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Abstract. This paper presents a simple, efficient computer-based method for discovering causal relationships
from databases that contain observational data. Observational data is passively observed, as contrasted with
experimental data. Most of the databases available for data mining are observational. There is great potential for
mining such databases to discover causal relationships. We illustrate how observational data can constrain the
causal relationships among measured variables, sometimes to the point that we can conclude that one variable is
causing another variable. The presentation here is based on a constraint-based approach to causal discovery. A
primary purpose of this paper is to present the constraint-based causal discovery method in the simplest possible
fashion in order to (1) readily convey the basic ideas that underlie more complex constraint-based causal discovery
techniques, and (2) permit interested readers to rapidly program and apply the method to their own databases, as
a start toward using more elaborate causal discovery algorithms.
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1. Introduction

This paper presents a simple, efficient computer-based method for discovering (under as-
sumptions) causal relationships from observational databases. A primary purpose for ap-
plying the method is to gain insight into the causal relationships among a set of database
variables. Such knowledge permits one to know how varying a causal variable is likely to
induce a change in an effect variable. For example, suppose we have a large database of
information about thousands of patients seen in a hospital for the past five years. What
causal relationships are suggested as highly likely by this observational data? If some
of these causal relationships were previously unknown and are likely to have significant
clinical benefit, then we may wish to follow up with additional studies and analyses.

Observational data is passively observed, as contrasted with experimental data in which
one or more variables is manipulated (often randomly) and the effects on other variables are
measured. Observational data is more readily available than experimental data, and indeed,
most databases that are used for data mining are observational databases. As observational
databases become increasingly available, the opportunities for causal discovery increase.
Techniques for causal discovery could be applied in performing exploratory data analyses
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of large databases of many different kinds. Such analyses might uncover, for example,
how a variant in operating procedures is likely to influence productivity, or how using a
particular marketing strategy is likely to change product sales. The potential application
areas are wide ranging.

Traditional statistical thinking says that “correlation does not imply causation”. Obser-
vational data can, however, constrain the causal relationships among variables. Perhaps the
simplest example of such a constraint is the inductive principle that if two variablesX and
Y are not correlated (or, more generally, are not statistically dependent according to some
measure), thenX does not causeY, andY does not causeX. While this principle can fail, it
also can serve as a powerful guide in the search for causal relationships. The story, however,
as we relate it in part here, is much richer and more interesting than that simple principle.
In particular, the most important general idea in this paper is thatinformation about the
statistical independence and dependence relationships among a set of variables can be used
to constrain(sometimes significantly) the possible causal relationships among asubsetof
those variables. For example, suppose that in factX causesY. By measuring justX and
Y, we indeed cannot determine whetherX causesY. So, in that limited sense, correlation
does not imply causation. If, however, there is a variableW that is known not to be caused
by X or Y, then by examining the statistical independence and dependence relationships
amongW, X, andY, it sometimes is possible to infer thatX causesY. Section 3 shows
how. In some instances, even though we may not be able to induce thatX causesY, we
may be able to determine, for example, thatY does not causeX, and thereby constrain the
possible causal relationships betweenX andY.

This paper focuses on predictive causal relationships that express how changingX is likely
to changeY. The paper does not address the meaning of causality from a philosophical per-
spective. Operationally, however, when we say thatX causes Ywe mean that a hypothetical,
ideal randomized controlled experiment would conclude that there is some manipulation of
X that leads to a change in the probability distribution of values thatY will take on.

We outline here a prototypical randomized controlled experiment (RCE); although varia-
tions certainly exist, they are not discussed. An RCE is performed with an explicitly defined
population of units (e.g., patients withchest pain) in some explicitly defined context or set
of contexts (e.g., currently receiving no chest-pain medication and residing in a given geo-
graphical area). Thus, causal relationships that are discovered are relative to a population
and a context. In an RCE, for a given experimental unit, the value to set the cause in
question, which we denote asX, is randomly selected using a uniform distribution over the
other possible values ofX. The state ofX is then manipulated to have the selected value.
The RCE defines explicitly the details of how these value manipulations are made (e.g., the
quantity of chest-pain medication to take and the time course of taking the medication).
For each unit, after the new value ofX is set (e.g., eitherreceive chest-pain medication
or receive no chest-pain medication), the value ofY is measured (e.g.,either has chest
painsor does not have chest pains). The greater the experimental data support a statistical
dependency betweenX andY, the more the data support thatX causally influencesY.

