
A Java-based environment for teaching programming language concepts�

Manfred Hauswirth, Mehdi Jazayeri, and Alexander Winzer
Distributed Systems Group

Technical University of Vienna
Argentinierstraße 8/184-1, A-1040 Wien, Austria

fM.Hauswirth,M.Jazayeri,A.Winzerg@infosys.tuwien.ac.at
http://www.infosys.tuwien.ac.at/

Abstract - We describe the SDE visual environment for the
study of the semantics of programming languages. SDE
supports the abstract machine called SIMPLESEM which is
used to define the operational semantics of programming lan-
guages in a widely-used textbook on programming languages.
By basing the environment on the World-wide Web infrastruc-
ture, the environment is immediately available to students and
instructors around the globe. SDE enhances the student’s
learning by simulating and visualizing abstract concepts of
semantics. Such visualization environments are invaluable in
the study of abstract subjects. SDE is currently being used
in several university courses in different countries. We de-
scribe the environment’s architecture and capabilities and re-
view some of our experiences in developing the environment.

Introduction

Courses on concepts or principles of programming languages
are a standard part of university computer science curricula.
As opposed to courses on programming in particular lan-
guages, these courses emphasize commonalities and differ-
ences among many different programming languages. These
courses consider the syntax and semantic components of pro-
gramming languages. The study of syntax deals with static
aspects of programming languages for which notations based
on Backus-Naur Form (BNF) have proven adequate and have
become standard tools for such study. For the study of se-
mantics, however, there are several approaches and there is
no consensus as to the best method. Existing approaches to
semantic description may be categorized as axiomatic, deno-
tational, and operational.

The operational approach defines the semantics of a pro-
gramming language with reference to program execution on
an abstract machine. In particular, the semantics of a language
construct is defined by giving its translation in terms of the in-
structions of the abstract machine. Thus, to fully understand

�This work was supported in part by a grant from the Hewlett-Packard
European Internet Initiative.

the semantics of a programming language, the student must
learn the instructions of the abstract machine, how to translate
programs of the programming language into programs of the
abstract machine, and how the abstract machine executes its
programs. In conventional courses, these are done by pencil
and paper. Having learned the semantics of a language, the
student should be able to translate a language construct into
the instructions of the abstract machine. Given such a trans-
lation, how does the student know that the translation is cor-
rect? No matter how simple the abstract machine is, tracing
the execution of constructs such as recursive procedure calls
is tedious and error-prone because the student has to manu-
ally step through this code keeping track of all data items, the
instruction pointer, stack, and heap.

A computing environment that supports program devel-
opment, execution, and visualization for the abstract machine
relieves the student from having to deal with the tedium of ma-
chine execution and instead to concentrate on the semantics
of the language constructs. A visual execution of the program
brings to life the semantics of the language constructs. Vetter
[7] argues for “specialized tools” to improve course compre-
hension. SIMPLESEM Development Environment (SDE) is
such a tool specialized for programming language concepts.
SIMPLESEM is a semantic abstract machine introduced and
used in the book Programming Language Concepts [4]. SDE
is a graphical Java-based environment that allows the student
to edit, run, and debug SIMPLESEM programs. SDE ani-
mates SIMPLESEM executions by visualizing the code and
data memories of the SIMPLESEM processor. Users have in-
teractive control over the memory contents and program flow
at any time. Both code and data breakpoints are supported.
These facilities allow easy debugging and appreciation of a
program’s control and data flow. This leads to a better under-
standing of the program’s dynamic behavior [6]. The use of
new technology to improve teaching and learning is currently
an active area of discussion. A special issue of the Communi-
cations of the ACM [1] is devoted to new educational uses of
computers in the campus environment. The virtual round table
[3] discusses many interesting issues and implications of the

new IT educational infrastructure. Krämer [5] describes the
general issues of distance learning, the paradigm shift from
classroom teaching to interactive distance teaching, and a spe-
cific on-line course for distributed software engineering.

