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Medical records usually incorporate investigative re-
ports, historical notes, patient encounters or dis-
charge summaries as textual data. This study fo-
cused on learning causal relationships from intensive
care unit (ICU) discharge summaries of 1611 pa-
tients. Identi�cation of the causal factors of clinical
conditions and outcomes can help us formulate better
management, prevention and control strategies for
the improvement of health care. For causal discovery
we applied the Local Causal Discovery (LCD) algo-
rithm, which uses the framework of causal Bayesian
Networks to represent causal relationships among
model variables. LCD takes as input a dataset and
outputs causes of the form variable Y causally inu-
ences variable Z. Using the words that occur in the
discharge summaries as attributes for input, LCD
output 8 purported causal relationships. The rela-
tionships ranked as most probable subjectively appear
to be most causally plausible.

Introduction

Text is ubiquitous. In various �elds text is still
the preferred format for summarizing information.
Even though more and more data are being coded
and analyzed, textual data often remain the richest
source of information about clinical care. For ex-
ample, in medicine, textual data coexist with coded
data in patient records. Patient history, radiological
reports, patient encounters and discharge summaries
are some areas where textual data are prevalent.

Causality plays a central role in all scienti�c disci-
plines. Causal knowledge aids planning and decision
making. In the domain of medicine, determining the
cause of a disease helps in prevention and treatment.

Learning from textual data is an emerging area of re-
search (see [1] for a recent review). In this work, we
report on research to discover causal inuences from
discharge summaries of patients admitted to the in-
tensive care unit (ICU). Our ultimate goal is to pro-
vide an analytic tool that assists clinical researchers
to discover interesting and novel causal relationships
in medicine.

This paper �rst introduces the algorithm called LCD
[2] that was designed for e�cient discovery of pos-
sible causal relationships from large observational
databases. We have previously applied LCD to a
population-based infant birth and death dataset of
41,000 instances and 87 variables [3]. In that re-
search, we obtained nine relationships out of which
eight seem plausibly causal. The present study fo-
cused on causal discovery from textual data using
LCD.

Methods

Assumptions for Causal Discovery

In the research reported here, we use causal Bayesian
networks to represent causal relationships among
model variables. This section provides a brief in-
troduction to causal Bayesian networks, as well as
a description of the assumptions we used to apply
these networks for causal discovery.

A causal Bayesian network (or causal network for
short) is a Bayesian network in which each arc is
interpreted as a direct causal inuence between a
parent node (cause) and a child node (e�ect) [4].
Figure 1 illustrates the structure of a hypothetical
causal Bayesian network, which contains �ve nodes.
A root node (node without parents) is associated
with a prior probability distribution, and a non-root
node has a conditional probability table quantify-
ing the parent-child probabilistic relationships. The
probabilities are not shown in the �gure.
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Figure 1: A hypothetical causal Bayesian network

The causal network in Figure 1 indicates, for exam-
ple, that a History of Smoking can causally inuence
whether Lung Cancer is present, which in turn can
causally inuence whether a patient experiences Fa-
tigue and whether the patient presents with a Mass
Seen on Chest X-ray.

The causal Markov condition gives the indepen-
dence relationships1 that are speci�ed by a causal
Bayesian network:

A variable is independent of its non-descendants
(i.e., non-e�ects) given just its parents (i.e., its
direct causes).

According to the Markov condition, the causal net-
work in Figure 1 is representing that Mass Seen on
Chest X-ray is not inuenced by History of Smok-
ing, given that we know whether Lung Cancer is
�xed at some state (present or absent). While the
causal Markov condition speci�es independence rela-

1We use the terms independence and dependence in
this section in the standard probabilistic sense.



tionships among variables, the causal faithfulness
condition speci�es dependence relationships:

Variables are independent only if their indepen-
dence is implied by the causal Markov condi-
tion.

For the causal network in Figure 1, three examples
of the causal faithfulness condition are (1) History of
Smoking and Lung Cancer are dependent, (2) His-
tory of Smoking and Mass Seen on Chest X-ray are
dependent, and (3) Mass Seen on Chest X-ray and
Fatigue are dependent. The intuition behind that
last example is as follows: a Mass Seen on Chest X-
ray increases the possibility that there exists Lung
Cancer which in turn increases the chance of Fa-
tigue; thus, the variables Mass Seen on Chest X-
ray and Fatigue are expected to be probabilistically
dependent. In other words, the two variables are
dependent because of a common cause (i.e., a con-
founder).

