PROJECT MUSE’

Logic, Code, and the History of Programming

Mark Priestley

IEEE Annals of the History of Computing, Volume 43, Number 4,
October-December 2021, pp. 92-96 (Article)

Published by IEEE Computer Society

= For additional information about this article
https://muse.jhu.edu/article/849476

«2 For content related to this article
https://muse.jhu.edu/related_content?type=article&id=849476

[Tue Sep 19 11:50:08 2023] Access provided at 19 Sep 2023 16:50 GMT from Lou & Beth Holtz Library Endowment

= e lnry o Vi

Lagh ard Cermputatien

4 IEEE

https://muse.jhu.edu/article/849476
https://muse.jhu.edu/related_content?type=article&id=849476

92

DEPARTMENT EDITOR: Colette Perold, colette.perold@colorado.edu

THINK PIECE

Logic, Code, and the History of Programming

Mark Priestley ® The National Museum of Computing, Bletchley Park, U.K.

striking feature of the debates around the
Aperceived software crisis in the 1960s and
1970s is the frank contempt expressed by
some elite computer scientists for much work in the
fields of programming and programming language
design. The writings of computer scientist Edsger
Dijkstra are a familiar source of such material: in his
Turing Award lecture, he opined that “the sooner we
can forget that FORTRAN ever existed the better” and
likened an advocate of the PL/I language to a drug
addict [1]. In a slightly more restrained register, John
Backus (another Turing Award winner) used his accep-
tance speech to denounce existing languages as “fat
and flabby [2]." Dijkstra’s contempt for the tools of his
trade easily slipped into contempt for their users. For
example, he described software engineering as the
“doomed discipline” whose charter is “how to program
if you cannot,” and BASIC programmers as “mentally
mutilated beyond hope of regeneration [3]."

Such comments often frame visions of different
styles of language and approaches to programming.
Backus' critique was a prologue to a presentation of a
new system of functional programming, and Dijkstra
was a career-long advocate of small languages and a
rigorous approach to program development. Both rep-
resent a tradition within computer science that sees
programming as an unruly and uncontrollable activity
that requires disciplining [4]. In the broadest terms,
this tradition aims to subordinate programming to the
logico-mathematical activities of axiomatization and
proof. Ideally, one should program by writing a formal
specification of a problem and then formally deriving
code from this specification. This is a perfectly reason-
able research program within computer science, of
course, but also an ideal that characterizes only a tiny
fragment of the programming activity that has taken
place since the computer was invented.

1058-6180 © 2022 IEEE
Digital Object Identifier 10.1109/MAHC.2021.3127289
Date of current version 7 February 2022.

IEEE Annals of the History of Computing

Published by the IEEE Computer Society

In this essay, | argue that instead of seeing coding
as subordinate to logic, both should be understood as
instances of the more general activity of working with
formal symbolic notations [5]. In this perspective, pro-
gramming appears as an autonomous activity, and |
conclude by arguing that an appreciation of this
autonomy is necessary for writing an adequate history
of programming.

At the moment of the emergence of the automatic
high-speed general-purpose digital computer, both
Alan Turing and John von Neumann characterized pro-
gramming as a new form of logic [6]. This highlighted
the distinction between the parts of the machine that
carried out arithmetical operations and the parts that
dealt with the sequencing of those operations, often
referred to as the “logical control.” The usage also
appeared to situate coding within the intellectual
space opened up by the development of symbolic logic
in the early twentieth century. However, as computer
pioneer Arthur Burks pointed out in 1950, traditional
logic dealt only with declarative sentences that could
be true or false, whereas machine-language programs
were made up of imperatives [7]. To Burks, the rele-
vance of logic to programming lay not in its account of
validity and proof, but rather in its detailed analysis of
the syntax of formal languages.

