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Abstract 
 

This paper reports our investigation on the problem of 
belief update in Bayesian networks (BN) using uncertain 
evidence. We focus on two types of uncertain evidences, 
virtual evidence (represented as likelihood ratios) and 
soft evidence (represented as probability distributions). 
We review three existing belief update methods with un-
certain evidences: virtual evidence method, Jeffrey’s rule, 
and IPFP (iterative proportional fitting procedure), and 
analyze the relations between these methods. This in-
depth understanding leads us to propose two algorithms 
for belief update with multiple soft evidences. Both of 
these algorithms can be seen as integrating the techniques 
of virtual evidence method, IPFP and traditional BN evi-
dential inference, and they have clear computational and 
practical advantages over the methods proposed by oth-
ers in the past.  
 
1. Introduction 
 

In this paper, we consider the problem of belief update 
in Bayesian Networks (BN) with uncertain evidential 
findings. There are three main methods for revising the 
beliefs of a BN with uncertain evidence: virtual evidence 
method [2], Jeffrey's Rule [1], and iterative proportional 
fitting procedure (IPFP) [6]. This paper reports our analy-
sis of these three belief update methods and their interre-
lationships. We will show that when dealing with a single 
evidential finding, the belief update of both virtual evi-
dence method and Jeffrey‘s rule can be viewed as IPFP 
with a single constraint. Also, we present two methods we 
developed for belief update with multiple soft evidences 
and prove their correctness. Both of these methods inte-
grate the virtual evidence method and IPFP, and they can 
be easily implemented as a wrapper on any existing BN 
inference engine.  

We adopt the following notations in this paper. A BN 
is denoted as N. X , Y, and Z are for sets of variables in a 
BN, and x or xi are for a configurations of the states of X. 

Capital letters A, B, C are for single variables. Capital 
letters P, Q, R, are for probability distributions. 
 
2. Soft Evidence and Virtual Evidence 
 

Consider a Bayesian network N over a set of variables 
X modeling a particular domain. N defines a joint distribu-
tion )(XP . When giving )(YQ , an observation of a prob-
ability distribution on variables Y ⊆ X, Jeffrey's rule 
claims that the distribution of all other variables under 
this observation should be updated to 

)()|\()\( ii i yQyYXPYXQ ∑= , (1) 

where yi is a state configuration of all variables in Y. Jef-
frey's rule assumes )|\()|\( YYXPYYXQ = , i.e., in-
variance of the conditional probability of other variables, 
given Y, under the observation. Thus 

)(
)()()()|\()(

YP
YQXPYQYYXPXQ ==  (2) 

Here )(YQ  is what we called soft evidence. Analogous to 
conventional conditional probability, we can also write 

)(YQ  as )|( seYP , where se denotes the soft evidence 
behind the soft evidential finding of )(YQ . )|( seYP  is 
interpreted as the posterior probability distribution of Y 
given soft evidence se.  

Unlike soft evidence, virtual evidence utilizes a likeli-
hood ratio to represent the observer's strength of confi-
dence toward the observed event. Likelihood ratio L(Y) is 
defined as  

))|)((:...:)|)((()( 11 mm yyObPyyObPYL = , 
where )|)(( ii yyObP  is interpreted as the probability we 
observe Y is in state iy  if Y is indeed in state iy . The pos-
terior probability of Y, given the evidence, is 

)),()(...,),()((
)()()|(
11 nn yLyPyLyPc

YLYPcveYP
⋅=

⋅⋅=
 (3) 

where ∑= i ii yLyPc )()(/1  is the normalization factor [3]. 
And since Y d-separates virtual evidence ve from all other 
variables, beliefs on X \ Y are updated using Bayes’ rule. 
Similar to equation (2), this d-separation leads to 
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Virtual evidence can be incorporated into any BN infer-
ence engine using a dummy node. This is done by adding 
a binary node veY for the given L(Y). This node does not 
have any child, and has all variables in Y as its parents. 
The CPT of veY should conform to the likelihood ratio. By 
instantiating veY to True, the virtual evidence L(Y) is en-
tered into the BN and the belief can then be update by any 
BN inference algorithm. 
 
3. IPFP on Bayesian Network 
 

Iterative proportional fitting procedure (IPFP) is a 
mathematical procedure that modifies a joint distribution 
to satisfy a set of probability constraints [6]. A probability 
constraint R(Y) to distribution P(X) is a distribution on 

XY ⊆ . We say )(XQ  is an I1-projection of )(XP  on a 
set of constraints R if the I-divergence between P and Q is 
the smallest among all distributions that satisfy R.  

