Building a cross compiller.

Jason Miller
Spring '10

Source: Your PC

Target: Linksys WRT54G

216 MHz MIPS-32 processor
16 MB RAM
4 MB Flash Memory

e 1802.11B/G wireless
Courtesy www.tomsguide.com .
e interface
- oy % WRT54GS v3
IRt j e 5 100Mbs ethernet ports
|‘5‘:D|| a [3 2 [0] o [wanvenmmoen

The processors

Designer
Design
Bits
Endian
Type

X86 MIPS

Intel / AMD MIPS Computer Systems
CISC RISC

16,32,64 32,64

Little Bi *

Register-Memory Reqgister-Register

The operating systems

e Fedora Core 9 Linux

g . Kernel 2.6.27.25-78.2.56.fc9.x86_64 #1 SMP

openwrt

e OpenWrt Linux
e Kernel 2.6.25.20 #4

The compiler

e The Gnu Compiler Collection

e Includes front ends for C, C++, Objective-C, Fortran, Java, Ada,
and associated libraries

A 5-stage compiler (preprocessing, parsing, translation, assembly,

linkage)

Source Code

Source w/ Substitutions

Parse Tree

=™ Preprocessor = Farser = Translation
Assgmbly
Chject File
Memory Image Exe file Exe File Object File
~}—— OS5 Exe Loader Disk |- Linker [Assembler
i

Courtesy http://www.acm.uiuc.edu/sigmil/RevEng/ch02.htm/

What do we need?

The obvious answer is that we need a version of the GCC C compiler that can
run on x86 hardware and can output machine code for the MIPS hardware.

The not-so-obvious addendum to that is that, since we are writing software for
an embedded device, we need to keep the machine code as small as possible.

Having said that, we decide to use Newlib (http://sourceware.org/newlib/). It is
a drop-in replacement for libc (the C standard library) that 1s specifically
designed to provide a functional subset of capability on platforms with
extremely limited resources. This includes many different embedded devices as
well as software environments such as Cygwin.

http://sourceware.org/newlib/

The conundrum

e In order to build our required version of GCC, we
need to have an already-built version of Newlib
to link against.

e However, 1n order to build Newlib, we need a
working version of our compiler that can output
code for our target platform.

What ever shall we do?

C — x86 ass.

X86

x86 ass—=x86

X886

C —= ass.

C

asSs.

%M

=

The givens

A natively-built x86 C compiler (provided by the GCC package
as part of the Fedora linux distribution)

A natively-built x86 assembler (provided by the GCC package
as part of the Fedora linux distribution)

The source code for the GCC C compiler (from
http://gcc.gnu.org)

The source code for the binutils assembler (from
http://www.gnu.org/software/binutils/)

The bootstrap

MIPS ass. —= MIP5
* *

MIPS ass. —== MIPS

¥86 ass.

X886 ass.%xaﬁ

ass. — M
C C — x86 ass.
X86
Building the
MIPS assembler.
X886

~_

C —= ass.

X86

XB86

X886

~_

C ——= MIPS ass.
*

C ——= MIPS ass.

¥B86 ass.

¥86 ass—=Xa86

* Configured before compilation

C C — x86 ass.
X386
Building the
MIPS compiler.
x86

~_

X886

X86

X86

~_

Newlib

Newlib) Newlib) Newlib
C C —= MIPS ass. | MIPS ass. | MIPS ass. —= MIPs| MIPS

x86 X86

X866 X86

~_ ~_

Our compiler/assembler from the last step.

Re-build GCC

Newlib We need to re-build GCC and
have it link against the Newlib
MIPS that we just built.
A

C —= 3ss5. C ——= MIPS ass. (C ——= MIPS ass.

C | C—> x86ass. |*®535 |x86 ass.%xﬁﬁ x86
X86 X860

X886 X886

~_ ~_

The code

main_C X #include <stdio.h>

vold foo();
void bar();

int main{int argc, char **argwv)
{
printf("Built %s - %s\n", _TIME_, _DATE);
foo();
bar();
return{@) ;
Y /* end main() */

foo.c % int printf (_ const char * restrict _format, ...);
void foo()
{

printf("foo() called\n");
Y /¥ end fool) */

bar.c int printf {_ const char *# restrict _ format, ...);
void bar()
{

printf("bar() calledyn"};
Y /¥ end bar() */

The Makefile

i?SDK_DIR:fhumefmips—sdkfstaging_dirftuulchain—mipsel_gcc4.1.2
MLPS CC=%{SDK_DIR}/bin/mipsel-linux-gcc
X86_64 CC=/usr/bin/gcc

all: main-mips main-x86_64

deploy: main-mips
sCp main-mips root@l0.0.0.23:/tmp

clean:
rm -rf *.0 %5 % pp *.tu main-mips main-x86_64

let's build a mips binary

main-mips: main.c foo-mips.o bar-mips.o
S{MIPS_CC} -Wall -5 $? -0 $@.5 2=/dev/null
${MIPS_CC} -Wall $? -o %@

foo-mips.o: foo.c
${MIPS_CC} -Wall -5 $? -o $@.s
S{MIPS_CC} -Wall -c $? -0 %@

bar-mips.o: bar.c
£{MIP5_CC} -Wall -5 7 -o $@.s
S{MIPS_CC} -Wall -c $? -0 %@

Llet's build an x86_64 binary

main-x86 64: main.c foo-x86 64.0 bar-x86 B64.0
£{X86_64_CC} -Wall -E main.c -o $@.pp
£{¥86_64 CC} -Wall -5 %7 -0 $@.5 2=/dev/null
£{X86_64_CC} -Wall -fdump-translation-unit $? -o %@

foo-x86 64.0: foo.c
${x86_64 _CC} -Wall -S $? -o $@.s
${X86_64_CC} -Wall -c $7 -o $@

bar-x86 64.0: bar.c
${X86_64_CC} -Wall -5 $? -o $@.s
${x86_64 _CC} -Wall -c $? -o %@

Demo time

hings to do:

Build the test program

What can 'file’ tell us about the programs?
Run them both on x86. What happens?
Deploy to and run on the WRT

Look at the intermediate output files

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

