317 (h.9 [H] Ergobliaty Theory Tij= lim Pij is an ensemble overage. When does the limiting probability exist? 2. How does tt. compose will the long-ron time overage Spent in 5 Matej, nj? 3. What can we say about the mean time between visits to state j, and now is this related to TT;?

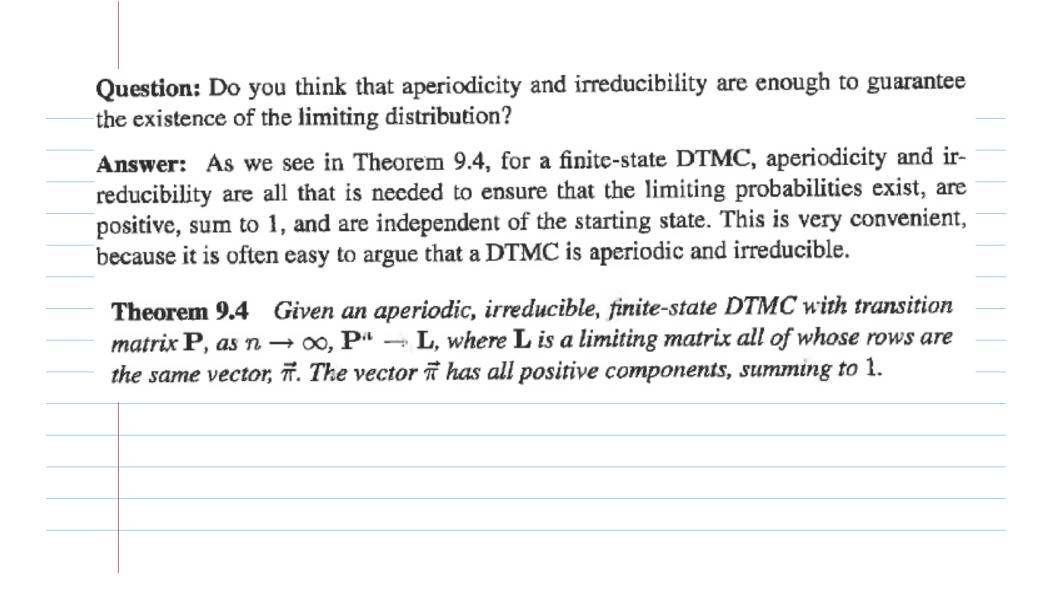
However, the time overage spent in each state is the some, so

Also, the stationary distribution exists; $\overrightarrow{\Pi} = \overrightarrow{\Pi} = (\overrightarrow{\Pi}_{0}, \overrightarrow{\Pi}_{1}) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = (\overrightarrow{\Pi}_{0}, \overrightarrow{\Pi}_{1})$ $\int_{1}^{1} \overrightarrow{\Pi}_{0} = \overrightarrow{\Pi}_{0} = (\overrightarrow{\Pi}_{0}, \overrightarrow{\Pi}_{1}) = (\overrightarrow{\Pi}_{0}, \overrightarrow{\Pi}_{1})$ $\int_{1}^{1} \overrightarrow{\Pi}_{0} = \overrightarrow{\Pi}_{1} = (\overrightarrow{\Pi}_{0}, \overrightarrow{\Pi}_{1}) = (\overrightarrow{\Pi}_{0}, \overrightarrow{\Pi}_{$

Question: Does the following transition matrix have limiting probabilities? $\mathbf{P} = \begin{bmatrix} 0 & 0 & 1/2 & 1/2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 \end{bmatrix} \quad \begin{cases} y \text{ states}, \\ 0, 1, 2, 3 \end{cases}$ Is this periodic! (If so, it does not have himiting probabilities.) (1) Stortly from state 0, you can get to states 2 and 3, in one styp 12) From states 2 & 3, you get to state I (only) in one (more) & typ. (3) From state 1, you get to state o (only) in one more stop. The same is true of the other states; from state 1,

you get to Pin 1 step, then, (1), and (2) bring you be de Similarly from states 2 and 3. So, all'states have period 3. So, the chan for which Pobove is the transition motorix is So, there is no limiting frequency.

st o	If integers n , such that $P_{jj}^n > 0$. A state is aperiodic if it has period 1. A chain id to be aperiodic if all of its states are aperiodic.
	Definition 9.2 State j is accessible from state i if $P_{ij}^n > 0$ for some $n > 0$. States i and j communicate if i is accessible from j and vice versa.
	Definition 9.3 A Markov chain is irreducible if all its states communicate with each other.