Turing and von Neumann also saw a need to
develop a technique of programming, at a time when
the idea that programming might be difficult came as
a surprise to many [8]. The ENIAC developers recog-
nized that new numerical methods would be needed
for high-speed calculation, but they defined the
sequences of operations that ENIAC should execute
in a format very similar to that used by Charles Bab-
bage and Ada Lovelace a century before [9]. In com-
mon with other workers, such as Howard Aiken's
group at Harvard, they do not seem to have consid-
ered that writing instructions for an automatic
machine would be a problem. For many years, large-
scale manual computation had utilized a division of

October-December 2021

mailto:Logic, Code, and the History of Programming
https://orcid.org/0000-0003-3039-9043
https://orcid.org/0000-0003-3039-9043
https://orcid.org/0000-0003-3039-9043
https://orcid.org/0000-0003-3039-9043
https://orcid.org/0000-0003-3039-9043

labor between those who planned the work and those
who carried it out by performing simple arithmetical
operations and filling in boxes in highly structured
computation sheets [10]. It seemed a straightforward
task to replace the latter group by the new machines.

However, when the renowned mathematician and
expert calculator Douglas Hartree set up the solution to
a system of differential equations on ENIAC in 1946, the
machine’s response to an unexpected situation sur-
prised him [11]. The calculation involved a variable r,
which was known from its physical properties to be
always positive and was stored as an integer in the range
0-99. However, at one point in the computation r unex-
pectedly took on the value —1. ENIAC interpreted this as
the complement, 99, and continued computing with this
erroneous value. Hartree, speaking only a few weeks
after the event, was evidently quite shaken by it, saying:
“I saw that | ought to have foreseen the possibility of this
situation arising|. . .] | didn't foresee it despite thirty years
of experience in computing of various kinds [12].”

Hartree attributed this breakdown to a qualitative
difference between human and machinic agency. The
planners of large computations could make allowances
for the familiar sorts of mistakes that a human com-
puter might make and the checks they could be
expected to carry out, but “the machine may make quite
different kinds of mistakes and has not got the same
experience and knowledge to hand"” for resolving them.
While the machine could “exercise some degree of judg-
ment and discrimination,” the occasions for this “have
all to be foreseen in the program of operating instruc-
tions furnished to the machine [13].” Hartree returned to
this example in several lectures and publications over
the following years and sloganized it by stressing the
need for programmers to take what he called “the
machine’s-eye view” when coding a problem.

History suggests that this breakdown was not
unprecedented, however. Since at least the time of
Leibniz, formal manipulation of symbols had been
metaphorically described as a “mechanization” of
thought, and computer programming was far from
being the first occasion when machinic interpretation
of a symbolic calculus had caused surprise [14]. In the
late 1700s, for example, John Playfair described as a
“paradox” the fact that manipulation of the apparently
meaningless symbols referring to imaginary numbers,
or “impossible quantities” as they were suggestively
called, could lead to results that appeared to be not
only formally correct but also practically applicable. At
the start of the twentieth century, the project of devel-
oping mathematical logic was shaken to its founda-
tions by the discovery of the paradoxes that could be
derived from the apparently innocent assumptions of

October-December 2021

THINK PIECE

naive set theory and logic. A few years later, Kurt
Godel's stunningly unexpected demonstration of the
incompleteness of logical systems cast doubt on the
whole enterprise of logicism [15].

On the face of it, these breakdowns are puzzling. In
the 1940s, several writers described and motivated auto-
matic computers by drawing a systematic analogy
between human and machine practices of computation.
Turing, for example, described the machine’s memory as
the analog of “the computing paper on which the
[human] computer writes down his results and his rough
workings,” while the human computer would normally
carry “the instructions as to what processes are to be
applied [...] in his head [16]." The intent behind such
descriptions was to make a new technology more famil-
iar; a side-effect was to make it seem natural that human
behavior could be described in terms of the technology.
But how could the formalization and automation of a
familiar human practice lead to such surprises?

The situation looks rather different if we question
the assumption that there is anything “natural” or
“given” about human calculation. As with any other dis-
cipline of mechanization, such as factory work in the
Industrial Revolution, humans must be extensively
trained to carry out formal calculation, with distinct
practices being developed in different fields. In mathe-
matics, for example, formal passages of work can be
checked by appealing to the meaning of derived formu-
las, or by computing a result in different ways. In princi-
ple, the same could be done in logic, but in practice
large-scale logical proofs were rare. The logical calculi
of the early twentieth century were designed with an
eye to simplifying metalogical reasoning rather than
facilitating proof in an interpreted calculus. There are
of course exceptions—there are many proofs in Russell
and Whitehead's Principia Mathematica, and outliers
like J. H. Woodger's use of logic to formalize aspects of
biological theory [17]—but overall, extended proofs in
the object languages of logic were rarely carried out,
and when they were, they were necessarily checked by
human readers rather than machines.