The causal Markov and faithfulness conditions de-
scribe probabilistic independence and dependence re-
lationships, respectively, that are represented by a
causal Bayesian network. In causal discovery, we do
not know the probabilistic relationships among vari-
ables precisely, because we only have a �nite amount
of data. Thus, we make the following statistical
testing assumption:

A statistical test performed to determine inde-
pendence (or alternatively dependence) given a
�nite dataset will be correct relative to inde-
pendence (dependence) in the joint probability
distribution de�ned by the causal process that
is generating the data under study.

That is, we assume our statistical test gives valid
results. The greater the number of records in a
dataset, the more likely it is that the statistical test-
ing assumption will hold.

LCD Algorithm for Causal Discovery

LCD relies on the following:

Assumption 1: The causal Markov condition
Assumption 2: The causal faithfulness condition
Assumption 3: The statistical testing assumption

In addition, LCD makes the following assumption:

Assumption 4: Given measured variables X, Y ,
and Z, if Y causes Z, and Y and Z are not con-
founded, then one of the causal networks in Figure 2
must hold.

Assumption 4 implies that X is not causally inu-
enced by Y or by Z. As we discuss in later sections,
in our experiments we chose X so that this implica-
tion holds.

Before introducing the LCD algorithm in more de-
tail, we de�ne some terms. Let IndependentT (A, B)
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Figure 2: Causal models in which Y causes Z; X and Y
are independent (1), X and Y are dependent due to X
causing Y (2,4), X and Y dependent being confounded
by a hidden variable(s) represented by H (3,4).

denote that A and B are independent according to
test T applied to our dataset. Let IndependentT (A,
B given C) denote that A and B are independent
given C, according to T . Finally, let DependentT (A,
B) denote that A and B are dependent according to
T 2. As explained below, LCD outputs Y as a cause
of Z if all the following tests hold:

Test1. DependentT (X, Y)
Test2. DependentT (Y, Z)
Test3. DependentT (X, Z)
Test4. IndependentT (X, Z given Y)

The �rst network in Figure 2 violates Test1, and
thus, LCD is unable to detect that Y causally in-
uences Z in such situations. Under Assumptions 1
through 3, the other three networks in Figure 2 sat-
isfy Test1 through Test4. If Y and Z are confounded,
then at least one of the four tests will always be vi-
olated [2].

As an example, Figure 3 shows a hypothetical case
in which Y and Z are confounded by a hidden (la-
tent) variable H. For this causal network, it follows
from Assumptions 1 and 2 that X and Z will be de-
pendent given Y , and thus, Test4 will fail. In this
hypothetical model, Gender (X) and Gene (H) are
independent. Consider that the gene (H) has two
alleles a1 and a2 and that a1 predisposes to (1) in-
creased alcohol consumption and (2) cirrhosis of the
liver. This model also assumes that male gender in-
creases alcohol intake. Now assume that a patient
with cirrhosis of liver gives a history of increased al-
cohol intake. If the patient is male the probability
of the patient having the allele a1 decreases, and if
female, the probability of a1 increases. When there
are two independent causes for a phenomenon, evi-
dence for one of the causes reduces the probability
of the other cause. Knowing the state of Y (that
a person's alcohol consumption is high) makes Gen-

2Although the three tests in this paragraph should
technically be distinguished from each other by using
separate labels, such as T1, T2, and T3, for simplicity
of notation we use a single label T .



der (X) and Gene dependent and hence Gender and
Cirrhosis of Liver (Z) dependent.
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Figure 3: Causal model with hypothetical labels in
which X causes Y , and Y and Z are dependent due to
confounding by a hidden variable(s) represented by H.

To summarize, under Assumptions 1 through 4,
when Y causally inuences Z and these two variables
are unconfounded, the four tests hold (unless X and
Y are independent). Conversely, when Y and Z are
confounded (or when X and Y are independent),
one or more of the four tests will fail. From these
propositions, we can conclude that if the four tests
hold, then one of the three causal networks (2,3,4) in
Figure 2 must hold, and thus, we can conclude that
Y causes Z and the two variables are unconfounded.

The algorithm LCD performs Test1 through Test4
sequentially to evaluate triplets of the form XYZ in
the database. Simple variations of the Independence
and Dependence tests described in [2] were used.
Both tests have O(m) time complexity, where m is
the number of records (cases) in the database. If all
four tests are passed, LCD outputs that Y causally
inuences Z and the two variables are unconfounded
(under Assumptions 1{4), and the probability dis-
tribution of Z given Y is displayed.

