supplied by the user, by using the
facilities of its implementation language.
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Synthesized vs Inherited Attributes

A compiler phase consists of one or several traversals of the AbSyn.
We formalize it via attributes:

Inherited: info passed downwards on the AbSyn traversal, i.e.,
from root to leaves. Think: helper structs. Example?

Synthesized: info passed upwards in the AbSyn traversal, i.e., from
leaves to the root. Think: the result. Example?

Both: Information may be synthesized from one subtree and
may be inherited/used in another subtree (or at a latter
parse of the same subtree). Example?
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Example of Inherited Attributes

The variable and function symbol tables, i.e., vtable and ftable, in the
interpretation of an expression:

EvalExp(Exp, vtable, ftable) = ...
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Example of Synthesized Attributes

The interpreted value of an expression / program is synthesized.

Example of both synthesized and inherited attributes:

vtable = BindTypeIds(TypeIds, args)

ftable = Buildftable(Funs)

and used in the interpretation of an expression.
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Interpretation vs Compilation Pros and Cons

+ Simple (good for impatient people).

+ Allows easy modification / inspection of the program at run time.

− Typically, it does not discover all type errors. Example?

− Inefficient execution:

Inspects the SymTab repeatedly, e.g., symbol table lookup.
Values must record their types.
The same types are checked over and over again.
No “global” optimizations are performed.

Idea: Type check and optimize as much as you can statically, i.e.,
before running the program, and generate optimized code.
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Type System / Type Checking

Type System: a set of logical rules that a legal program must respect.

Type Checking verifies that the type system’s rules are respected.
Example of type rules and type errors:

+, − expect integral arguments: a + (b==c)

if-branch expressions have the same type:
let a = ( if (b == 3) then ’b’ else 11 ) in ...

the type and number of formal and actual arguments match:
fun int sum ([int] x) = reduce(op +, 0, x)

fun [bool] main() = map(sum, iota(4))

other rules?

Some language invariants cannot be checked statically: Examples?
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Type System

Static: Type checking is performed before running the program.
Dynamic: Type checking is performed while running the program.

———————————————————————
Strong: All type errors are caught.
Weak: Operations may be performed on values of wrong types.

Static Dynamic
Strong

Weak
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C++
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Type Rules

Specify the type constraints and a way to derive the type of an
expression, based on the types of its constituent subexpressions.

map : ∀ α. ∀ β. ((α→ β) ∗ [α]) → [β]. Type rule for map(f,x):

compute t, the type of (arbitrary expression) x,
and check that t ≡ [tel ] for some tel .

get f ’s signature from ftable. IF f does not receive exactly one
arg THEN error() ELSE f : tin → tout , for some tin and tout .

IF (tel ≡ tin) THEN map(f, x) : [tout ], ELSE error()

reduce : ∀ α. (((α ∗ α) → α) ∗ α ∗ [α]) → α.
Type rule for reduce(f, e, x):

compute t, the type of e, and tx the type of x, and check that:

1 f : (t ∗ t → t), i.e., f is an operator that can reduce, and that

2 tx = [t], i.e., x is an array of element type t.

if so then reduce(f, e, x) : t.
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What Is The Plan

The type checker builds (statically) unique types for each expression,
and reports whenever a type rule is violated.

As before, we logically split the AbSyn representation into different
syntactic categories: expressions, function decl, etc.,

and implement each syntactic category via one or several functions
that use case analysis on the AbSyn-type constructors.

In practice we work on AbSyn, but here we keep implementation
generic by using a notation that resembles the language grammar.

For symbols representing variable names, we use name(id) to get the
name as a string. A type error is signaled via function error().

14 / 40



University of Copenhagen Department of Computer Science

Symbol Tables Used by the Type Checker

vtable binds variable names to their types,
e.g., int, char, bool or arrays, e.g., [[[int]]].

ftable binds function names to their types. The type of a
function is written (t1, ..., tn)→ t0 , where t1, ..., tn are
the argument types and t0 is the result type.
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Type Checking an Expression (Part 1)
Inherited attributes: vtable and ftable.
Synthesized attribute: the expression’s type.

