

Compiler Optimization

Jordan Bradshaw

Outline
●Overview
●Goals and Considerations

– Scope
– Language and Machine

● Techniques
– General
– Data Flow
– Loop
– Code Generation

● Problems
● Future Work

References

● Watt, David, and Deryck Brown.
Programming language processors in
Java. Pearson Education, 2000. 346-
352. Print.

● "Compiler Optimization." Wikipedia.
Wikimedia Foundation, 25 04 2010.
Web. 25 Apr 2010.
<http://en.wikipedia.org/wiki/Compiler_o
ptimization>

Compiler Optimization

●Goals:
– Speed
– Memory Usage
– Power Efficiency

● Difficulties
– Multiple ways to solve each problem
– Hardware architectures vary

Compiler optimization is the process of gen-
erating executable code tuned to a specific
goal. It is not generating 'optimal code'.

Overview
● Compilers try to improve code by:

– Reducing code
– Reducing branches
– Improving locality
– Improving parallel execution (pipelining)

● How this is done depends on:
– The language being optimized
– The target machine
– The goal to optimize toward

Optimization Considerations

Goals of Optimization
● Speed:

– Most obvious goal
– Try to reduce run time of code

● Memory Usage:
– Also common (esp. in embedded systems)
– Try to reduce code size, cache misses, etc.

● Power:
– More common recently
– Useful for embedded systems

● Other:
– Debugging?

Scopes of Optimization
● Peephole Optimization – Replace sequences

of generated instructions with simpler series
● Local Optimization – Perform optimizations

within a code block / function
● Global Optimization – Perform optimizations

on entire program
● Loop Optimization – Perform optimizations to

improve loop performance

Language and Machine

●Language
– Many languages share features
– Language constructs (such as pointers)

can make this hard
● Machine

– General optimizations work on many ar-
chitectures

– Knowledge of the machine gives better
benefits.

Optimizations can be performed in a language
or machine dependent or independent man-
ner.

Machine Considerations
● Target machines can vary a lot:

– Registers
– Pipeline structure
– Execution units
– Available instructions
– Cache

● A good compiler will try to take advantage
of as many of these as possible

● Or, it may try to balance these for a set of
architectures (i.e. AMD and Intel)

Optimization Techniques

Optimization (General)
● Some optimizations can be done on code

found anywhere in the program
● Constant folding – Perform as much

arithmetic as possible

● Subexpression elimination

3/2 => 1.5 (4/3) * 10 + 0.2f => 13.53
((4/3) * i) / 2 => 0.66 * i

(2.4 * i) + (2.4 * j) => 2.4 * (i + j)

Optimization (Peep Hole)
● Examine a series of instructions and try to

reduce it to a simpler set
● Alternatively, replace individual

instructions with more suitable ones
– Shifting can be more efficient than

multiplication or division
– The XOR trick

● Doesn't depend much on the global
information

Optimization (Program Flow)
● Jumps and calls should be avoided
● Functions can be inlined to avoid a call
● if/else

– If compiler can guess result, generate code to
minimize jumps

– Use lazy conditionals
– Try simple conditions first

if (variable || callFunction())

not

if (callFunction() || variable)

Optimization (Program Flow)
● Dead code can be removed

● Invariant code can be factored out

if (true)
doThis()

else
doThat();

if (variable)
{

var1 = 0;
doThis();

}
else
{

var1 = 0;
doThat();

}

var1 = 0;
if (variable)
{

doThis();
}
else
{

doThat();
}

if (true)
doThis()

Optimization (Loops)
● Loops take up most of the program's time
● Should get most of the attention
● A lot of ways to optimize loops

– Induction analysis

– Invariant analysis – Values that are the same
each loop can be factored out

for (i = 0; i < 10; i++)
{

doSomething(); j++;
}

j += i;

Optimization (Loops)
● Loop fission – Break loop up to improve

locality
● Loop fusion – Combine loops operating

over same range
for (I = 0; I < 10; i++)
{

doSomething();
}

for (I = 0; I < 10; i++)
{

doSomethingElse();
}

for (I = 0; I < 10; i++)
{

doSomething();
doSomethingElse();

}

Optimization (Loops)
● Loop interchange

– Swap nested loops
– Can improve memory locality

for (i = 0; i < 10; i++)
{

for (j = 0; j < 10; j++)
{

// Notice indices are backwards
array[j][i] = i * j;

}
}

Optimization (Loops)
● Loop unrolling

– Decrease loop overhead
– Increase code size
– Helps to know loop range

for (i = 0; i < 10; i++)
{

doSomething();
}

for (i = 0; i < 5; i++)
{

doSomething();
doSomething();

}
for (i = 0; i < j; i++)
{

// How many times to unroll this loop?
doSomething();

}

Optimization (Loops)
● Loop splitting:

– Break different cases of a loop up
– Different from fission

for (i = 0; i < 10; i++)
{

if (i ==0)
doSomething();

else
doSomethingElse();

}

doSomething();
for (i = 1; i < 10; i++)
{

doSomethingElse();
}

Optimization (Loops)
● Other optimizations:

– Pipelining: execute code over multiple
iterations to improve pipelining

– Parallelization: execute iterations on multiple
processors / execution units

– Inversion: convert while to do-while, may
reduce jumps

– Reversal: execute code in reverse order, may
improve dependencies

Optimization (Code Gen)
● Instructions should be executed in an

order that minimizes stalls
● Use instructions that do more if possible

(vector math, madd)
● Allocate as much memory to registers as

possible (difficult!)
● Factor out redundant code where possible

Problems with Optimization

Optimization Problems
● Compilers must balance goals from before
● Compilers must balance performance

across multiple architectures
● Compilers don't understand what you're

programming
– Optimization can't find a better algorithm to

solve your problem
● No optimization is actually optimal
● Optimization can be slow

Sample Data

Sample Data
● Program continuously multiplies and

divides a number by 2, for 10 seconds

Optimization Iterations Program Size
None 145941324 27KB
Size 188573683 26KB
Speed 201574135 25KB

Future Work

Future Work
● Optimization can always get better

– The original Fortran compiler writers had to
work hard to win over assembler coders

– Programmers expect no less than perfection
from the compiler

● New hardware / software demands new
techniques be developed
– Multi core optimization
– More registers / memory models
– Hot Spot optimization

Questions?