Time Complexity of LCD We assume here that all
the variables are categorical, and the number of lev-
els (states) of any of the variables in V is bounded
by some constant. If there are n variables in the
database, the time complexity of LCD is O(mn2r),
where n is the number of variables and r is the num-
ber of variables of type X. If we restrict the num-
ber of variables of type X in the search, so that r
is bounded above by some constant, then the time
complexity is O(mn2). If we additionally focus on a
bounded number of e�ects of interest (variable Z),
the time complexity reduces further to O(mn). In all
variations, the space complexity of LCD is O(mn),
which is the size of the database.

Further, the algorithm can be implemented to out-
put the causes as they are discovered. The time com-
plexity of LCD makes it appropriate for exploring
possible causal relationships in databases that con-
tain a very large number of records (on the order of
hundreds of thousands) and a moderately large num-
ber of measured variables per record (on the order of
a few thousand). This order of e�ciency makes LCD
particularly suitable for causal data mining from tex-
tual data.

Text Data Mining Text data mining is a nascent
�eld [1]. To our knowledge, the present paper re-
ports the �rst investigation of automated causal dis-
covery from text. A comprehensive review of work
in text data mining is not attempted here. Recent
works of interest include the following: Feldman and
Dagan describe a methodology for knowledge discov-
ery from text by constructing a concept hierarchy
by annotating text articles. Their framework makes
use of text categorization for �nding new patterns
[5]. A novel knowledge discovery approach to text
has been reported by Swanson and Smallheiser who
have developed a user-interactive specialized knowl-
edge discovery tool. Using Medline abstracts from
isolated disciplines that do not cite each other, these
researchers have been successful in proposing new
and useful relationships of scienti�c merit in the
biomedical domain. Some of these postulates were
later veri�ed by experimental work [6].

Experimental Methods

Text dataset The text dataset was 2060 intensive
care unit discharge summaries (documents) of pa-
tients admitted to two medical ICUs of the Univer-
sity of Pittsburgh Medical Center (UPMC) during
the years 1993, 1994, and 1995. Patient names, ad-
dresses, physician names and other relevant identi-
fying features were removed from the records before
further processing. A dictionary was created by in-
corporating all words occurring in at least 50 of the
summaries. We used this �lter (1) to focus on words
that occur frequently, and (2) to reduce computa-
tion time. Multiple occurrences of the same word in
any one document were counted as one. After ignor-
ing stop words, there were 1808 unique words that
occurred in 50 or more documents.

Age, gender and race of the patients were extracted
from the summaries using a computer program. We
could identify these attributes in 1611 records. Each
of the 1808 words were coded as 1 if it was present
in a particular document and 0 if it was not present.
After incorporating age, gender and race we had a
dataset with 1811 attributes and 1611 records.

LCD Runs The LCD algorithm was executed as
follows. Age, gender and race were used as the
acausal X type variables (see Figure 2). They are
considered acausal as they cannot be caused by any
other measured variables. We make the assump-
tion that they are not causally inuenced by the
attributes used in this study. Since we had 1811
attributes, to reduce computational time we focused
on twenty Z variables (possible e�ects). We looked
for medically meaningful conditions (nouns) and se-
lected the following words from the list of attributes:

Nausea, hypotension, lymphadenopathy, seizures,
encephalopathy, e�usion, embolism, metastases,
thrombocytopenia, acidosis, dizziness, bacteremia,
thrombosis, rash, pancreatitis, cirrhosis, hemateme-



sis, dyspnea, hypokalemia, and allergy.

This was done to avoid searching just for the causes
of commonly occurring words such as slow, marked,
high, same or room. With this restriction LCD
would have evaluated 35,760 pairs of words for causal
inuence. For the statistical tests of dependence and
independence, thresholds of 0.9, 0.8, and 0.7 were
used with the test reported in [2].

Results

Table 1 summarizes the causal output at the depen-
dence and independence threshold level of 0.9. The
�rst two entries causally linking alcoholic and alcohol
to cirrhosis seem plausible; this relationship is well-
known in the medical literature. Table 2 gives the
probability distribution of cirrhosis given alcoholic.
The third entry in Table 1 seems to be plausible
only in the reverse direction, assuming portal de-
notes portal hypertension. We are investigating the
possibility that this false positive output was due to
subtle confounding, which could be eliminated if the
confounders (e.g., alcoholic) are considered. Using
a threshold of 0.8 and lower gave �ve relationships
that appear unreliable including for example that
\ascitis causes cirrhosis". Hence, we did not analyze
those results further.

Table 1: LCD output (Y causally inuencing Z) at
threshold 0.9.

X node Y node Z node

gender alcoholic cirrhosis

gender alcohol cirrhosis

gender portal cirrhosis

Table 2: Conditional probability table of cirrhosis
given alcoholic

Alcoholic

Cirrhosis Absent Present

Absent 0.96
�

0.61

Present 0.04 0.39

�The probability that cirrhosis is absent given that alco-
holic is absent.