CheckExp(Exp, vtable, ftable) = case Exp of
num int
id t = lookup(vtable, name(id))

if ( t == unbound ) then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1, vtable, ftable)
t2 = CheckExp(Exp2, vtable, ftable)
if ( t1 == int and t2 == int ) then int

else error(); int
Exp1 = Exp2 t1 = CheckExp(Exp1, vtable, ftable)

t2 = CheckExp(Exp2, vtable, ftable)
if ( t1 == t2 ) then bool

else error(); bool
· · ·

Note: In Fasto equality of arrays is not supported!
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Type Checking an Expression (Part 2)
CheckExp(Exp, vtable, ftable) = case Exp of
· · ·
if Exp1 t1 = CheckExp(Exp1, vtable, ftable)
then Exp2 t2 = CheckExp(Exp2, vtable, ftable)
else Exp3 t3 = CheckExp(Exp3, vtable, ftable)

if ( t1 == bool and t2 == t3 ) then t2
else error(); t2

let id = Exp1 t1 = CheckExp(Exp1, vtable, ftable)
in Exp2 vtable ′ = bind(vtable, name(id), t1)

CheckExp(Exp2, vtable
′, ftable)

id ( Exps ) t = lookup(ftable, name(id))
if ( t == unbound ) then error(); int
else ((t1, . . . , tn)→ t0) = t

[t ′1, . . . , t
′
m] = CheckExps(Exps, vtable, ftable)

if ( m == n and t1 == t ′1, . . . , tn == t ′n )
then t0
else error(); t0
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Type Checking a Function (Declaration)

creates a vtable that binds the formal args to their types,

computes the type of the function-body expression, named t1,

and checks that the function’s return type equals t1.

CheckFun(Fun, ftable) = case Fun of

Type id ( TypeIds ) = Exp vtable = CheckTypeIds(TypeIds)
t1 = CheckExp(Exp, vtable, ftable)
if ( t1 6= Type )
then error(); int

CheckTypeIds(TypeIds) = case TypeIds of

Type id bind(SymTab.empty(), id,Type)

Type id , TypeIds vtable = CheckTypeIds(TypeIds)
if ( lookup(vtable, id) = unbound )
then bind(vtable, id, Type)
else error(); vtable
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Type Checking the Whole Program

builds the functions’ symbol table,

type-checks all functions,

checks that a main function of no args exists.

CheckProgram(Program) = case Program of
Funs ftable = GetFuns(Funs)

CheckFuns(Funs, ftable)
if ( lookup(ftable, main) 6= ( )→ α )
then error()

CheckFuns(Funs, ftable) = case Funs of
Fun CheckFun(Fun, ftable)
Fun Funs CheckFun(Fun, ftable)

CheckFuns(Funs, ftable)
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Building the Functions’ Symbol Table

GetFuns(Funs) = case Funs of
Fun (f , t) = GetFun(Fun)

bind(SymTab.empty(), f , t)
Fun Funs ftable = GetFuns(Funs)

(f , t) = GetFun(Fun)
if ( lookup(ftable, f ) == unbound )
then bind(ftable, f , t)
else error(); ftable

GetFun(Fun) = case Fun of
Type id ( TypeIds ) = Exp [t1, . . . , tn] = GetTypes(TypeIds)

( id, (t1, . . . , tn) → Type)

GetTypes(TypeIds) = case TypeIds of
Type id [Type]
Type id , TypeIds Type :: GetTypes(TypeIds)
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Advanced Type Checking

Data-Structures: Represent the data-structure type in the symbol
table and check operations on the values of this type.

Overloading: Check all possible types. If multiple matches, select a
default typing or report errors.

Type Conversion: if an operator takes arguments of wrong types
then, if possible, convert to values of the right type.

Polymorphic/Generic Types: Check whether a polymorphic function
is correct for all instances of type parameters.
Instantiate the type parameters of a polymorphic
function, which gives a monomorphic type.

Type Inference: Refine the type of a variable/function according to
how it is used. If not used consistently then report error.
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Polymorphic Functions: By Checking All Instances

In Fasto we have a fixed set of polymorphic functions of known
types (signatures), e.g., map, reduce, etc., and the approach is to
check individually each call, i.e., map(f, exp)!

Note that the type of map is not expressible in Fasto.

map : ∀ α. ∀ β. (α → β ) ∗ [α] → [β],
map(f , [x1, .., xn]) ≡ [f (x1), .., f (xn)]

Type rule for map:

compute t, the type of (arbitrary expression) x,
and check that t ≡ [tel ] for some tel .

get f ’s signature from ftable. IF f does not receive exactly one
arg THEN error() ELSE f : tin → tout , for some tin and tout .