In other words, “mechanical” or formal processing of
symbolic systems that ignores the meaning of the sym-
bols being manipulated is not an intrinsic characteristic
of human thought, but a skill deployed by highly trained
individuals in quite restricted fields of work, such as sci-
ence and accountancy. Automatic digital computers
executed formal processes that were orders of magni-
tude longer than any performed before and revealed
with unforgiving clarity the ways in which computation
by a real machine differed from “mechanical” computa-
tion carried out by humans. This was widely taken as evi-
dence that computer programming would pose a new

IEEE Annals of the History of Computing

93

THINK PIECE

94

and significant challenge, but also highlights the general
observation that humans do not intuitively grasp the
nature and processes of mechanical “thought.” Interest-
ingly, a sense of the opacity of formal systems had sur-
faced in popular culture even before the computer.
Particularly apposite here are Isaac Asimov's early robot
stories, some of which dramatized the difference
between human and machinic thought and drew atten-
tion to the surprises that lurk within even quite simple
formal systems. Stories such as “Runaround” explore
ways in which Asimov's famous three laws of robotics
could have unexpected consequences [18]. The tension
in these stories is the drama of debugging, as unpredict-
able or divergent robot behavior is gradually revealed to
be a consequence of the interplay of an apparently sim-
ple and transparent set of rules.

The problem of working out how to adopt the
“machine’s-eye view” and deliver more predictable and
reliable programs was exacerbated by an assumption
prominent among groups such as those developing the
EDSAC and Whirlwind computers at Cambridge Univer-
sity and MIT: that many programs would be written not
by experts, but by scientists and engineers wanting to
use the powerful new machines without first undergoing
an extensive period of training. This assumption
addressed the fear, voiced by John Mauchly as early as
1946, that programming would become an economic
bottleneck [19]. Electronic machines were so fast that for
many problems the time spent computing solutions
would be dwarfed by the time required for problem prep-
aration. If the expensive new machines were to be kept
busy, coding could not become the preserve of a small
cadre of experts.

Von Neumann had doubts about “the ability of the
computing mechanism to take our intention correctly”
and, like Hartree, emphasized that programmers must
“foresee where [the machine] can go astray, and pre-
scribe in advance for all contingencies [20].” Working
with Herman Goldstine, he proposed a technique that
would separate the development and expression of a
plan to “foresee all contingencies” from the machine-
specific details of coding. The highly influential presen-
tation given in the Planning and Coding reports intro-
duced new notation, representing the plan as an
annotated flow diagram from which, it was asserted,
coding could be carried out in a routine way [21].

The planning approach, with its desire for total
foresight of and control over the course of a computa-
tion, came in for criticism in the mid-1950s, as pro-
grammers began to address problems more open-

IEEE Annals of the History of Computing

ended than simple calculations, such as image recog-
nition, theorem proving, and game playing. Early Al
researchers argued for replacing explicit plans with
programs that embodied “heuristics,” rules that would
guide a program through a space of possible solutions
to find results that could not have been foreseen by
the programmer [22]. An interesting aspect of this pro-
posal was a revaluation of the surprise latent in formal
systems, now enlisted as a desirable outcome of com-
putations enabling the discovery of solutions that
would otherwise not have been obtainable [23].

Even as the planning approach was gaining mom-
entum, however, programmers and computer designers
were developing alternative strategies and articulating
the field from the inside out. The idea of using subroutine
libraries was particularly prominent in the late 1940s, a
practice given its canonical description in a textbook
written by the EDSAC group at Cambridge University
[24]. The book paid lip-service to the planning ideal, stat-
ing in familiar language that in programming “every
contingency must be foreseen,” but its practical recom-
mendations were firmly centered on code, with never a
flow diagram in sight. Rather than being planned, pro-
grams were to be assembled out of pre-existing subrou-
tines, extensively tested and therefore reliable,
coordinated by a relatively small main routine.