SDE is portable across many platforms and can be used
either via the World-wide Web in a Java-enabled browser (ap-
plet version) or as a stand-alone application. To ensure iden-
tical functionality in both versions, despite the fact that Java
applets and applications have different security requirements,
the applet version emulates functionalities that are only al-
lowed for applications, e.g. the applet version includes a sim-
ple file server for storing and loading code. SDE has a sin-
gle program source for both versions. SDE is accessible over
the WWW and requires no installation procedure on client
computers. The only requirement for its use is a Java-enabled
WWW browser.

The paper is structured as follows. First we describe the
semantic abstract processor SIMPLESEM which is followed
by an overview of SDE and its functionalities. Then we dis-
cuss the impact of SDE on teaching of language semantics.
The final section summarizes the main points made, presents
some lessons learned, and concludes the paper.

SIMPLESEM Concepts

SIMPLESEM is an abstract semantic processor to support
an operational approach to semantics of programming lan-
guages. It enables understanding of a concrete program-
ming language’s concepts by mapping them onto sequences
of SIMPLESEM instructions that can then be “executed.”

SIMPLESEM consists of an instruction pointer, a mem-
ory, which is divided in two separate sections—code and data
memory—and a processor. The code memory (C) holds the
code to be executed and the data memory (D) holds the data
which the code manipulates. Both C’s and D’s addresses start
at 0 (zero) and both programs and data are assumed to be
stored starting at this address. The instruction pointer (ip) is
used to point at the next command in C to be executed. It is
initialized to 0 and automatically incremented as an instruc-
tion is executed. Each instruction takes one location in C.
Execution stops when the special instruction halt is encoun-
tered.

The notations C[X] and D[X] are used to denote the values
stored in the Xth location of C and D, respectively. Modifi-
cation of the value stored in a location is performed by the
instruction set target, source where target is the address
of the location whose content is to be set, and source is the
expression evaluating the new value. For example, set 10,
D[20] stores the value of location 20 into location 10.

Input/output in SIMPLESEM is achieved by using the set
instruction and referring to the special registers read (input)
and write (output). For example, set 15, read would read a
value from the input device and store it in location 15, and set
write, D[50] would print location 50’s contents on the output

device.
Values can be combined into expressions in a liberal and

natural way; for example, set 99, D[15]+D[33]*D[41] would
be an acceptable instruction to modify the contents of location
99.

To modify the sequential control flow, SIMPLESEM has
the jump and jumpt instructions. The former is an uncon-
ditional jump to a certain instruction, e.g. jump 47 makes
the instruction at C[47] the next instruction to be executed.
The latter is a conditional jump which occurs if an expression
evaluates to true. For example, for jumpt 47, D[3] � D[8] ex-
ecution would continue at location 47 if the value in location
3 is greater than the value in location 8 otherwise execution
continues with the next instruction.

SIMPLESEM allows indirect addressing. For example,
set D[10], D[20] assigns the value stored at location 20 to the
cell whose address is the value stored at location 10. Thus, if
the value 30 is stored at location 10, the instruction modifies
the contents of location 30. Indirection is also possible for
jumps. For example, jump D[13] jumps to the instruction
stored at location 88 of C, if 88 is the value stored at location
13.

As can be seen from SIMPLESEM’s description so far, it
is a simple machine and it is easy to understand how it works
and what the effects of executing its instructions are. In other
terms, we can assume that its semantics are intuitively known
by students with a basic computer education. The seman-
tics of programming languages can therefore be described by
rules that specify how each construct of the language is trans-
lated into a sequence of equivalent SIMPLESEM instructions.
Since SIMPLESEM instructions are already known, the se-
mantics of newly defined constructs also become known.

All constructs and concepts of modern programming lan-
guages, such as loops, routines, recursion, stack and heap
memory, block structure, scoping, parameter passing seman-
tics, can be mapped onto the SIMPLESEM instructions de-
scribed above. These mappings, however, are beyond the
scope of this paper. The interested reader is referred to [4]
for a detailed description.

