
Automated Software Engineering
Writing Code to Help You Write Code

Gregory Gay
CSCE 190 - Computing in the Modern World
October 27, 2015

Software Engineering

The development and evolution of high-quality
(large) software systems in a systematic,

controlled, and efficient manner.

Necessary because society depends on
software.

Gregory Gay Software Engineering 2

Flawed Software Will Be Exploited

Gregory Gay Software Engineering 3

Software Can Hurt People

In 2010, software problems were
responsible for 26% of medical device
recalls.

Gregory Gay Software Engineering 4

“There is a reasonable probability that
use of these products will cause serious
adverse health consequences or death.”
- US Food and Drug Administration

Why Software Engineering?

Good engineering is difficult and expensive.

“It costs 50% more per instruction to develop
high-dependability software than to develop
low-dependability software.”
- Victor Basili (Emeritus Professor, UMD)

Software engineering is focused on lowering
the cost and difficulty, and improving the
quality, of software development.

Gregory Gay Software Engineering 5

The Need for Disciplined Practices

The job of software engineers is to:
● produce high-quality products
● produce them on schedule
● and do this within planned costs

You should start learning now (you’ll want the
practice).

Gregory Gay Software Engineering 6

Developers in Demand

Demand for Software

Developers Available

Developers Available

Skilled Developers

Gregory Gay Software Engineering 7

What is the largest
programming project
you’ve ever worked on?

How did you design and
build it?

What are the largest
pieces of software in the
world?

Typical Development Process

Concept
Formation

Requirements
Specification

Design

Implementation
and Testing

Gregory Gay Software Engineering 11

Release and
Maintenance

Focus Areas in SE

● Development Processes
○ How people work together to create software.

● Requirements Engineering
○ How to formally describe the properties and

expected behavior of the software we will build.
● Software Design and Architecture

○ How to design robust and efficient systems.
● Software Testing & Verification

○ How to ensure that software is correct and free of
faults.

Gregory Gay Software Engineering 12

“Why do we need all of this documentation?”
- Nearly Every Student Ever

Gregory Gay Software Engineering 13

Automated Software Engineering:
Writing code to help you write code.

Testing Requires Writing Code

● Testing requires
writing code to
break your code.

● Sometimes, you
write more code to
test than is in the
original software.

Gregory Gay Software Engineering 15

Testing Requires Writing Code

● Unit Tests
○ Instantiates classes.
○ Passes in input to functions.
○ Checks output against expectations.

● Environment Simulation
○ Models physical environment.

○ Experiment with different network and hardware
configurations.

● Component Mocking
○ “Fake” behavior for undeveloped classes.

Gregory Gay Software Engineering 16

Testing is Expensive

● Testing often claims over 50% of the
development time and budget.

● Many parts of testing are labor-intensive:
○ Coming up with input and expected outputs.
○ Tracing a fault to its source in the code.
○ Fixing the code without breaking other code.
○ … (and basically everything else)

Gregory Gay Software Engineering 17

Automated Testing: Writing code
that writes code that breaks code.

Automated Test Generation

If we can score “test quality”, then we have an
optimization goal.

Treat test generation as a search problem.
● Generate a test (or set of tests).
● Score each of them by their adequacy.
● Manipulate the population according to a

search strategy (a “heuristic”).

Gregory Gay Software Engineering 19

Metaheuristic Search

Most search spaces are too large to exhaustively
explore. Instead, choose a smart strategy to
stochastically sample from that space.
● We can’t guarantee an optimal solution…

○ … but if we’re smart, we’ll hit something close enough.

○ Metaheuristic search is computationally feasible on
problems where complete search is not.

Gregory Gay Software Engineering 20

Local Search

● Generate a potential solution.
● Score it using your fitness function.
● Attempt to improve it by looking at its local

neighborhood.
○ Keep making small, incremental improvements.

● Very fast and efficient if you make a good
initial guess.

