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or about 26 percent chance.

Most random variables we consider will either be discrete (as
in Chapter 2) or continuous, but mixed random variables do occur
sometimes. For example, there may be a nonzero probability, say, Py
of initial failure of a component at time 0 due to manufacturing
defects. 1In this case, the time to failure, X, of the component is
neither discrete nor a continuous random variable. A possible CDF of

X (shown in Figure 3.2) is then,

0 r X<0
FX(X) = Po , x=0 (3.2)
, x>0

Pg+(1-pg) (1-e™ %)

The CDF of a mixed random variable satisfies properties (F1)-(F3) but
it does not satisfy property (F4) of Chapter 2 or the property (F4')

above.

IIT.B. THE EXPONENTIAL DISTRIBUTION

This distribution, sometimes called the negative exponential

distribution, occurs in applications such as reliability theory and

queuing theory. Reasons for its use include its memoryless (Markow)
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property (and resulting analytical tractability) and its relation to
. [
the (discrete) Poisson distribution. Thus the following random

variables will often be modeled to be exponential:

(a) Time between two successive job arrivals to a computing

center (often called inter-arrival time).

(b) Service time at a server in a queuing network; the server
could be a resource such as the CPU, I/0 device, or a

communication channel.
(c) Time to failure (lifetime) of a component.

(d) Time required to repair,;a component that has malfunctioned.
@(&ﬁﬁgﬁa&
e

It should be noted that the above distributions are exponential is not
a 4given fact but is an assumption . Experimental verification of this
assumption must be sought before relying on the results of the

analysis (see Chapter 10 for further elaboration on this topic).

The exponential distribution function, shown in Figure 3.3, is
given by

1 - 7™ , if O<x<m

F(x) = |g , otherwise (3.3)

If a random variable X possesses CDF (3.3), we write X ~ EXP()\), for

brevity. The pdf of X has the shape shown in Figure 3.4 and is given

by,
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Ae"AX
f(X) = 0

? if x>0

, otherwise (3.4)

While specifying a pdf, commonly only the nonzero part is stated, and

it is understood that the pdf is zero over any unspecified region.

Since j1im pF(x) = 1, it follows that the total area under the
X=>0
exponential pdf is unity. Also,

P(X>t) = z%(x)dx
= At (3.5)
and
P{a<X<b) = F(b) - F(a)
= e~Aa _ AD

Now let us investigate the so-called MEMORYLESS or MARKOV

e

PROPERTY of the exponential distribution. Suppose we know that X

exceeds some given value t, that is, X>t. For example, if we
interpret X as the 1lifetime of a component, and suppose we have
observed that this component has already been operating for t hours.
We may then be interested in the distribution of Y = X - t , the
remaining (residual) lifetime. Let the conditional probability of Y<y
r given that X > t , be denoted by Gt(Y) . Thus for y >= 0 , we

have:

G (v) P(Y¥<y|{X>t)

P(X-t<y | X>t)
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P(X<y+t | X>t)

= P(X<y+t and X>t) , by the definition of
P(X>T) conditional probability

_ P(t<X<y+t)

TP (Xet)

Thus (see Figure 3.5):

v+t
{ £(x)dx
G ly) =

1 - e N

Thus Gt(y) is 1independent of t and is identical to the
original exponential distribution of X . The distribution of the
remaining life does not depend on how long the component has been
operating. The component does not "age™ (it is as good as new) or it
"forgets" how long it has been operating and its eventual breakdown is
the Iresult of some suddenly-appearing failure, not of gradual

deterioration.
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If the interarrival times are exponentially distributed, then
the memoryless property implies that the time we must wait for a new
arrival is statistically independent of how long we have already spent

waiting for it.

The exponential distribution is the only continuous

distribution with the Markov property.

To show this assume that X is a non-negative continuous random

variable with the above property. Then

P(t<X:%+t) = P{X<y) = P(0<X<y)

or

Since FX(O) = 0, we rearrange the above equation to get

Fely+t) = Pyu(y)  Fy(t) (1-Fy(y))

t - t

Taking the limit as t approaches zero, we get

Ful¥) = Fye(0) [1-Fy(y)]

where F; denotes the derivative of Fy- Let Rx(y) =1 - FX(Y), then

the above equation reduces to

Re(y) = Ry(0) Ry(y)

The solution to this differential equation is given by

(0)y
Rx(Y) = K t=.'RX



le

where K is a constant of integration and -Ré(o) = F;(O) = fX(O), the
pdf evaluated at 0. Noting that the reliability RX(O) = 1, and

denoting the constant ) = fx(O), we get
Ry (y) = e A

and hence

Foly) = 1 - e™AY ;¥ >0

Therefore X must have the exponential distribution.

The exponential distribution can be obtained from the Poisson
distribution by considering the interarrival times rather than the

number of arrivals.

* Example 3.2 -~ Let the discrete random variable ¥_ denote the number

t
of jobs arriving to a computer system, in the interval

{0,t). ILet X be the time of the first arrival. Further
assume Y, is Poisson distributed with parameter At, so that

A is the arrival rate. Then:

P(X>t) = P(Y_=0)
= e—kt(ht)o
1
. oAt
and
Fx(t) =1 - e"kt . Therefore, interarrival times are

exponentially distributed.
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Example 3.3 -~ Consider a university computer center with an average
rate of job submission \ = 0.1 jobs per second. Assuming
that the number of arrivals per unit time is Poisson
distributed, the interarrival time, X, is exponentially
distributed with parameter A. The probability that an
interval of 10 seconds elapses without job submission is

then given by
P(X>10) = fxb.le-o'ltdt = 1im (e 01t _ o7} o o1 = . 368,
0 t->m ,

III.C. THE RELIABILITY, FAILURE DENSITY, AND HAZARD FUNCTION

Let the random variable X be the 1lifetime or the time to
failure of a unit. The probability that the unit survives until some

time t is called the reliability R(t) of the unit. Thus, R{t) =

P(X>t) = 1 - F(t), where F is the distribution function of the

component lifetime, X. The unit (component) is assumed to be working

properly at time t = 0 {i.e., R(0) = 1) and no component can work
forever without failure (i.e., 1lim R(t) = 0). Also, R(t) 1is a
t->4

monotone non-increasing function of t. For t 1less than zero,
reliability has no meaning, but -we let R(t) = 1 for t < 0 . F(t) will

often be called the unreliability.
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Consider a fixed number of components, Nyr under test. After
time t, Nf(t) have failed and Ns(t) have survived with
Nf(t) + Ns(t) = Nj- The estimated probability of survival may be

written as (using the frequency interpretation of probability):

Ns(t)
P(survival) = N
E—

In the llmlt/as No—xx»<we expect P(surv1va1) to approach R(t) Ag the

test progresses, N (t) gets smaller and R(t) decreases.

——— — e

Ng (t)

0

R(t)

Ng

_ Nf(t)
N

0
The total number of components No is constant while the number of
failed components Ng increases with time. Taking derivatives on both

sides of the above equation, we get:

1
Ny

1))

R'(t) Nf(t) (3.6)

In equation (3.6), Né(t) is the rate at which components fail.

‘Therefore, as N> the right hand side may be interpreted as the

negative of the failure density functlon, £,(E):

o

R'(t) = —fx(t) . (3.7
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