
CSCE 330 Fall 2007

MIDTERM EXAM

Thursday 2007-09-27—Three Pages, Closed Book

1 Short Questions–1 or 2 points each; 10 points

total

1. (1 points) Match: (a) Niklaus Wirth and (b) John McCarthy with (1)
LISP and (2) Pascal, and with (i) 1971 and (ii) 1960.

2. (1 point) What is the name of the family of programming languages whose
structure is dictated by the von Neumann computer architecture?

3. (2 points) Following up on the previous question, what are the names of
the two other main families of programming languages?

4. (1 point) Match: (a) Verification and (b) Validation with (1) “Are we
building the program right?” and (2) “Are we building the right product?”

5. (1 point) What does the acronym RUDE stand for?

6. (1 point) The spiral method of software development is characterized by
prototyping. True or false?

7. (1 point) Match one of a–b with one of c–d and with one of e–f:

(a) Syntax

(b) Semantics

(c) Meaning

(d) Form

(e) How something is expressed

(f) What something does

8. (1 point) Syntax diagrams are a notational variant of EBNF. True or false?

9. (1 point) The following sentence is syntactically correct: “Time flies like
green bananas.” True or false?

2 Syntax–15 points

1. (2 points) What does it mean for a (context-free) grammar to be ambigu-

ous?

1



2. (8 points) The grammar of the original definition of Algol 60 contained
the following production rules:
<statement> ::= <conditional-statement> | begin <statement> end

<conditional-statement> ::= if <condition> then <statement>

| if <condition> then <statement> else <statement>

Show that any grammar containing these production rules is ambiguous.

3. (5 points) The grammar of Java avoids the ambiguity described in the ex-
ercise above by introducing the nonterminal <statement-no-short-if>,
which includes all statements except a conditional statement without the
else branch. In addition to rules defining <statement-no-short-if> as
just described, here are the relevant production rules:
<if-then-statement> ::= if (<condition>) then <statement>

<if-then-else-statement> ::= if (<condition>) then <statement-no-short-if>

else <statement>

<statement> ::= <if-then-else-statement>

Draw the parse tree for the sentential form
if (<condition>) then if (<condition>) then <statement-no-short-if>

else <statement> using the Java grammar, starting with <if-then-statement>.

3 Scope and Type Rules–5 points

Consider the (pseudo-Pascal) program below.

program MAIN;

var X: integer;

procedure A;

begin

write(X)

end; {of procedure A}

procedure B;

var X: integer;

begin

X := 6;

call A

end; {of procedure B}

begin {of MAIN}

X := 15;

call B

end. {of program MAIN}

1. Under static scoping rules, what value of X is printed in procedure A?

2. Under dynamic scoping rules, what value of X is printed in procedure A?

2



4 Semantics–17 points

1. (5 points) Describe (very briefly) the semantic difference between com-
mands and expressions. (Hint: Use the assignment statement, which is a
command, to illustrate the difference.)

2. (2 points) Give the weakest precondition for the assignment statement
foo := x + y; with postcondition foo > 0

3. (5 points) To show that I is a loop invariant for a loop whose condition is
B, you need to prove three of the following properties. Which three?

(a) I implies the precondition of the loop

(b) I is implied by the precondition of the loop

(c) I ∧ ¬B implies the postcondition of the loop

(d) If I ∧ ¬B holds before at the beginning of the loop, I holds after
executing the body of the loop.

(e) If I ∧ B holds before at the beginning of the loop, I holds after
executing the body of the loop.

4. (5 points) Give a loop invariant for this loop:
while (i <> n) do

begin

prod := prod * i;

i := i+1

end

with precondition i = 1 ∧ prod = 1 ∧ n ≥ 1 and postcondition prod =
Πn−1

j=i j.

3