Figure 1 gives a simple and intuitive example of mapping
programming language concepts onto SIMPLESEM instruc-
tions.

{
 int i, j;
 get(i, j);
 while (i != j)
 if (i > j)
 i = i - j;
 else
 j = j - i;
 print(i);

main()

}

6 set 1, D[1] - D[0]
7 jump 2
8 set write, D[0]
9 halt

0 set 0, read
1 set 1, read
2 jumpt 8, D[0] = D[1]
3 jumpt 6, D[0] <= D[1]
4 set 0, D[0] - D[1]
5 jump 7

Figure 1. A mapping to SIMPLESEM

The program on the left, given in a C-like language, com-
putes the greatest common divisor of two integer numbers us-
ing a simple loop. The code on the right shows the same pro-
gram in terms of SIMPLESEM instructions.

SIMPLESEM Development Environment

Students learn to step through procedural code early in their
studies. Without software support, stepping through the code
is a tedious and error-prone task. The SIMPLESEM Devel-
opment Environment (SDE) is a graphical, Java-based envi-
ronment that supports development and visualization of SIM-
PLESEM programs. We chose Java [2] for the implementa-
tion to make SDE accessible via the Internet as an applet. Java
facilitates portability across a wide range of platforms. Thus
it can be used immediately and run “off-the-shelf.”

An applet is a piece of Java code that is downloaded from
a WWW server and is executed on the client computer (see
Figure 2). The WWW browser used for downloading provides
the applet with a feasible runtime environment and takes care
of security concerns, etc.

Webserver Client

Java program

HTML....

Reference
to Java
program

... HTML

1.) request HTML page

3.) parse
HTML
page

6.) execute
Java applet

4.) request Java applet

2.) send HTML page

5.) send Java applet

Figure 2. Downloading and executing an applet

Using this setting has several advantages: no explicit
installation is needed on the client computer; only a Java-
enabled browser is needed which is available on most com-
puters anyway; SDE is world-wide accessible via the Internet;
users do not have to maintain the software since they always
download the newest version.

Additionally, SDE can also be downloaded and run as a
local applet or as a stand-alone application. This is interesting
for use on computers without Internet connection or if only
a slow connection is available. Using SDE as a local applet
requires a Java-enhanced browser. For the application version
a Java Virtual Machine (JVM), i.e. the Java runtime environ-
ment is necessary.

Figure 3 shows the global architecture of SDE.

send HTML page

request HTML page

send compressed SDE application

Webserver Client

SDE applet

SDE application

file-server

download request

send file to client/save file sent from client

save/load file request

Figure 3. Global architecture

Applets only have restricted access to the client computer,
e.g. file access is not possible. To provide storing and load-
ing of SIMPLESEM files for the applet version, we imple-
mented a file server that runs on the host holding the SDE
applet. Users of the applet version can load from and store
to the server. The application version uses the file system di-
rectly. Despite the slightly different capabilities, which are
due to security restrictions, both versions are included in a
single source. Features become available or are disallowed
dependent on whether SDE executes as an applet or as an ap-
plication. Configuration, however, is not necessary.

SDE consists of a simple line-oriented editor, a SIMPLE-
SEM interpreter, and a graphical debugger.