David Wheeler's “initial orders"—which squeezed a
simple translator, assembler, and loader into 41 instruc-
tions—made this ambitious idea workable. Unlike the
examples in the Planning and Coding reports, Wheeler's
program fully embraced and exploited the possibilities
and ambiguities opened up by the new style of coding.
Certain words in memory were interpreted as numbers
or instructions at different stages of execution, and the
program rewrote entire instruction words, not just the
address field. The initial orders could not have been
adequately represented in the flow diagram notation,
indicating the extent to which Goldstine and von Neu-
mann sought to constrain the intrinsic possibilities of
code in order to achieve the goals of predictability and
correctness.

The tradition that began with the Planning and Cod-
ing reports represents a wager that the difficulty of pro-
gramming is something specific to code, rather than a
general feature of symbolic systems brought to promi-
nence by the speed of the new machines. This tradition
aims to discipline coding by wrapping it within a process-
oriented methodological framework and subordinating it
to a variety of diagrammatic and logico-mathematical
techniques. Proponents hoped that these techniques
would prove more tractable than code itself [25]. At the
same time, however, developments internal to program-
ming led to a rich body of new knowledge and technique

October-December 2021

that, in practice, owed little to formal logic. The opposi-
tion between these approaches remains unresolved, as
recent arguments made for practices of agile software
development have illustrated [26].

What implications does this have for the writing of his-
tory? Code is the hinge on which the pervasive influence
of computers in the contemporary world turns, and yet
the historiography of software is far less well developed
than that of hardware. The place of software within the
history of computing was discussed at a pivotal meeting
in 2000 where delegates characterized the existing litera-
ture as being too technical and too focused on individual
languages and applications [27]. They called instead for
wider narratives that would set software in a range of
contexts, including business and economic history and
the history of engineering. The implementation of this
program, however, has left some feeling that technical
history has been neglected, a view memorably expressed
by Donald Knuth [28]. But the idea of a sharp divide
between the technical and the non-technical has been
questioned by scholars for many years, and there is no
reason why historians should not follow programmers
and language designers through the simultaneous tech-
nical, social, and political contexts within which they
operate [29].

| have argued in this essay that an influential line of
thought in computer science proposes that program-
ming can essentially be reduced to longer-established
forms of symbolic work, particularly formal logic. Cou-
pled with the prominence of the machines themselves,
this has made it difficult for historians to see program-
ming as a significant autonomous activity that gener-
ates and deploys distinctive forms of knowledge and
practice. But the relationship between programming
and logic develops in the real time of history and is not
something that can be laid down in advance by theoret-
icians [30]. Liberation from a priori characterizations of
programming will enable historians to gain a more real-
istic and comprehensive view of its development and
draw together the rich, albeit somewhat fragmented,
existing literature.

Computer scientist Mary Shaw has described such
characterizations as “myths,” countering them with
more empirical descriptions that provide useful starting
points for historians [31]. She points out that software
systems are not simply symbolic program texts but
complex technological artefacts, coalitions of compo-
nents and tools simultaneously situated in many differ-
ent contexts and embodying multiple layers of
historicity [32]. Developing a form of “software

October-December 2021

THINK PIECE

archaeology” to study these artefacts on their own
terms would allow scholars to further develop themes
important in the wider history of technology, such as
the study of the use and evolution of technological arte-
facts, and to make connections with related work in dis-
ciplines such as critical code studies and media
archaeology.

We can push this line of thought to the limit by
asking, what is the history of programming the history
of? Asking a parallel question about the history of sci-
ence, Peter Dear noted that historians had turned to
“naturalistic” studies of ideas, practices, and institu-
tions [33]. This tendency is also visible in the history of
computing, where historians are actively exploring the
diversity of cultures of programming and contexts of
use, an important step toward rescuing code and its
history from the condescension of computer scien-
tists such as Dijkstra [34]. But until historians examine
the history of programming in the round, free from the
disciplinary assumptions of computer science, the
broader question will remain unanswered.