IF (tel ≡ tin) THEN map(f, x) : [tout ],

ELSE error()
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Type Checking Map With Book Notations:
CheckExp(Exp, vtable, ftable) = case Exp of
· · ·
map( tarr = CheckExp(Exparr , vtable, ftable)

id, tel = case tarr of
Exparr) Array(t1)→ t1

| other → error()

tf = lookup(ftable, name(id))
case tf of

unbound ⇒ error()
| (tin → tout)⇒

if tin = tel then Array(tout)
else error()

| otherwise ⇒ error()

Remember:

vtable maps variable names to their types
ftable maps function names to their (type) signature
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Type Inference for Polymorphic Functions

Key difference: type rules check whether types can be “unified”,
rather than type equality.

if ... then ([], [1,2,3], [])

else ([’a’,’b’], [], [])

When we do not know a type we use a (fresh) type variable:

then: ∀α.∀β.list(α) ∗ list(int) ∗ list(β)

else: ∀γ.∀δ.list(char) ∗ list(γ) ∗ list(δ)

notation: use Greeks for type vars, omit ∀ but use fresh names.

Types t1 and t2 can be unified ⇔ ∃ substitution S | S(t1) = S(t2).

Most-General Unifier: the least speacialized subs/type that still unifies
S = {α ← char , γ ← int, δ ← β} ⇒ list(char)∗list(int)∗list(β)
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Example: Inferring the Type of SML’s length

fun length(x) = if null(x) then 0

else length( tl(x) ) + 1

EXPRESSION : TYPE UNIFY
length : β → γ
x : β
if : bool ∗ αi ∗ αi → αi

null : list(αn) → bool
null(x) : bool list(αn) ≡ β
0 : int αi ≡ int
+ : int ∗ int → int
tl : list(αt) → list(αt)
tl(x) : list(αt) list(αt) ≡ list(αn)
length(tl(x)) : γ
length(tl(x)) + 1 : int γ ≡ int
if(..) then .. else .. : int
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Most-General Unifier Algorithm (MGU)

a type expression is represented by a graph (typically acyclic),
a set of unified nodes has one representative, rep,
(initially each node is its own representative),
find(n) returns the representative of node n.
union(m,n) merges the equivalence classes of m and n:

if m is a type constructor (or basic type) then rep of all nodes in
n’s equivalence class are set to find(m) (and similar for n),
otherwise pick one, e.g., n, and set the rep of all the nodes in m’s
equivalence class to find(n)

boolean unify(Node m, Node n)

(I) if ( find(m) = find(n) ) then return true;
(II) else if ( m and n are the same basic type ) then return true;
(III) else if ( m or n represent a type variable ) then union(m, n); return true;
(IV) else if ( m and n are the same type constructor

with children m1, .., mk and n1, .., nk , ∀ k ) then
union(m, n); return unify(m1, n1) and .. and unify(mk , nk);

(V) else return false;
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Most-General Unifier Example

Step 1, Rule (IV)

Step 3, Rule (III)

Step 2, Rule (IV)

*

list list list

int ba

R: 1, Id: 1

R: 5, Id: 5

R: 3, Id: 3

R: 6, Id: 6 R: 7, Id: 7

R: 2, Id: 2 R: 4, Id: 4

Step 1, Rule (IV)

Step 3, Rule (III)

Step 2, Rule (IV)

Initially, Id = R, i.e., every node in its own equiv class.

with two integer values:
Each node is annotated − REP (R)

− node’s identifier (Id)

*

list list list

char c d

R: 8, Id: 8

R: 9, Id: 9
R: 10, Id: 10

R: 11, Id: 11

R: 12, Id: 12 R: 13, Id: 13 R: 14, Id: 14

1

2
3

4

6 712

SUCCESS (after three big horizontal steps), MGU is: list(char) * list(int) * list(b)

To construct the unified type (after MGU succeeds): start with any of
the two type expressions, and write down the “representative” nodes,
i.e., the ones with Node Id = rep (otherwise jump to the
corresponding rep node and write it down).
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Structural-Equivalence Example

Intuitively, the names of the structs and fields, e.g., A, a, do NOT
matter, but only the type constructors, e.g., struct, * and basic
types, e.g., int.

Under Structural Equivalence: types A, B and C Are Equivalent
struct A { struct B {

int a; int b;

struct B* b; struct A* a;

}; };

struct C {
int d;

struct C* c;

};

Next slides compute the most-general unifier (MGU) of A and C,
which both have cyclic graph representations of their types.

To construct the unified type (after MGU succeeds): start with any of
the two type expressions, and write down the “representative” nodes,
i.e., the ones with Node Id = rep (otherwise go to the corresponding
rep node and write it down).

