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CAUTION: This Is a theoretical result.
We will describe an algorithm that deter-
mines whether a numbef, is prime In

O((logn)1?+€) steps, a truly remarkable
result. There Is, however, no claim that if
n < 101990 then the algorithm takes less

thann steps.
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What does this mean?

e The differencgx — a)™ — (™ — a) is an element in
the ideal(z” — 1, n) in the ringZ[x].

e It IS the same as the assertion
Rem((x — a)* — (x* —a),x* —1,x) mod n = 0
iIn MAPLE.
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Conjecture: Suppose does not divider(n? — 1) where
r IS prime. Them is a prime if and only if

(¥) (zx—1)"=2" -1 (mod =" —1,n).

ldea for an Algorithm Assuming Conjecture: Suppose
n IS large. Since

H p > &% forz > 67,
p<x

there is a prime: € [2, 5 log n] not dividingn? — 1. If
r dividesn, thenn is composite. Otherwise, check i)
holds to determine whether is a prime.



Conjecture: Suppose does not divider(n? — 1) where
r IS prime. Them is a prime if and only if

(¥) (zx—1)"=2" -1 (mod =" —1,n).

What if the Conjecture is not true?
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if ( n is of the form a’, b > 1) output COMPOSITE;

r = 2;

while ( r<mn ) { Lemma 2 = loop ends withr < (log n)®
if ( gcd(n,r) #1 ) output COMPOSITE;

if ( »r Is prime )

let g be the largest prime factor of r—1;
if ( g>4yrlogn ) and ( n~Y/9=#£1 (mod r) )
break;
r—r—+1; Note that, after the while loop, = n is possible.

}

. for a=1to 24/rlogn

if ( (x—a)"#Zx"—a (modx"—1,n) ) output COMPOSITE;
output PRIME;
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1.if (  m is of the form a’, b > 1) output COMPOSITE;

2. r=2;

3.while ( r<n) { Lemma 2 = loop ends withr < (log n)°®
4, if ( ged(n,r) # 1 ) output COMPOSITE;

5. if ( r IS prime )

6. let g be the largest prime factor of r—1;

7. if ( q>4yrlogn ) and ( n""Y/9#£1 (modr) )
8. break;

9. r—r—+1; Notethat after thewhileloop, » = n ispossible.
10. } Thenn is prime, and the algorithm indicates it is.

11.for a =1 to 24/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;
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if ( n is of the form a’, b > 1) output COMPOSITE;

r = 2;

while ( r<mn ) { Lemma 2 = loop ends withr < (log n)®
if ( gcd(n,r) #1 ) output COMPOSITE;

if ( »r is prime )

let q be the largest prime factor of r—1;
if ( g>4yrlogn ) and ( nY/9#£1 (mod r) )
break;
r—r+1; | MPORTANT :

}

. for a=1to 24/rlogn

if ( (x—a)"#Zx"—a (modx"—1,n) ) output COMPOSITE;
output PRIME;
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if ( n is of the form a’, b > 1) output COMPOSITE;
r =2
while ( r<mn ) { Lemma 2 = loop ends withr < (log n)®
if ( gcd(n,r) #1 ) output COMPOSITE;
if ( »r is prime )
let q be the largest prime factor of r—1;
if ( g>4yrlogn ) and ( nY/9#£1 (mod r) )
break;
r—r+1; | MPORTANT : In generd, if n isaprime, then the
) algorithm indicatesit is.
for a=1to 24rlogn
if ( (x—a)"#Zx"—a (modx"—1,n) ) output COMPOSITE;
output PRIME;
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if ( n is of the form a’, b > 1) output COMPOSITE;
r = 2;
while ( r<n ) {

if ( gcd(n,r) #1 ) output COMPOSITE;

if ( »r is prime )

let q be the largest prime factor of r—1;
if ( g>4yrlogn ) and ( nY/9%£1 (mod r) )
break;

r—1r—+1;

}

. for a=1 to 24/rlogn

if ( (x—a)"#Zx"—a (modx"—1,n) ) output COMPOSITE;
output PRIME;



Input: integer n>1

1.if (  m is of the form a’, b > 1) output COMPOSITE;
2. r=2;

3. while ( r<n ) {

4. if ( ged(n,r) # 1 ) output COMPOSITE;

5. if ( r IS prime )

6. let g be the largest prime factor of r—1;
7. if ( q>4yrlogn ) and ( n""Y/4#£1 (modr) )
8. break;

9. r—r4+1; Since the while loop ends with < (logn)®,
10. ) the running time is polynomial itog n.

