

Writing Application Protocol Parsers

Jeffrey Kirby

Overview
● Introduction
● Motivation
● Related Work
● Assumptions
● binpac Language
● Evaluation
● Future Work

Introduction
● binpac is a declarative programming language

and compiler used to write application protocol
parsers

Motivation
● Why do we need application protocol parsers?

● Network Intrusion Detection Systems (NIDS)
● Network monitors
● Smart firewalls
● Application layer proxies

Motivation
● Why do we need binpac?
● Difficulties of writing parsers by hand

– Tedious and error prone
– Protocols are complex
– Need to think about corner, or rare, cases
– Hacker purposefully injects non-conforming data
– Need to handle thousands of connections in real-time

● Vulnerabilities have been discovered in existing
protocol parsers

Motivation
● Reusability

● Protocol parsers used in one application cannot be
easily used in another application

● Lack of abstraction

Motivation
● Protocol parsers differ from language parsers

● Network protocols are not easily expressed as a
Context Free Grammar

● Need for correlation across different directions of a
single connection

● Language processors are not designed to
concurrently parse multiple, incomplete input
streams

Related Work
● Augmented BNF (ABNF)

● Concise, but incomplete, description of a protocol
● Generic Application-level Protocol Analyzer

(GAPA)
● Protocol analyzer used for traffic analysis at end

host machines
● PACKETTYPES

● Language which treats network packet data
structures as C types

Related Work
● binpac, on the other hand

● Designed to process high-volume traffic at network
gateways

● Abstraction
● Modularity

Assumptions
● binpac focuses only on application protocol

parsing and assumes existence of lower level
protocol analyzers

binpac Language
● Declarative language

● Describes what computation should be performed
but not how to compute it

● Not Imperative

● e.g. Functional, Logic

binpac Language
● Features

● Elementary types
– Similar to C++ integer and string types

● Composite types
– record, array, case

● Type parameters
– Allow for passing information between types
– Avoids need to keep external state

binpac Language
● Features

● Derivative fields
– Useful for intermediate computation results

● Byte order (Big-endian v. Little-endian)
– User may specify which field to use for byte order

● State management
– flow - sequence of messages
– connection – pair of flows

binpac Language
● Features

● Integrating custom computation
– C/C++ code may be embedded

● Error detection / recovery
– Can't just “stop and complain” like a language parser
– Upon error, throws C++ run-time exception

● Separation of concerns
– “breaking a program into distinct features that overlap in

functionality as little as possible”

Evaluation
● Comparison of hand-written parsers and binpac

generated parsers for the Bro traffic analysis engine

Future Work
● Add support for languages other than C++
● Evaluate reusability by using code with systems

other than Bro

● Note:
binpac is open-source and is now a part of the
Bro distribution

References
● P. Ruoming, V. Paxson, L. Peterson, R. Sommer.

binpac: A yacc for Writing Application Protocol
Parsers. IMC'06. October 25-27, 2006.
http://conferences.sigcomm.org/imc/2006/papers/p29-pang.pdf

● Declarative Programming.
http://en.wikipedia.org/wiki/Declarative_programming

● binpac User Guide
http://www.bro-ids.org/wiki/index.php/BinPAC_Userguide

http://conferences.sigcomm.org/imc/2006/papers/p29-pang.pdf
http://en.wikipedia.org/wiki/Declarative_programming
http://www.bro-ids.org/wiki/index.php/BinPAC_Userguide

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