For cyclic graphs, a marking phase is necessary so that you do not
visit the same node multiple times, i.e., infinite recursion.
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Structural Equivalence Example (2)

with two integer values:
Each node is annotated

− node’s identifier
− REP

Step 1, Rule (IV) Step 1, Rule (IV)

S
te

p
 2

, 
R

u
le

 (
II

)

S
te

p
 2

, 
R

u
le

 (
II

)

Step 3, Rule (IV)

Step 3, Rule (IV)

struct

int *

struct

int *

R: 2, Id: 2

R: 1, Id: 1

R: 3, Id: 3

R: 7, Id: 7

R: 9, Id: 9R: 8, Id: 8

struct

int *

R: 4, Id: 4

R: 5, Id: 5 R: 6, Id: 6

1

3
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Structural Equivalence Example (3)

with two integer values:
Each node is annotated

− node’s identifier
− REP

Step 4, Rule (IV)

Step 5, Rule (II)

S
te

p
 5

, 
R

u
le

 (
II

)

Step 4, Rule (IV)

Step 6, Rule (IV)

Step 6, Rule (IV)

struct

int *

struct

int *

R: 2, Id: 2

R: 1, Id: 1

R: 3, Id: 3 R: 8, Id: 8

struct

int *

R: 4, Id: 4

R: 5, Id: 5 R: 6, Id: 6

R: 1, Id: 7

R: 3, Id: 9

1

3
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Structural Equivalence Example (3)

with two integer values:
Each node is annotated

− node’s identifier
− REP

Step 7, Rule (I) Step 7, Rule (I)

struct

int *

struct

int *

R: 2, Id: 2

R: 1, Id: 1

R: 3, Id: 3 R: 8, Id: 8

struct

*
R: 5, Id: 5

R: 1, Id: 7

R: 3, Id: 9

R: 1, Id: 4

R: 3, Id: 6

SUCCESS SUCCESS

(1 == 1) (1 == 1)

After MGU succeeds, to build the unified type when graph may be
cyclic, a marking phase is necessary so that you do not visit the same
node multiple times, i.e., infinite recursion.

The unified type would be the structural type of struct C.
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Another Most-General Unifier Example

((a1 −> a2) * list(a3))  −> list(a2) ((a3 −> a4) * list(a3))  −> a5

*:2,2 list:8,8

:1,1

:3,3 list:6,6

a1:4,4 a2:5,5 a3:7,7 a4:12,12

:11,11 list:13,13

a5:14,14*:10,10

:9,9

Each node is annotated
with two integer values:

− REP

− node’s identifier

((a1 −> a2) * list(a3))  −> list(a2) ((a3 −> a4) * list(a3))  −> a5

*:2,2 list:8,8

:1,1

:3,3 list:6,6

a1:4,4 a2:5,5 a3:4,7 a4:5,12

:3,11 list:6,13

*:2,10 a5:8,14

:1,9

The unifier is
constructed by

nodes’ REPs:
combining

((a1 −> a2) * list(a2))

     −> list(a2)

To construct the unified type: start with any of the two type
expressions; and write down the “representative” nodes, i.e., the ones
with node id = rep (otherwise go to the rep node & write it).
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What Changes When Adding Arrays? (part 1)

Polymorphic Array Constructors and Combinators:

map: ∀ α. ∀ β. (α → β ) ∗ [α] → [β],
map(f , {x1, .., xn}) ≡ {f (x1), .., f (xn)}

reduce: ∀ α. ((α ∗ α) → α) ∗ α ∗ [α] → α
reduce(g , e, {x1 , .., xn}) ≡ g(..(g(e, x1).., xn)

Question 1: Do we need to implement type inference?

Answer 1: No! Fasto supports a fixed set of polymorphic function
whose types are know (or if you like, very simple type inference).

35 / 40



University of Copenhagen Department of Computer Science

What Changes When Adding Arrays? (part 1)

Polymorphic Array Constructors and Combinators:

map: ∀ α. ∀ β. (α → β ) ∗ [α] → [β],
map(f , {x1, .., xn}) ≡ {f (x1), .., f (xn)}

reduce: ∀ α. ((α ∗ α) → α) ∗ α ∗ [α] → α
reduce(g , e, {x1 , .., xn}) ≡ g(..(g(e, x1).., xn)

Question 1: Do we need to implement type inference?

Answer 1: No! Fasto supports a fixed set of polymorphic function
whose types are know (or if you like, very simple type inference).