11.for a =1 to 24/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;



Input: integer n>1

s

e
w NN PO

EE R L

if ( n is of the form a’, b > 1) output COMPOSITE;
r = 2;
while ( r»r<n ) {
if ( gcd(n,r) #1 ) output COMPOSITE;
if ( »r is prime )
let q be the largest prime factor of r—1;
if ( g>4yrlogn ) and ( nY/9#£1 (mod r) )
break;

r—r—+1; PROBLEM : Show that if n iscomposite, then the
) algorithm indicatesit is.

. for a=1to 24/rlogn

if ( (x—a)"#Zx"—a (modx"—1,n) ) output COMPOSITE;
output PRIME;
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if ( n is of the form a’, b > 1) output COMPOSITE;
r = 2;
while ( r»r<n ) {

if ( gcd(n,r) #1 ) output COMPOSITE;

if ( »r is prime )

let q be the largest prime factor of r—1;
if ( g>4yrlogn ) and ( nY/9#£1 (mod r) )
break;
r—r+1; PROBLEM : What’ sup with that?

}

. for a=1to 24/rlogn

if ( (x—a)"#Zx"—a (modx"—1,n) ) output COMPOSITE;
output PRIME;
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n IS composite, 7 Is a prime
gisaprime, q > 4+/rlogn
g|(r — 1), qlord.(n)

WANT: There is an integes with 1 < a < 24/rlogn
such that V\E
(x—a)" Z (2" —a) (mod g"—1, n).

/

h(x) monic, whereh(x)|(x" — 1) modp

p With p|n
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Rem((x — a)® — (x* — a),h(x),x) mod p = O

(z —a)"—(2" —a) = (2" —1)Q(z) + R(x)
= h(z)u(z)Q(x) + pv(z)Q(z) + R(x)
= h(z)w(x) + R(x) + pRo(x)
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(@ — a)"—(a" — a) = (2" — 1)Q(x) + R(x)
= h(z)u(2)Q(z) + pv(2)Q(z) + R(x)
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SITUATION :
n IS composite, 7 Is a prime
gisaprime, q > 4+/rlogn
g|(r — 1), qlord.(n)

WANT: There is an integai with 1 < a < 24/rlogn
such that

(zx —a)" Z (z" —a) (mod h(z),p),
wherep is a prime dividingn andh(x) is a monic factor
of " — 1 modulop (both of our choosing).
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SITUATION :
n IS composite, 7 Is a prime
gisaprime, q > 4+/rlogn
g|(r — 1), qlord.(n)

How To CHOOSE p: If n = pJlp5?- - - pyt, then

d = ord.(p1) - - - orde(p;) = n4=1 (mod r).
We deducey|d. Fix p such that
pln and gqlord:(p).
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SITUATION :
n IS composite, 7 Is a prime
gisaprime, q > 4+/rlogn
g|(r — 1), p|n, glord-(p)

How do we choosé(x)?
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Let » be a positive integer, and lgi be a prime.
Write r = p*m wherep t m. Let f = ord,,(p).
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THE FACTORIZATION OF CYCLOTOMIC
POLYNOMIALS MODULO A PRIME

Let » be a positive integer, and lgi be a prime.
Write r = p*m wherep t m. Let f = ord,,(p).
Thenthert" cyclotomic polynomiad,.(z) factors

as a product ofp(m)/f incongruent irreducible
polynomials modulg of degreef each raised to

the ¢ (p*) power. h(x)

x" — 1 has &factor of degree grtip) modulop
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SITUATION :
n IS composite, risaprime, £ = 2+/rlogn
gisaprime, q > 4+/rlogn
g|(r — 1), p|n, glord-(p)

h(x) irreducible modp, degh = ord.(p) > 2¢
Not really, but it sounds good.