Discussion

By our medical judgment, the program output one
false positive and one true positive causal relation-
ship. We believe the false positive result can be
disregarded based on known causal relationships in
medicine. In general one could use time precedence
or prior medical knowledge to evaluate the output
and eliminate many false positives. Such a �lter
could also be incorporated in the causal discovery

system. Consider the output \Y causes Z". A use-
ful enhancement would be a graphical user inter-
face that highlights the appearance of the terms Y
and Z in the original text records; such an interface
would help the user judge the clinical plausibility of
Y causing Z. We also did not �nd any novel relation-
ships in this study. We believe the chance of �nding
novel relationships will improve when we include (1)
multi-word phrases, (2) a larger number of records,
and (3) multivariate causes of e�ects. It may also be
useful to encode (1) variable-value pairs (e.g., serum
sodium = high), (2) the number of occurrences of a
phrase in documents, and (3) the location of phrases
in documents.

In causal discovery using coded data, the attributes
are well de�ned entities and the values they take
are assigned based on a widely accepted protocol.
For example, a recording of the blood pressure is
done using a sphygmo-manometer and the reading
is noted. This might then be recoded based on ac-
cepted cut-o� values into normal, mild hypertension,
moderate hypertension or severe hypertension. In
text, based on the context, all these categories of hy-
pertension might just be referred to as hypertension
or high blood pressure. So the words appearing in
medical text capture the real world through a sort of
prism of the care provider. In other words, a level of
abstraction or interpretation is involved in the cre-
ation of textual data.

Related work

Causal Discovery Algorithms Traditional statisti-
cal approaches using for example �2 tests or logistic
regression can establish dependence between vari-
ables. Likewise, machine learning algorithms such
as decision tree learners (e.g., C4.5 and CART), rule
inducers (e.g., C4.5Rules and FOCL) and neural net-
works can build useful domainmodels from data and
capture the inter-dependence among the variables.
But none of these techniques is intended to estab-
lish relationships of the form Y causally inuences
Z.

Structural equation models (SEMs) [7], represent
causal relationships, thus going beyond correlation
and dependence. The emphasis in SEM research
is on hypothesis testing of manually speci�ed mod-
els, rather than on automated search over the space
of models. Typically SEM assumes linear rela-
tionships (with statistical noise) among continuous
model variables.

For a detailed discussion of the relationship be-
tween statistical association and causation, includ-
ing philosophical issues, see for example [8] and [9].
Earlier research on learning Bayesian networks from
data using a Bayesian approach [10, 11] simulta-
neously modeled all the causal relationships among
the model variables. These global approaches have
worst-case time complexities that are exponential in



the number of measured variables V .

Constraint-based approaches to causal discovery
were put forward by Pearl and Verma [12] and by
Spirtes, Glymour, and Scheines [13]. The PC and
FCI algorithms, for example, take a global approach
to causal discovery and output a network with di�er-
ent types of edges between variables that represent
for example that X causes Y , X does not cause Y ,
or the causal direction is undetermined [14]. The
FCI can also model latent variables.

LCD is a constraint-based algorithm that limits its
search to triplets of variables, and outputs only
causes of the form Y causes Z. By searching only
for pairwise causal relationships, it trades o� com-
pleteness for e�ciency.

The goal of causal discovery from textual data is
to �nd relationships between words in text across
documents that are potentially causal. Natural lan-
guage processing (NLP) can help automate text un-
derstanding, for example, it could be used to sum-
marize text. NLP methods could also be used to
mapwords and phrases to concepts which could then
be used as attributes for causal discovery.

Limitations

Only words, not phrases were used. The text words
take only two values in each record|present or ab-
sent. The context in which the word appears is not
considered. For example, negation of words are ig-
nored. Hence, hypertensive and not hypertensive ap-
pearing in a text document are coded as present for
the attribute hypertensive. Likewise, synonyms are
considered as di�erent attributes.

Conclusion and Future Work

This paper reports early research in causal data min-
ing from medical textual data using a local causal
discovery (LCD) approach. It would also be use-
ful to apply this paradigm to other medical textual
data like radiological reports and patient encounter
summaries. This approach should be generalizable
to similar text data in other �elds. But this remains
to be tested.

We plan to re�ne our attribute gathering by using
stemming of words and also by the use of an ex-
tended stop list. Another future direction would be
to consider phrases containing up to four contigu-
ous words, rather than just single words. These at-
tributes can also be mapped to a concept library like
the UMLS system and re�ned, thereby incorporat-
ing synonymy.
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