
CSCE 531 Spring 2002

FINAL EXAM—Correction Guide

Wednesday 02/5/7—Closed Book

The sum of all points is 180, but the maximum number of points attainable
is 170.

1 Short Questions–1 point each; 14 points total

1. What is the difference between a translator and a compiler? Answer: A
compiler is a kind of translator whose source language is high level and
whose target language is machine code (or assembly code).

2. What is the name for the source language of the compiler that we are
building in CSCE 531? Answer: Triangle

3. What is the name of the machine (“target machine”) whose language is
the target language of the compiler that we are building in CSCE 531?
Answer: Triangle Abstract Machine (TAM)

4. What is the difference between the von Neumann architecture and the
Harvard architecture? Answer: The von Neumann architecture has a
single memory (store) for code and data; the Harvard architecture has
separate code and data memories

5. The TAM has a Harvard architecture. True or false? Answer: True

6. The TAM is a stack-based machine. True or false? Answer: True

7. The TAM has no data registers. True or false? Answer: True

8. Why is it easier to write a compiler for a target machine with no registers?
Answer: Because there is no register allocation problem to solve.

9. What are the three components of the state in the denotational semantics
approach1? Answer: mem, i, o

10. What is a cross-compiler? Answer: A cross-compiler is a compiler that
runs on a machine different from its target machine.

11. BNF production rules may describe contextual languages. True or false?
Answer: False: only context-free languages.

1Every question on denotational semantics refers to the simple language described in class.

1

12. BNF production rules and regular expressions have the same expressive
power. True or false? Answer: False: BNF correspond to context free
languages. Regular expressions correspond to regular languages. All reg-
ular languages are context free, but some context-free languages are not
regular.

13. An emulator is an interpreter of source code. True or false? Answer:

False. It is an interpreter of machine code.

14. McCarthy’s eval is an example of a recursive interpreter. True or false?
Answer: True.

15. What is the first argument of eval? Answer: A LISP expression

16. What is the second argument of eval? Answer: An association list.

2 Semantics–5 points

1. (5 points) Describe (very briefly) the semantic difference between com-
mands, expressions, and declarations. Answer: A command is executed
to update variables or to perform I/O. An expression is evaluated to yield
a value. A declaration is elaborated to produce bindings [textbook, pp.18-
19].

3 BNF–6 points

1. (2 points) In Pascal, an identifier is a non-empty sequence of letters and
numbers that starts with a letter. Provide BNF production(s) to describe
Pascal identifiers. Answer:

<id> ::= <letter> | <letter> <letters-or-digits>

<letters-or-digits> ::= <letter> | <digit> | <letter> <letters-or-digits>

| <digit> <letters-or-digits>

2. (2 points) Provide a regular expression that describes Pascal identifiers.
Answer: [a-z] ([a-z]|[0-9])*

3. (2 points) Provide a deterministic finite state automaton that recognizes
Pascal identifiers.

4 Compilation–12 points

1. (2 points) List the three phases of compilation. Answer: Syntactic anal-
ysis, static semantics analysis (a.k.a. contextual analysis a.k.a. contextual
constraints), code generation.

2

2. (2 points) What are the two kinds of constraints that are checked in con-
textual analysis? Answer: scope and type constraints.

3. (4 points) Briefly contrast static and dynamic scope rules on the following
program:

int x = 4; // a global variable

main

{

foo // a parameterless function

{

int x = 5;

...

}

bar // another parameterless function

{

call foo;

write x; // which x?

...

}

Answer: 4 is printed under static rules; 5 under dynamic rules.

4. (2 points) Why is it impossible to write a one-pass compiler for Java?
Answer: Because variables may be declared after they are used.

5. (2 points) The argument you gave in answering the previous question does
not hold for Pascal. Why? Answer: Because identifiers must be bound
before they are used.

5 Lexical Analysis–20 points

(Parts of this question are from http://www.cs.purdue.edu/homes/hosking/502/)
Certain assemblers form their integer literals in the following way. Binary lit-
erals consist of one or more binary digits (0, 1) followed by the letter B; e.g.,
10110B. Octal literals consist of one or more octal digits 0 through 7 followed
by the letter Q (since O looks too much like 0; e.g., 1234567Q). Hexadecimal

literals consist of at least one decimal digit (0 through 9) followed by zero or
more hexadecimal digits (0 through 9 and A through F) followed by the letter H;
e.g., 0ABCDEFH. Decimal literals consist of at least one decimal digit optionally

followed by the letter D; e.g., 1234.

1. (15 points) Draw the state diagram of an NFA (not a DFA) for these literal
forms; you may use ǫ-transitions.