/
There IS an integat with 1 < a < £ such that

(x —a)"# 2" —a (mod h(x),p).
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Main Lemma: The set
G={(z—1)(x—2)%%... (x—£)°:e; > 0}

forms a subgroup of the multiplicative group of nor
zero elements afF' (which necessatrily is cyclic) of size
> 9l — 92v/rlogn _ 24T

We explain why this main lemma gives us what we wal
and then discuss why it is true.
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—>mq1 = my (mod d) Whered: order ofg(x)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,
1M1, M9y € Ig(a:) —> mims9 € Ig(a:)
®emi, Mo € Ig(w) and mj; = mgy (mod 7)
— mi1 = M2 (modCt) Whered: order ofg(x)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = mg (mod d) whered = order ofg(x)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = mg (mod d) whered = order ofg(x)

2] _ M1 — ,M1] (m(m2—m1)j —1)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

®1Mi, M9 € Ig(a:) and mq1 = mo (mod ’l“)
—>m1 = mg (mod d) whered = order ofg(x)

2] _ M1 — ,M1] (w(mZ_ml)j —1)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

®1Mi, M9 € Ig(a:) and mq1 = mo (mod ’l“)
—>m1 = mg (mod d) whered = order ofg(x)

2] _ M1 — ,M1] (w(mZ_ml)j —1)

= @™ 1) (1)



Ig(m) = {m:g(x)™ = g(x™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = mg (mod d) whered = order ofg(x)

2] _ M1 — ,M1] (m(m2—m1)j —1)
— omiar — 1))

— 2™ =g™J (mod z" — 1, p)



Ig(m) = {m:g(x)™ = g(x™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = mg (mod d) whered = order ofg(x)

2] _ M1 — ,M1] (m(m2—m1)j —1)
— omiar — 1))
— ™2 = ™I (mod =" — 1, p)
—  g(x"2) = g(z") (mod z" — 1,p)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = mg (mod d) whered = order ofg(x)

moy —

g(x =g(xz") (mod x" — 1, p)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = mg (mod d) whered = order ofg(x)

moy —

g(x =g(xz") (mod x" — 1, p)
— g(x)"™?2 =g(x)™ (mod xz" — 1, p)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = mg (mod d) whered = order ofg(x)

g(z"™"?) = g(z™!') (mod z" —1,p)
—> g(x)"? =g(x)"™ (mod z" —1,p)
— g(x)"?" "™ =1 (mod z" — 1, p)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = my (mod d) whered = order ofg(x)

g(z"™"?) = g(z™!') (mod z" —1,p)
—> g(x)"? =g(x)"™ (mod z" —1,p)
— g(x)"?" "™ =1 (mod z" — 1, p)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = mg (mod d) whered = order ofg(x)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = mg (mod d) whered = order ofg(x)

M ORAL:



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

PROPERTIES OF I,

1M1, M9y € Ig(a:) —> mims9 € Ig(a:)

emy, mz € Iy, and my = mg (mod r)
—>m1 = mg (mod d) whered = order ofg(x)

MORAL: There are< r positive integers< d in Iy(x)



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

MORAL: There are< r positive integers< d in Ig(2)-



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

MORAL: There are< r positive integers< d in Ig(2)-

WANT: There is an integat with 1 < a < £ such that
(x —a)"# (" —a) (mod h(z) ,p).



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

MORAL: There are< r positive integers< d in Ig(2)-

WANT: There is an integat with 1 < a < £ such that
(x —a)"# (" —a) (mod z" —1,p).