35 / 40



University of Copenhagen Department of Computer Science

What Changes When Adding Arrays? (part 1)

Polymorphic Array Constructors and Combinators:

map: ∀ α. ∀ β. (α → β ) ∗ [α] → [β],
map(f , {x1, .., xn}) ≡ {f (x1), .., f (xn)}

reduce: ∀ α. ((α ∗ α) → α) ∗ α ∗ [α] → α
reduce(g , e, {x1 , .., xn}) ≡ g(..(g(e, x1).., xn)

Question 2: Assuming type-checking is successful, can we forget the
type of map(f, a)?

Answer 2: No, the type of [t] ≡ map(f, a) needs to be
remembered for machine-code generation, e.g., t : int vs
t : char.
Same for array literals, array indexing, map, reduce, etc.
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What Changes When Adding Arrays? (part 2)

map : ∀ α. ∀ β. (α → β ) ∗ [α] → [β]. Type rule for map(f, x):

compute t, the type of x, and check that t ≡ [tin] for some tin.
check that f : tin → tout
if so then map(f, x) : [tout ].

AbSyn representation for map: Exp<’T> = ... |

Map of FunArg<’T> * Exp<’T> * ’T * ’T * Position

Before type checking, ’Ts are unknown: UntypedExp=Exp<unit>

After type checking types are known: TypedExp=Exp<Type>

1st T is the input-array element type, e.g., tin,
2nd T is the output-array element type, e.g., tout .

checkProg : UntypedProg -> TypedProg

Type checking an expression/program now results in a new exp/prg,
where all ’T fields, initially unknown (’T=unit) of an expression are
filled with known types (’T=Type).
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TypeChecker.fs: Entry-Point checkProg

(* function symbol table *)

type FunTable = SymTab.SymTab<(Type * Type list * Position)>

(*adds a (fun name,signature) to ftab*)

fun updateFunctionTable (ftab: FunTable) (fundec: UntypedFunDec) : FunTable =

let (FunDec (fname, ret_type, args, _, pos)) = fundec

let arg_types = List.map (fun (Param (_, ty)) -> ty) args

match SymTab.lookup fname ftab with

| Some _ -> raise (MyError ("Duplicate function!", pos))

| None -> SymTab.bind fname (ret_type, arg_types, pos) ftab

let checkProg (funDecs : UntypedProg) : TypedProg =

(* builds ftab from special funs and pgm functions *)

let ftab0 = SymTab.fromList [("chr", (Char, [Int], (0,0)));

("ord", (Int, [Char], (0,0))) ]

ftab = List.fold updateFunctionTable ftab0 funDecs

(* applies typing rules and fills in ’T with Types *)

decorated_funDecs = List.map (checkFun ftab) funDecs

match SymTab.lookup "main" ftab with

| Some (_, [], _) -> decorated_funDecs (* all fine! *)

| _ -> raise (MyError("No Main, OR Main with Args", p))
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TypeChecker.fs: Type Checking a Function

type VarTable = SymTab.SymTab<Type> (* variable symbol table *)

checkFunWithVtable (vtab: VarTable) (ftab: FunTable) pos

(fundec: UntypedFunDec) : TypedFunDec =

let (FunDec (fname, rettype, params, body, fpos)) = fundec

... (* Expand vtab by adding the formal param bindings. *)

paramtable = List.fold addParam (SymTab.empty()) params

vtab’ = SymTab.combine paramtable vtab

(*type check fun’s body ⇒ the type of and a type-annotated body’*)

(body_type, body’) = checkExp ftab vtab’ body

(* If return type matches body’ type ⇒ type-annotated fun declaration *)

if body_type = rettype

then (FunDec (fname, rettype, params, body’, pos))

else raise (MyError ("Fun return type does NOT matches body type",fpos))

Isn’t vtab always empty? Why pass it as param?

Because we need to typecheck both named and anonymous (lambda)
function declarations. (see checkFunArg, the Lambda case).
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TypeChecker.fs: Type Checking Simple Exprs

(* computes the type of and the type-annotated expression *)

checkExp (ftab : FunTable)

(vtab : VarTable)

(exp : UntypedExp) : (Type * TypedExp) =

match exp with ...

| Var (s, pos) -> match SymTab.lookup s vtab with

| None -> raise (MyError ("Unknown var!"), pos))

| Some t -> (t, Var (s, pos)) )

(* e1, e2 must be of the same SCALAR type. The result type is Bool. *)

| Equal (e1, e2, pos) ->

let (t1, e1’) = checkExp ftab vtab e1

(t2, e2’) = checkExp ftab vtab e2

match (t1 = t2, t1) with

| (false, _) -> raise (MyError ("Equal different types!", pos))

| (true, Array _) -> raise (MyError ("Cannot compare arrays", pos))

| _ -> (Bool, Equal (e1’, e2’, pos))
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