Figure 4. SDE screenshot

Figure 4 shows a sample SDE session. The editor/code
component shows the SIMPLESEM program code in the code
memory C (here the program given in Figure 1). The next in-
struction to be executed is the instruction in line 6. This is
indicated by the changed background color of this line. A
breakpoint has been set at line 7, which is shown in the break-
point window on the left. Additionally the line number part
of line 7 in the code window indicates the breakpoint by hav-
ing a different background color. A data breakpoint is set on
location 1. The different background color of location 1’s line
number in the data window indicates that the breakpoint was
triggered at the current state of execution. This means that
automatic execution was suspended and SDE waits for user

input. The user now can check the execution state, change
data values, edit the program, change breakpoints, continue
with the execution, etc. These functionalities are accessible
via the various windows in combination with the buttons at
the bottom of the main window. SDE offers the following
functionalities:
Editing. SDE programs can be typed directly into the edi-
tor window. The editor is line-oriented and offers basic editor
functionalities such as cut and paste, line deletion and inser-
tion, etc.
Breakpoints. Breakpoints can be inserted into the program to
suspend automatic execution at defined points.
Execution control. The standard behavior is that programs
are executed automatically until user input is required (read
register is accessed), the execution hits a breakpoint, or the
user hits a control button (pause, stop, restart). In such cases
the user can take further actions, e.g. provide input, set/delete
breakpoints, continue execution, single-step through the code,
etc.
Data breakpoints. Data breakpoints are set on D memory
locations. If an instruction attempts to modify a location with
a data breakpoint, execution is suspended.
Loading and storing files. SIMPLESEM code can be stored
to, and loaded from, files. In case of the application version
this is done on the local file system. The applet version is not
allowed to access the file system. So loading and storing is
done via a remote file server that runs on the applet’s server.
This server is part of SDE.

A detailed SDE user’s guide is included in [8]. To round
out the discussion, Figure 5 shows the internal architecture of
SDE.

Control ComponentCode ComponentData ComponentBreakpoint & Data
Breakpoint
Component

User interaction

Interpreter Component
1. get instruction
2. increment IP
3. parse and execute instruction

Figure 5. SDE’s internal architecture

The control component provides the user interface for the
communication between the user and the other components.
Additionally, it is in charge of the communication between
the components. The code component implements the source
code editor. The two breakpoint components store and dis-
play breakpoints. They provide a specialized interface to the
interpreter to support fast breakpoint checking.

The interpreter component (Figure 6) gets lines of code
from the code component and feeds them into its lexical ana-
lyzer. The lexical analyzer breaks the input into tokens, which
are the input for the parser. The parser combines multiple to-
kens into a SIMPLESEM instruction and checks its syntacti-
cal correctness. The interpreter then executes the instruction.
Needed data values are retrieved from, and sent to, the data
component.

Control
Component

Interpreter
Component

Lexical Analyzer

Parser

code & data
values

commands
tokens

Code
Component

Data
Component

data values

Figure 6. Interpreter interaction

To allow the user to interrupt or pause execution, as de-
scribed above, the interpreter is implemented as a Java thread.
When the user starts a SIMPLESEM program, an interpreter
thread is created. It cooperates with the lexical analyzer and
parser which are threads themselves. Interrupting and pausing
requests are done by suspending the relevant threads. Later,
these threads can be destroyed or resumed, e.g. in case of
continue or single-step operations. This multi-threaded archi-
tecture ensures highly interactive responsiveness. A detailed
description of SDE’s implementation is given in [8].

Using SDE for teaching

Abstract concepts are always difficult to teach to beginners in
a subject. For example, beginning students always have diffi-
culty with the concept of recursion: “how is it possible to call
a procedure that you are defining?” they ask. By visualizing
the execution of recursive procedures, the student can clearly
see how recursion starts, how it proceeds, and how it finally
terminates. The student can see the cost of the mechanism
and can compare it visually with equivalent implementations
based on iteration. The visual impact is immediate. To debug
a nonterminating recursive procedure by tracing it on paper is
orders of magnitude more difficult than by running it in an in-
terpreter. Indeed, the initial demo program loaded with SDE
is a recursive factorial program. It is a good demonstration
of how a simple program gives rise to complicated dynamic
behavior. Getting one instruction wrong can lead to infinite
recursion. By modifying selective instructions in the program
the instructor can demonstrate common mistakes and their—
sometimes dramatic—consequences.