Ig(m) = {m:g(x)™ = g(x™) (mod z"—1,p)}

MORAL: There are< r positive integers< d in Ig(2)-

WANT: There is an integat with 1 < a < £ such that
(x —a)"# (" —a) (mod z" —1,p).

Assume otherwise.



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

MORAL: There are< r positive integers< d in Ig(2)-

WANT: There is an integat with 1 < a < £ such that
(x —a)"# (" —a) (mod z" —1,p).

Assume otherwise. Then, foralle {1,2,...,¢},

(x —a)” = (2" —a) (mod z" —1,p).



Iyz) = {m: g(z)" = g(z™) (mod z"—1,p)}

MORAL: There are< r positive integers< d in Ig(2)-

WANT: There is an integat with 1 < a < £ such that
(x —a)"# (" —a) (mod z" —1,p).

Assume otherwise. Then, foralle {1,2,...,¢},

(x —a)” = (2" —a) (mod z" —1,p).

g(z) = (x—1)(x—2)7 .- (z—£)™



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-

WANT: There is an integat with 1 < a < £ such that
(x —a)"# (" —a) (mod z" —1,p).

Assume otherwise. Then, foralle {1,2,...,¢},

(x —a)” = (2" —a) (mod z" —1,p).

g(z) = (x—1)(x—2)%2 ... (z—£)“¢
— g(z)" =g(=") (mod z" — 1, p)



Iy ={m:g(x)" = g(2™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-

WANT: There is an integat with 1 < a < £ such that
(x —a)" Z (2" —a) (mod z" —1,p).

Assume otherwise. Then, foralle {1,2,...,¢},

(x —a)” = (2" —a) (mod z" —1,p).

9(x) = (@=1) (@ —2)2 - (z— )"
—> g(2)" = g(=") (mod &’ —1,p)



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-

n € Ly



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-

n € Ly

g(z)? = g(z¥) (mod p)



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-

n € Ly

g(x)P = g(«P) (mod "1, p)



Iy ={m:g(x)" = g(2™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-

n € Ly

g(z)? = g(zP) (mod z"-1, p)



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-

n € lg@)y PElga)



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-
n € lg@)y PElg)

nipj S Ig(m) for 0 <1,5 < [\/F]



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-
n € lg@)y PElg)

nipj S Ig(m) for 0 <1,5 < [\/F]

1 < n'pd



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-
n € lg@)y PElg)

nipj S Ig(m) for 0 <1,5 < [\/F]

1 < n'p! <n'td



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-
n € lg@)y PElg)

nipj S Ig(m) for 0 <1,5 < [\/F]

1 < nipl < niti < p2vr



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-
n € lg@)y PElg)

nipj S Ig(m) for 0 <1,5 < [\/F]

1 < nipd < ntti < n2v"r < d



Ijz) ={m:g(x)™ = g(z™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-
n < Ig(a:)’ p E Ig(w)
nipj S Ig(m) for 0 <1,5 < [\/F]

1 < nipd < ntti < n2v"r < d

fnf':lpjl _ ni2pj2



Ig(w) ={m:g(z)™ = g(z"™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-
n € lg@)y PElg)
nipj S Ig(m) for 0 <1,5 < [\/F]

1 < nipd < ntti < n2v"r < d

nilpjl —— ni2pj2 2 n — pk



Ig(w) ={m:g(z)™ = g(z"™) (mod z"—1,p)}
MORAL: There are< r positive integers< d in Ig(2)-
n € gy P E g

nipj S Ig(m) for 0 <1,5 < [\/F]
1 < nipd < ntti < n2v"r < d
k

nilpjl _ ni2pj2 — n=27p

It remains to justify the ...