9.2.2. Men tilm saturen Visits to a State

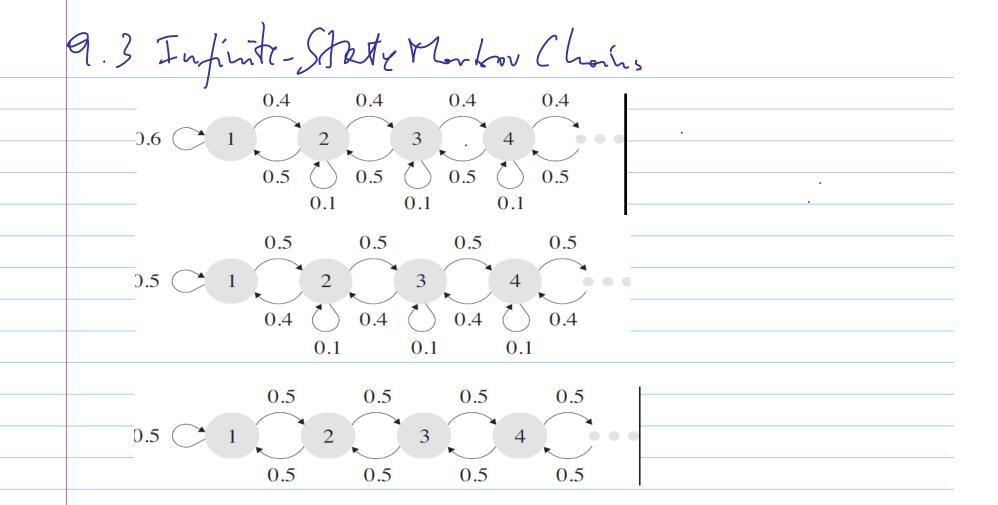
Definition 9.5 Let m_{ij} denote the expected number of time steps needed to first get to state j, given we are currently at state i. Likewise, let m_{jj} denote the expected number of steps between visits to state j.

Theorem 9.6 For an irreducible, aperiodic finite-state Markov chain with transition matrix **P**,

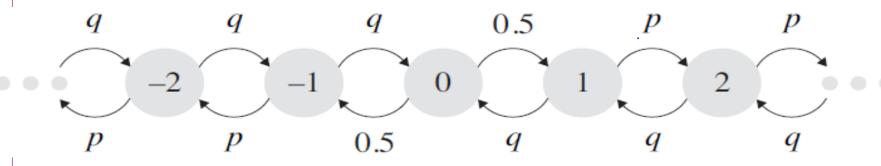
$$m_{jj} = \frac{1}{\pi_j}$$

where m_{jj} is the mean time between visits to state j and $\pi_j = \lim_{n \to \infty} (\mathbf{P}^n)_{ij}$.

		•
		•



9.3.2 Infunte Roudon Walk Example



•	

Theorem 9.27 (Summary Theorem) An irreducible, aperiodic DTMC belongs to one of the following two classes:

Either_

(i) All the states are transient, or all are null recurrent. In this case $\pi_j = \lim_{n \to \infty} P_{ij}^n = 0$, $\forall j$, and there does NOT exist a stationary distribution.

or

(ii) All states are positive recurrent. Then the limiting distribution $\vec{\pi} = (\pi_0, \pi_1, \pi_2, ...)$ exists, and there is a positive probability of being in each state. Here

$$\pi_j = \lim_{n \to \infty} P_{ij}^n > 0, \quad \forall i$$

is the limiting probability of being in state j. In this case $\vec{\pi}$ is a stationary distribution, and no other stationary distribution exists. Also, π_j is equal to $\frac{1}{m_{j,j}}$, where $m_{j,j}$ is the mean number of steps between visits to state j.

Theorem 9.34 (Time-reversible DTMC) Given an aperiodic, irreducible Markov chain, if there exist $x_1, x_2, x_3, \ldots s.t., \forall i, j$,

$$\sum_{i} x_{i} = 1 \quad and \quad x_{i} P_{ij} = x_{j} P_{ji}.$$

then

- 1. $\pi_i = x_i$ (the x_i 's are the limiting probabilities).
- 2. We say that the Markov chain is time-reversible.

Example: Three Types of Equations

Consider the Markov chain depicted in Figure 9.5.

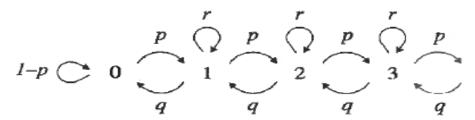


Figure 9.5. A very familiar Markov chain.

Regular Stationary Equations:

$$\pi_i = \pi_{i-1}p + \pi_i r + \pi_{i+1}q$$
 and $\sum_i \pi_i = 1$

These are messy to solve.

Balance Equations:

$$\pi_i(1-r)=\pi_{i-1}p+\pi_{i+1}q$$
 and $\sum_i\pi_i=1$

These are a little nicer, because we are ignoring self-loops, but still messy to solve.

Time-Reversibility Equations:

$$\pi_i p = \pi_{i+1} q$$
 and $\sum_i \pi_i = 1$

These are much simpler to solve.