The work on this article has been greatly stimulated by
the author's participation in the ANR project “PRO-
GRAMMme" (ANR-17-CE38-0003-01). The author would
like to thank Liesbeth de Mol for invitations to join the
project and to contribute to this Special Issue. He also
thanks Gerardo Con Diaz for extensive editorial assis-
tance which has greatly improved the text.

[1 E.W. Dijkstra, “The humble programmer,” Commun.
ACM, vol. 15, no. 10, pp. 859-866, 1972.

[2] J.Backus, “Can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs,” Commun. ACM, vol. 21, no. 8, pp. 613-641,
1978.

[3] E.W. Dijkstra, Selected Writings on Computing: A
Personal Perspective. Hoboken, NJ, USA: Prentice-
Hall, 1982, pp. 129-131; E. W. Dijkstra, “On the cruelty of
really teaching computer science,” Commun. ACM, vol.
32, no. 12, pp. 1398-1404, 1989.

[4] “Discipline” was an important word for Dijkstra. In his
1972 lecture, he repeatedly referred to the discipline
required of a programmer, and it provided the title of
his book A Discipline of Programming. Hoboken, NJ,
USA: Prentice-Hall, 1976.

[5] Iuse the two terms “coding” and “programming”
(somewhat loosely) to distinguish the largely formal
activity of working with programming notations from
the larger body of practice within which it is set.

IEEE Annals of the History of Computing

95

THINK PIECE

96

(6]

(7]

(8]

[0l

[0l

[

(2]
[13]
(4]
[15]
(6]
(71

[18]

IE)

[20]

[21]

Strings of adjectival qualifiers were frequently used to
characterize the new machines. For more on this, and
the later introduction and use of the problematic term
"stored-program computer,” see T. Haigh, M. Priestley,
and C. Rope, “Reconsidering the stored-program
concept,” IEEE Ann. Hist. Comput., vol. 36, no. 1,

pp. 4-17, Jan.—Mar. 2014. For programming considered
as logic, see, for example, A. M. Turing, “Lecture to the
London Mathematical Society,” 1947; reprinted in B. E.
Carpenter and R. W. Doran, A. M. Turing’s ACE Report
of 1946 and Other Papers. Cambridge, MA, USA: MIT
Press, 1986, pp. 106-124, on p. 122; H. H. Goldstine and
J. von Neumann, Planning and Coding of Problems for
an Electronic Computing Instrument, vol. 1. Princeton,
NJ, USA: Inst. Adv. Study, 1947, p. 2.

A.W. Burks, “The logic of programming electronic digital
computers,” Ind. Math., vol. 1, no. 36-52, p. 39, 1950.
Maurice Wilkes gave a well-known description of the
moment he came to realize this. See M. Wilkes,
Memoirs of a Computer Pioneer. Cambridge, MA, USA:
The MIT Press, 1985, p. 145.

For ENIAC details, see T. Haigh, M. Priestley, and C. Rope,
ENIAC in Action. Cambridge, MA, USA: MIT Press, 2014,
ch.2.

Large-scale manual computation at the time of the
development of the computer is vividly described in D. A.
Grier, “The Math Tables Project of the Work Projects
Administration: The reluctant start of the computer era,”
IEEE Ann. Hist. Comput., vol. 20, no. 3, pp. 33-50, Jul.-Sep.
1998.

Hartree described this episode in a lecture in July 1946
entitled “Some general considerations in the solutions

of problems in applied mathematics.” See M. Campbell-
Kelly and M. R. Williams, The Moore School Lectures:
Theory and Techniques for Design of Electronic Digital
Computers. Cambridge, MA, USA: The MIT Press, 1985,
pp. 53-72; see, in particular, pp. 63-65.

D. Hartree, p. 65.

D. Hartree, pp. 63-65.

For more details, see M. Priestley, A Science of
Operations. New York, NY, USA: Springer, 2011, sec. 1.4.
T. Franzén, Godel's Theorem: An Incomplete Guide to Its
Use and Abuse. Boca Raton, FL, USA: CRC Press, 2005.
A. Turing, “Proposed electronic calculator,” reprinted
in B. E. Carpenter and R. W. Doran, op. cit., 1946, p. 20.
J. H. Woodger, The Axiomatic Method in Biology.
Cambridge, U.K.: Cambridge Univ. Press, 1937.