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor
zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

F is the field ofp? elements



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92v/rlogn _ 24T

Change in Notation
F' i1s the field ofp©elements


Michael Filaseta
pd

Michael Filaseta


Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

F is the field ofp? elements

which we represent using arithmetic mhdz), p



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

F is the field ofp? elements
which we represent using arithmetic mhdzx), p

whereh(x) is monic, of degreel, and irreducible mogb



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92v/rlogn _ 24T

n IS composite, risaprime, £ = 2y/rlogn
gisaprime, q > 4+/rlogn

q|(r —1), pln, gqlord:.(p)
h(x) irreducible modp, degh = ord.(p) > 2¢



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

n IS composite, risaprime, £ = 2y/rlogn
gisaprime, q > 4+/rlogn
g|(r — 1), p|n, glord-(p)
h(x) irreducible modp, degh = ord,(p) > 2£
d > 20




Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

n IS composite, risaprime, £ = 2y/rlogn
gisaprime, q > 4+/rlogn
gl(r —1), pln, qlord:.(p)
h(x) irreducible modp, degh = ord,(p) > 2£
4/t > 2




Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

n IS composite, risaprime, £ = 2y/rlogn
gisaprime, q > 4+/rlogn

q|(r —1), pln, gqlord:.(p)
h(x) irreducible modp, degh = ord,(p) > 2£

Remember Me >



Michael Filaseta
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Michael Filaseta


Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92v/rlogn _ 24T

n IS composite, risaprime, £ = 2,/rlogn
gisaprime, q > 4+/rlogn

q|(r —1), pln, qlord:(p)
h(x) irreducible modp, degh = ord.(p) > 2¢



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor
zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

g/(r —1), q>4yrlogn, £=2\/rlogn



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor
zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

gl(r—1), q>4yrlogn, £=2\/rlogn



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

gl(r—1), q>4yrlogn, £=2\/rlogn
each prime< r does not dividen



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

gl(r—1), q>4yrlogn, £=2\/rlogn
each prime< r does not dividen

p>r



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

gl(r—1), q>4yrlogn, £=2\/rlogn
each prime< r does not dividen
p>r>q



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

gl(r—1), q>4yrlogn, £=2\/rlogn
each prime< r does not dividen
p>1r>q>4y/rlogn



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

gl(r—1), q>4yrlogn, £=2\/rlogn
each prime< r does not dividen
p>r>q2>4yrlogn >/



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor
zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

p>1r>q>4yrlogn > £



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

p>1r>q>4yrlogn > £
0,1,...,¢ are distinct modul®



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

p>1r>q>4yrlogn > £
0,1,...,¢ are distinct modul®

—> the elements of¥ withe; +::--+ep < d
are distinct moduldx(x), p



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor
zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

the elements ofx with ey 4 - - - + ey < d are distinct



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

the elements ofx with ey 4 - - - + ey < d are distinct

the number of solutions af; + --- + ey < dis
the number of ways of choosipbjects fromé + d — 1



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

the elements ofx with ey 4 - - - + ey < d are distinct

L+d—1
RS



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

the elements ofx with ey 4 - - - + ey < d are distinct

L+d—1
RS

 (+d-1)(t+d—2)---d
- 0!




Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

the elements ofx with ey 4 - - - + ey < d are distinct

L+d—1
RS

 (+d-1)(t+d—2)---d
- 0!

>_



Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

the elements ofx with ey 4 - - - + ey < d are distinct

L+d—1
RS

(L+d—-1)(+d—2)---d
- 0! >




Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

the elements ofx with ey 4 - - - + ey < d are distinct

L+d—1
RS

:(€—|—d—1)(££;|—d—2)...d> (_)e




Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

the elements ofx with ey 4 - - - + ey < d are distinct

L+d—1
RS

:(€—|—d—1)(££;|—d—2)...d> (d)e




Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

the elements ofx with ey 4 - - - + ey < d are distinct

L+d—1
RS

:(€—|—d—1)(££;|—d—2)...d> (d)e




Main Lemma: The set
G={(z—1)Y(x—2)%%... (x—¥£)°:e; > 0}

forms a subgroup of the multiplicative group of nor

zero elements aF' (which necessatrily is cyclic) of size
> 2l — 92y/rlogn _ ,24/T

the elements ofx with ey 4 - - - + ey < d are distinct

L+d—1
RS

_(+d-1)(¢+d—2)---d

14
/! > 2
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