I-divergence (also known as Kullback-Leibler distance 
or cross-entropy) is a measurement of the distance be-
tween two joint distributions P and Q over X: 

)(
)(log)()||(

0)( xQ
xPxPQPI

xP >
∑= . (5) 

0)||( ≥QPI  for all P and Q, the equality holds only if 
QP = . 

For a given distribution )(0 XQ  and a set of consistent1 
constraints R = {R(Y1), …, R(Ym)}, IPFP converges to 

)(* XQ  which is an I1-projection of )(0 XQ  on R (assum-
ing there exists at least one distribution that satisfies R). 

)(* XQ , which is unique for the given )(0 XQ  and R, can 
be computed by iteratively modifying the distributions 
according to the following formula, each time using one 
constraint in R: 

)(
)()()(

1
1

ik

i
kk YQ

YRXQXQ
−

− ⋅= , (6) 

where m is the number of constraints in R, and 
1)mod)1(( +−= mki . 

We can see that equations (2), (4) and (6) are in the 
same form. We can regard the belief update with soft evi-
dence by Jeffrey’s rule as an IPFP process of a single 
constraint P(Y | se), and similarly regard belief update 
with virtual evidence by likelihood ratio as an IPFP proc-
ess of a single constraint P(Y | ve). As such, we say that 
belief update by uncertain evidence amounts to change 
the given distribution so that 1) it is consistent with the 
evidence; and 2) it has the smallest I1-divergence to the 

                                                
1 A set of constraints R is said to be consistent if there exists a distribu-
tion Q(X) that satisfies all Ri in R. Obviously, two constraints are incon-
sistent if they give different distributions to the same variable. More 
discuss of this matter is given in Section 7. 

original distribution. 
Moreover, IPFP provides a principal approach to belief 

update with multiple uncertain evidential findings. By 
treating these findings as constraints, the iterative process 
of IPFP leads to a distribution that is consistent with ALL 
uncertain evidences and is as close as possible to the 
original distribution. 

Note that, unlike virtual evidence method, both Jef-
frey’s rule and IPFP cannot be directly applied to BNs 
because their operations are defined on the full joint prob-
ability distribution, and they do not respect the structure 
of BN [4].  

 
4. Inference with Multiple Soft Evidential 
Findings 
 

Valtorta, Kim and Vomlel have devised a variation of 
Junction-Tree (JT) algorithm for belief update with multi-
ple soft evidences using IPFP [5]. In this algorithm, when 
constructing the JT, a clique (the Big Clique) is specifi-
cally created to hold all soft evidence nodes. Let C denote 
this big clique, Y = {Y1, ..., Yk} and {se1, ..., sek} denotes 
soft evidence variables and the respective soft evidences, 
and X denotes the set of all variables. This Big Clique 
algorithm absorbs soft evidences in C by updating the 
potential of C with the following IPFP formulae, iterating 
over all evidences Q(Yj)s: 

)(
)|(

)()(

)()(
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1

0
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−=

=
 

where j = 1+((i-1) mod k). The above procedure is iterated 
until Qn(Yj) converges to P(Yj | sej) for all j. Finally, Q(C) 
is distributed to all other cliques, again using traditional 
JT algorithm.  

This Big Clique algorithm becomes inefficient in both 
time and space when the size of the big clique itself be-
comes large. Besides, it works only with Junction Tree, 
and thus cannot be adopted by those using other inference 
mechanisms2. Also, it requires incorporating IPFP opera-
tions into the JT procedure, causing re-coding of the exist-
ing inference algorithm. To address these shortcomings, 
we propose two new algorithms for inference with multi-
ple soft evidential findings. Both algorithms utilize IPFP, 
although in quite different ways. The first algorithm com-
bines the idea of IPFP and the encoding of soft evidence 
by virtual evidence. The second algorithm is similar to the 

                                                
2 Valtorta and his colleagues also developed another algorithm itera-
tively 1) updates the potential of the clique which contains variables of 
one soft evidence by (6) and 2) propagates the updated potential to the 
rest of the network. They mentioned the possibility of implementing this 
method as a wrapper around Hugin shell or other JT engines, but no 
suggestion of how this can be done was given [12]. 
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Big Clique algorithm but it decouples the IPFP with Junc-
tion Tree. 