The basic idea of SDE is to visualize abstract concepts
that have no physical counterparts. Most areas of computer

science deal with similarly abstract concepts and can benefit
from similar supporting software tools.

Conclusion

We have described the SIMPLESEM Development Environ-
ment for the study of the semantics of programming lan-
guages. SDE is being used in our university for our Program-
ming Language Concepts course. This is the first time that the
course is being taught with such support.

Interestingly, even though SDE has just been developed
and has not even been announced officially, it has already been
“discovered” by several instructors around the world (on at
least three continents!) and is being used in supporting their
teaching. Traditionally, instructors of similar courses share
their experiences and are also supported by textbook authors.
The material shared is usually static in nature: model syllabi,
copies of transparencies, etc. A software tool such as SDE en-
ables new ways of sharing. In particular, specially interesting
SIMPLESEM programs (such as our factorial demo program)
that demonstrate specific issues such as recursion or proce-
dure parameters may be provided on the WWW.

SDE also enables new kinds of homework assignments
that were not possible before because of the tedium of han-
dling anything but very small SIMPLESEM programs. Fur-
thermore, homework assignments can take the form of applets
that are run by students and submitted automatically to the in-
structor’s site. The assignments can be evaluated automati-
cally and the student notified immediately. Such mechanisms
enable one instructor to support a larger number of students
than is usually possible.

SDE was implemented in Java and mainly intended
for use with browsers over the WWW. Java and the
WWW/browser infrastructure were chosen to provide ubiq-
uitous access and immediate availability of new versions. Ad-
ditionally, this setting was intended to free users from instal-
lation and maintenance work. Since Java supports portability,
we assumed we could meet these goals easily. This turned
out to be overly optimistic. There were two main reasons
that lengthened the duration of the project considerably: a
new Java release and the Java environments of the browsers.
During the implementation Java changed from version 1.0.2
to 1.1.x. This introduced some incompatibilities, e.g. depre-
cated interfaces, which caused a rework of SDE. The browsers
and the platforms they run on have slightly different environ-
ments, especially in terms of GUI programming. These dif-
ferences were big enough to turn Java’s “write once, run ev-
erywhere” approach into a “write once, test everywhere” one
and caused considerable delay due to compatibility and sta-
bility tests. These problems will be with us until Java stabi-
lizes. Nevertheless we know of no other approaches that offer
similar benefits. SDE is available over the World-wide Web
(http://www.infosys.tuwien.ac.at/pl-book/simplesem/).

References

[1] ACM, “Special issue on campus-wide computing,”
Communications of the ACM, Vol. 41, No. 1, January
1998.

[2] Arnold, K., Gosling J., “The Java programming lan-
guage,” Addison-Wesley, Reading, Mass. and London,
1996.

[3] El-Rewini, H., Mulder, M.C., Freeman, P.A., Stokes,
G.E., Jelly, I., Cassel, L., Lidtke, D.K., Russo, S.,
Krämer, B.J., Haines, J.E., Turner, J., “Keeping pace
with an information society,” IEEE Computer, Vol. 30,
No. 11, November 1997, pp. 46–57.

[4] Ghezzi, C., Jazayeri, M., “Programming Language Con-
cepts,” 3rd edition, John Wiley, New York, 1997.

[5] Krämer, B.J., Wegner, L., “From custom text books
to interactive distance teaching,” ED-MEDIA/ED-
TELECOM 98, Prentice-Hall, Englewood Cliffs, NJ,
1998.

[6] Lee, E.A., Messerschmitt, D.G., “Engineering an edu-
cation for the future,” IEEE Computer, Vol. 31, No. 1,
January 1998, pp. 77–85.

[7] Vetter, R.J., “Web-based education experiences,” IEEE
Computer, Vol. 30, No. 11, November 1997, pp. 139–
141.

[8] Winzer, A., “A SIMPLESEM interpreter in Java,” tech-
nical report, master thesis done at Distributed Systems
Group, Technical University of Vienna, Austria, 1998.