2. (5 points) Give a regular expression for the literals; you may use ǫ.

3

6 Contextual Analysis–13 points

1. (8 points) Briefly describe the difference between monolithic, flat, and
nested block structures and explain how this affects management of the
identification table.

2. (5 points) There are two common scope rules for the standard environ-
ment. (One is used in C.) Contrast them briefly. Answer: See p.149
textbook.

7 Code Generation–90 points

1. (30 points) Some imperative programming languages (and most, if not
all, functional languages) have a conditional expression construct. Do not
confuse this with a conditional statement construct. For example, in C, the
conditional expression is <condition> ? <trueExpression> : <falseExpression>.
The conditional expression evaluates to either <trueExpression>or <falseExpression>,
depending on the value of <condition>.

There are two possibilities for the evaluation of this template.

(a) The condition is evaluated before the expressions. Then, only the
appropriate expression is evaluated. (This is an instance of lazy eval-
uation).

(b) The condition and both expressions are evaluated at the same time.
The value of the appropriate expression is then returned. This is an
instance of eager (also known as strict) evaluation.

Most (maybe all) programming languages implement the conditional ex-
pression using lazy evaluation. Discuss the problems of eager evaluation
in this case. (Consider the possibility of side effects in expressions and
expressions that give rise to errors.) Answer: Side effects make parallel
evaluation of the three expressions impossible. With lazy evaluation you
cannot use the condition as a guard to prevent evaluation of an illegal
expression (such as division by 0, e.g.: n==0?0:1/n).

Write a code template for Mini-Triangle for the conditional expression
with lazy evaluation. Answer: See textbook.

2. (20 points) Write a code template for Mini-Triangle for the block expression

let D in E

The declaration D is elaborated, and the resulting bindings are used in the
evaluation of the expression E. The value of E is the value of the whole
block expression. Answer: See textbook.

3. (20 points) Write a code template for Mini-Triangle for the mixed expres-

sion

4

begin C; yield E; end

Here the command C is executed (including side effects), and then E is
evaluated. Answer: See textbook.

4. (20 points) Consider the following TAM assembly code.

0: PUSH 1

1: PUSH 1

2: LOADL 0

3: STORE (1) 0[SB]

4: LOADL 1

5: STORE (1) 1[SB]

6: JUMP 15[CB]

7: LOAD (1) 0[SB]

8: LOAD (1) 1[SB]

9: CALL add

10: STORE (1) 0[SB]

11: LOAD (1) 1[SB]

12: LOADL 1

13: CALL add

14: STORE (1) 1[SB]

15: LOAD (1) 1[SB]

16: LOADL 5

17: CALL lt

18: JUMPIF(1) 7[CB]

19: LOAD (1) 0[SB]

20: CALL putint

21: POP (0) 2

22: HALT

The TAM assembly code is obtained by disassembling a Triangle program,
parts of which are given below. Complete the program.

let

var sum : Integer;

var i : Integer

in

begin

....

putint(sum)

end

Answer:

let

5

var sum : Integer;

var i : Integer

in

begin

sum := 0;

i := 1;

while i < 5 do begin sum := sum + i; i := i + 1 end;

putint(sum) ! sum should be 10

end

8 Interpretation—10 points

1. (2 points) Sketch the iterative interpretation scheme. Answer: initialize;
do: fetch - analyze - execute, while still running.

2. (2 points) List three kinds of languages for which iterative interpretation
works well. Answer: Machine code, command languages, simple (Basic-
style) programming languages.

3. (6 points) Consider the iterative interpretation of Mini-Basic.

(a) What are three reasonable choices for the representation of Mini-
Basic commands in the code store? Answer: Source text, Token
Sequence, AST.

(b) Describe the trade-off involved in this choice of representation.

4. (10 points) Consider McCarthy’s LISP eval, as presented in class.

(a) Does the evaluator use static or dynamic scope rules? Answer:

dynamic.

(b) A LISP S-expression is either an mystery1 or a mystery2. What are
mystery1 and mystery2? Answer: atom, list

(c) What does the expression bar evaluate to, given that the association
list is ((foo t) (bar nil) (pippo 7)). Answer: nil

(d) Explain in words how the evaluator evaluates (lambda (x) (cons

’a x) ’(b c)), with an empty environment. Concentrate on the
changes to the environment. Answer: The key steps are, in order:
evlis is called to evaluate the actual arguments; pair is called to
create a list of pairs (formal argument, actual argument); the list of
pairs is prepended to the association list; the form in the lambda
expression is evaluated with the new association list.

6