 
4.1 Iteration on the Network 
 

As pointed out by Pearl [3], soft evidence can be easily 
translated into virtual evidence when it is on a single vari-
able. Given a piece of soft evidence se on variable A, if 
we want to find a likelihood ratio L(A) such that 

)|()()( seAPALAP =⋅ , 
then we have 

).
)(

)|(...,,
)(

)|((
)(

)|()(
1

1

n

n

aP
seaP

aP
seaP

AP
seAPAL ==  (7)

A problem arises when multiple soft evidences se1, se2, 
…, sem are presented. Applying one virtual evidence vei 
will have the same effect as applying the soft evidence sei, 
in particular, the posterior probability of Yi is made equal 
to P(Yi | sei). This is no longer the case when all of these 
virtual evidences are present. Now, the belief on Yi is not 
only influenced by vei, but also by all other virtual evi-
dences. As the result, the posterior probabilities of Yi’s are 
NOT equal to P(Yi | sei). Therefore, what is needed is a 
method that can convert a set of soft evidences to one or 
more likelihood ratios which, when applied to the BN, 
update the posterior probability of Yi  to P(Yi | sei). 

Algorithm 1 presented below accomplishes this pur-
pose by combining the idea of IPFP and the virtual evi-
dence method. Roughly speaking, this algorithm, like the 
IPFP, is an iterative process and one soft evidence sei is 
considered at each iteration. If the current probability of 
Yi equals P(Yi | sei), then it does nothing, otherwise, a new 
virtual evidence is created based on the current probabil-
ity of Yi and the evidence P(Yi | sei). We will show that 
when this algorithm converges, the probability of Yi is 
equal to P(Yi | sei). To better describe the algorithm, we 
adopt the following notations:  
 P: the prior probability distribution. 
 Pk: the probability distribution at kth iteration. 
 vei,j: the jth virtual evidence created for the ith soft 

evidence.   
Algorithm 1. Consider a BN N with prior distribution 

P(X), and a set of m soft evidential findings SE = (se1, se2, 
…, sem) with P(Y1 | se1),…, P(Ym | sem). We use the fol-
lowing iteration method for belief update: 
1. P0(X) = P(X); k = 1; 
2. Repeat the following until convergence; 

2.1 mki mod)1(1 −+= ;  mkj /)1(1 −+= ; 
2.2 construct virtual evidence vei,j with likelihood ra-

tio 

     )
)(
)|(
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)(
)|(

()(
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,
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1,
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i
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seyP
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=  

       where sii yy ,1, ,...,  are state configurations of Yi; 

2.3 Obtain Pk(X) by updating Pk-1(X)  with vei,j using 
standard BN inference; 

2.4 k = k + 1;                                                             ■  
The algorithm cycles through all soft evidences in SE. 

At the kth iteration, the ith soft evidence sei is selected 
(step 2.1) to update the current distribution Pk-1(X). This is 
done by constructing a virtual evidence vei,j according to 
equation (7). The second subscript here, j, is the number 
of virtual evidences created for sei, it is incremented in 
every m iterations. When converged, we can form a single 
virtual evidence node vei for each soft evidence sei with 
the likelihood ratio that is the product of likelihood ratios 
of all vei,j, jiji veve ,∏= . The convergence and correct-
ness of Algorithm 1 is established in Theorem 1.  

Theorem 1. If the set of soft evidence SE = (se1, se2, 
…, sem) is consistent, then Algorithm 1 converges with 
joint distribution P* (X), and P* (Yi) = P(Yi | sei) for all sei 
in SE. 
 
4.2   Iteration on Local Distributions 
 

Algorithm 1 may become expensive when the given 
BN is large because it updates the beliefs of the entire BN 
in each iteration (step 2.3). Following is another algorithm 
that iterates virtual evidence on joint distribution of only 
evidence variables: 

Algorithm 2. Consider a Bayesian network N and a set 
of m soft evidential findings SE = (se1, se2, …, sem) to N 
with P(Y1 | se1),…, P(Ym | sem). Let Y =Y1 ∪ … ∪ Ym. We 
use the following iteration method for belief update:  
1. Use any BN inference method on N to obtain P(Y), 

the joint distribution of all evidence variables.  
2. Apply IPFP on P(Y), using P(Y1 |se1), P(Y2 | se2), …, 

P(Ym | sem) as the probability constraints. Then we 
have P(Y | se1, se2, …, sem).  

3. Add to N a virtual evidence dummy node to represent 
P(Y | se1, se2, …, sem) with likelihood ratio L(Y) cal-
culated according to equation (7). 

4. Apply L(Y) as a single piece of virtual evidence to 
update beliefs in N.                                                   ■ 

Algorithm 2 also converges to the I1-projection of P(X) 
on the set of soft evidences SE, even though the iterations 
are carried out only on a subset of X.  