I. Asimov, “Runaround,” Astounding Sci.-Fiction, vol. 29,
no. 1, pp. 94-103, 1942.

J.W. Mauchly, “Digital and analog computing machines,”
M. Campbell-Kelly and M. R. Williams, op. cit., 1946,

pp. 25-40.

J.von Neumann, “Electronic methods of computation,”
Bull. Amer. Acad. Arts Sci., vol. 1, no. 3, pp. 2-4,1948.

H. Goldstine and J. von Neumann, “Planning and coding.”

IEEE Annals of the History of Computing

[22]

[23]

(24]

[25]

[26]

[27]

[28]

[29]

[30]

(31

[32]

[33]

[34]

For more on this episode, see M. Priestley, “Al and the
origins of the functional programming style,” Minds
Mach., vol. 27, no. 3, pp. 449-472, Sep. 2017.

The revaluation of surprise and intertwining of human
and machinic agency in heuristic systems is described in
the context of the AURA theorem prover in S. Dick,
“AfterMath: The work of proof in the age of human-
machine calculation,” Isis, vol. 102, no. 3, pp. 494-505,
2011.

M. V. Wilkes, D. J. Wheeler, and S. Gill, The Preparation
of Programs for an Electronic Digital Computer.
Boston, MA, USA: Addison-Wesley, 1951.

For details, see, C. B. Jones, “The early search for
tractable ways of reasoning about programs,” IEEE Ann.
Hist. Comput., vol. 25, no. 2, pp. 26-49, Apr.—Jun. 2003.
K. Beck et al., Manifesto for Agile Software
Development, 2001. Accessed: Sep. 30, 2021. [Online].
Available: http://agilemanifesto.org

U. Hashagen, R. Keil-Slawik, and A. L. Norberg, Eds.,
History of Computing: Software Issues. New York, NY,
USA: Springer, 2000.

D. E.Knuth, “Let’s not dumb down the history of
computer science,” Commun. ACM, vol. 64, no. 2,

pp. 33-35, 2021.

Classic early descriptions of the intertwining of
contexts can be found in W. E. Bijker, T. P. Hughes, and
T.Pinch, Eds., The Social Construction of Technological
Systems. Cambridge, MA, USA: MIT Press, 1987. For an
overview of one influential approach, see B. Latour,
Reassembling the Social: An Introduction to Actor-
Network Theory. Oxford, U.K.: Oxford Univ. Press, 2005.
For “real-time understanding of practice,” see

A. Pickering, The Mangle of Practice: Time, Agency,
and Science. Chicago, IL, USA: Univ. Chicago, 1995.

M. Shaw, “Myths and mythconceptions: What does it
mean to be a programming language, anyhow?,” HOPL
IV: 4th ACM SIGPLAN Hist. Program. Lang. Conf., 2021,
(keynote talk). Accessed: Oct. 17, 2021. [Online].
Available: https://www.pldi21.org/prerecorded_hopl.K1.
html

The intrinsic historicity of software systems has recently
been emphasized in K. Tracy, Software: A Technical
History. New York, NY, USA: ACM Books, 2021.

P. Dear, “What is the history of science the history of?,”
Isis, vol. 96, no. 3, pp. 390-406, 2005.

BASIC, in particular, is rehabilitated in J. L. Rankin, A
People’s History of Computing in the United States.
Cambridge, MA, USA: Harvard Univ. Press, 2018, ch. 2.

MARK PRIESTLEY is currently a Senior Research Fellow at
the U.K.'s National Museum of Computing, Bletchley, U.K. He

works on the history and philosophy of computing, with a

focus on programming in the 1940s and 1950s. Contact him

at m.priestley@gmail.com.

October-December 2021

http://agilemanifesto.org
https://www.pldi21.org/prerecorded_hopl.K1.html
https://www.pldi21.org/prerecorded_hopl.K1.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