● Can get stuck in local maxima if not.
○ Reset strategies help.

Gregory Gay Software Engineering 21

Global Search

● Generate a potential solution (or set of
solutions).

● Score them.
● At a certain probability, sample from other

regions of the space.
● Strategies typically based on natural

processes - swarm attack patterns, ant
colony behavior, species evolution.

Gregory Gay Software Engineering 22

Genetic Algorithms

● Over multiple generations, evolve a
population - favoring good solutions and
filtering out bad solutions.

● Diversity is introduced to the population each
generation by:
○ Keeping some of the best solutions.
○ Randomly generating some population members.
○ Creating “offspring” through mutation and gene

crossover.

Gregory Gay Software Engineering 23

Genetic Algorithms - Mutation

Gregory Gay Software Engineering 24

Genetic Algorithms - Crossover

Gregory Gay Software Engineering 25

Fitness Functions

● Solutions are judged by a “fitness function”
that takes in the solution and calculates a
score.
○ Distance from the current solution to the “ideal”

solution.
■ How close are you to covering a testing goal?

○ Smaller scores are typically better.
○ Must offer information to guide the search.
○ Must be cheap to calculate - performed 100s-1000s

of times per generation.

Gregory Gay Software Engineering 26

Not Just Test Generation...

Metaheuristic search can be applied to any
problem with:
● A large search space.
● Fitness function and solution generation

methods with low computational complexity.
● Approximate continuity in the fitness

function.
● No known optimal solution.

Gregory Gay Software Engineering 27

Writing code that writes
code that breaks code.

fixes

Automated Program Repair

● Popular projects may have hundreds of bugs
reported per day.

● Repair techniques, like GenProg,
automatically produce patches that can
repair common bug types.

● Many bugs can be fixed with just a few
changes to the source code - inserting new
code, deleting or moving existing code.

● GenProg uses the same ideas to search for
repairs automatically.

Gregory Gay Software Engineering 29

GenProg

● Genetic programming - solutions represent
sequences of edits to the source code.

● Each candidate patch is applied to the
program to produce a new program.

● See if the patched program passes all tests.
○ Fitness function: how many tests pass?

● Use crossover and mutation to evolve better
patches.

Gregory Gay Software Engineering 30

GenProg Results

● GenProg repaired 55 out of 105 bugs at an
average cost of $8 per bug.
○ Large projects - over 5 million lines of code, 10000

test cases.
● Able to patch infinite loops, segmentation

faults, buffer overflows, denial of service
vulnerabilities, “wrong output” faults, and
more.

Gregory Gay Software Engineering 31

Automated Code Transplantation

● Not just patches…
● Many coding tasks involve “reinventing the

wheel” - redesigning and writing code to
perform a function that already exists in
some other project.

● What if we could slice out that code (“organ”)
from a “donor” program and transplant it to
the right “vein” in the target software?

Gregory Gay Software Engineering 32

muScalpel

● Uses a form of genetic programming.
● Initial population of 1 statement patches.

○ Organs need very few statements from the donor.
○ Starting with one line at a time allows muScalpel to

find efficient solutions quickly.
● Search evolves both organs and veins.

○ Optimize the set of code transplanted from the
donor, and the optimal location to place that code in
the target software.

● Apply tests to ensure correctness of both
original code and new features.

Gregory Gay Software Engineering 33

muScalpel Results

● Transplantation of H.264 video codec from
x264 system to VLC media player.
○ Took VLC developers 20 days to write the code

manually.
○ Took muScalpal 26 hours to transplant

automatically.
● In 12 of 15 experiments, successful

transplants that passed all tests.

Gregory Gay Software Engineering 33

We still need good
engineers.

Are you that engineer?

Questions and Discussion

Interested in discussing more?
E-Mail: greg@greggay.com
Web: http://www.greggay.com
In-Person: 3A66 SWGN

Gregory Gay Software Engineering 37

mailto:greg@greggay.com
http://www.greggay.com