Theorem 2. Let R1(Y1), R2(Y2), …, Rm(Ym) be probabil-
ity constraints on distribution P(X). Let ∪i iYY =  and Y ⊆ 
Z ⊆ X. Suppose from IPFP we get the I1-projection of 
P(Y) on {R1, R2, …, Rm} as Q(Y) and the I1-projection of 
P(Z) on {R1, R2, …, Rm} as Q’(Z). Let Q(X) and Q’(X) be 
obtained by applying the Jeffrey’s rule on P(X) using 
Q(Y) and Q’(Z). Then Q(X) = Q’(X). 

 

4.3 Time and Space Performance  
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The iterations of Algorithm 1, Algorithm 2 and Big 
Clique algorithm all lead to the same distribution. But at 
each iteration, Big Clique algorithm updates beliefs of the 
joint probabilities of the big clique C, Algorithm 2 up-
dates the belief of evidence variables Y, and Algorithm 1 
updates the belief of the whole BN, or say, of all variables 
in X. Clearly, Y ⊆ C ⊆ X. However, the time complexity 
for one iteration of Big Clique is exponential to |C|, and 
Algorithm 2 exponential to |Y|, because both require 
modifying a joint distribution (or potential) table. On the 
other hand, the time complexity of Algorithm 1 equals to 
the complexity of the BN inference algorithm it uses for 
belief update. Both Big Clique and Algorithm 2 are space 
inefficient. Big Clique needs additional space for the joint 
potential of C, whose size is exponential to |C|. Algorithm 
2 also needs additional space for the joint distribution of 
Y, and the dummy node of virtual evidence in Step 4 leads 
to a CPT with size exponential to |Y|. In contrast, Algo-
rithm 1 only needs additional space for virtual evidence, 
which is linear to |Y|.  

Algorithm 2 is thus more suitable for problems with a 
large BN but a few soft evidential findings and Algorithm 
1 is more suitable for small to moderate-sized BNs. Also, 
both Algorithm 1 and 2 have the advantage that users do 
not have to stick to and modify the junction tree when 
conducting inference with soft evidence. They can be 
easily implemented as wrappers on any BN inference en-
gines. 
 
5. Experiments and Evaluation 
 

To empirically evaluate our algorithms and to get a 
sense of how expensive these approaches may be, we 
have conducted two experiments with artificially made 
networks of different sizes. We implemented our algo-
rithms as wrappers on a Junction-Tree-based BN infer-
ence algorithm. The reported memory consumption does 
not include those that were used by the Junction Trees, 
but the reported running time is the total running time.  

The first experiment used a BN of 15 binary variables. 
The results, as can be seen in Table 1 showed that both 
the time and memory consumptions of Algorithm 1 in-
crease slightly when the number of evidences increases. 
However, those for Algorithm 2 increase rapidly, consis-
tent with our analysis. 

Table 1. Experiment 1 
# of 

findings 
# Iterations 
(Alg 1|Alg 2) 

Exec. Time  
(Alg 1|Alg 2) 

Memory 
(Alg 1|Alg 2) 

2 24 14 0.57s 0.62s 590,736 468,532 
4 79 23 0.63s 0.83s 726,896 696,960 
8 95 17 0.71s 15.34s 926,896 2544,536 

Experiment 2 involved BN of different sizes. In all 
cases we entered the same 4 soft evidential findings in-
volving a total of 6 variables. AS shown in Table 2, the 
running time of Algorithm 2 increases slightly with the 

increase of the network size. Especially, the time for IPFP 
(the time in parentheses) is stable when the network size 
increases, which means that most increased time was 
spent on constructing the joint probability distribution 
from the BN (Step 1 of Algorithm 2). These experiments 
results confirm our theoretical analysis for the proposed 
algorithms. 

Table 2: Experiment 2.  
Size 
of N 

# Iterations 
(Alg 1|Alg 2) 

Exec. Time  
(Alg 1|Alg 2 (IPFP)) 

Memory 
(Alg 1|Alg 2) 

30 0.58s 0.67s (0.64s) 721,848 691,042 
60 0.71s 0.69s (0.66s) 723,944 691,424 
120 1.71s 0.72s (0.66s) 726,904 691,416 
240 

43 14 

103.1s 3.13s( 0.72s) 726,800 696,842 
 

6. Conclusions 
 

In this paper, we analyzed three existing belief update 
methods for Bayesian networks and established that belief 
update with one piece of virtual evidence or soft evidence 
is equivalent to an IPFP with a single constraint. Besides, 
IPFP can be easily applied to BN with the help of virtual 
evidence. We proposed two algorithms for belief update 
with multiple soft evidences by integrating methods of 
virtual evidence, IPFP and traditional BN inference with 
hard evidence. Compared with previous soft evidential 
update methods such as Big Clique, our algorithms have 
practical advantage of being independent of any particular 
BN inference engine.  
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