In practice, of course, even a limited randomized controlled experiment might not be
safe, ethical, logistically feasible, financially worthwhile, or even theoretically possible, all
of which are reasons for using observational data to attempt to infer causal relationships.
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A primary purpose of this paper is to present a constraint-based causal discovery method
in the simplest possible fashion; therefore, the coverage here is relatively informal and
non-technical. By constraint-based, we mean a two-step procedure in which (1) statistical
tests are used to establish conditional dependence and independence relationships among
the variables in a model, and (2) those relationships are used to constrain the types of
causal relationships that exist among the model variables. This presentation leads to an
algorithm that is more efficient (in the worst case), but less complete, than previously
published constraint-based causal discovery algorithms. Thus, the algorithm introduced
here is relatively fast, but it often will not output all the causal relationships that might be
discovered by more computationally complex algorithms. After reading this paper, readers
familiar with computer programming should be able to implement in a matter of a few hours
the discovery algorithm that is described. While the algorithm may not perform as well as
more complex algorithms that are referenced in the paper, the algorithm here should provide
a good starting point for using or even implementing those more sophisticated and complex
algorithms. Additionally, the basic ideas presented here should make it easier for readers to
understand the general theory of constraint-based causal discovery (Pearl and Verma, 1991;
Spirtes et al., 1993). In Section 5, we discuss the relationship between constraint-based and
Bayesian methods for causal discovery.

2. Assumptions for causal discovery

In this section, we describe six assumptions that are used to support the primary causal
discovery algorithm presented in this paper.

Assumption 1 (Database completeness).Let D be a database of cases (e.g., a flat file of
records), such that each case contains a value for each variable in setV.

Assumption 2 (Discrete variables). Each variable inV has a finite, discrete number of
possible values.

Assumption 2 is not required, but rather, it is made for convenience.

Assumption 3 (Bayesian network causal model). The underlying causal processes that
exist among the variables inV can be modeled using some Bayesian networkG, which
might contain hidden variables not inV.

Assumption 3 means in effect that we assume that the data we have about the variables
in V were generated by some Bayesian network1.

A Bayesian network consists of a structural model and a set of probabilities. The structural
model is a directed acyclic graph in which nodes represent variables and arcs represent
probabilistic dependence. For each node there is a probability distribution on that node given
the state of its parents. A Bayesian network specifies graphically how the node probabilities
factor to specify a joint probability distribution over all the nodes (variables). A causal
Bayesian network is a Bayesian network in which the parents of a node are interpreted as
directly causing that node, relative to the other nodes in the model. For a more detailed
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discussion of Bayesian networks, see (Castillo et al., 1997; Jensen, 1996; Pearl, 1988;
Spirtes et al., 1993).

Let S be the graphical structure ofG and let P be the joint probability distribution
represented byG. By definition, S is a directed, acyclic graph. A node inS denotes
a variable that models a feature of a process, event, state, object, agent, etc., which we
will denote generically as an entity. For example, age is a feature of a car, which is an
object/entity. We will use the termsvariableandnodeinterchangeably. Also, as shorthand,
we sometimes will say that one variable causes another variable, rather than say one variable
represents a feature of an entity that causes a feature of another entity that is represented
by another variable. Note that whileSsurely will contain all the variables inV, it also may
contain variables that are not inV. In particular, we later will see that hidden variables may
appear inS to explain the statistical dependence among the measured variables inV.

An arcX→ Y in Sdenotes direct causation ofY by X, relative to the other variables inS.
Suppose, however, that there is some variableU , such thatX only influencesY throughU .
We express this relationship in Bayesian network notation asX → U → Y. HereX is no
longer a direct cause ofY (in V), but rather, is an indirect cause.

Since we are using a Bayesian network model, the Markov condition must hold by
definition. TheMarkov conditionis as follows: Any node is conditionally independent of
its nondescendants, given its parents. A nondescendant of a nodeX is a nodeY that cannot
be reached by a directed path fromX to Y. The intuition underlying the causal version of
the Markov condition is as follows. Assume that the structureS of a Bayesian networkG
is causally valid. A descendantY of X in S is on a causal path fromX. Thus, we would
expect there to be the possibility of a probabilistic dependency betweenX andY. Now,
consider the nondescendants ofX; that is, consider all entities represented by the variables
in G that are not directly or indirectly caused byX. Since the parents ofX represent all of
its direct causes, if we fix the values of these parents, we expect that the nondescendants
of X will be probabilistically independent ofX, unless a nondescendant happens also to be
on an effect ofX; thus, they will give us no information about the distribution ofX.

A criterion calledd-separationcaptures exactly the conditional independence relation-
ships that are implied by the Markov condition (Geiger et al., 1990; Meek, 1995; Pearl,
1988)2. The following is a definition ofd-separation (Pearl, 1994): LetA, B, andC be
disjoint subsets of the nodes inS. Let p be any acyclic path between a node inA and a node
in B, where an acyclic path is any succession of arcs, regardless of their directions, such
that no node along those arcs appears more than once. We say a nodew has converging
arrows along a path if two arcs on the path point tow. SubsetC is said to blockp if there
is a nodew on p satisfying one of the following two conditions: (1)w has converging
arrows (alongp) and neitherw nor any of its descendants are inC, or (2)w does not have
converging arrows (alongp) andw is in C. SubsetC is said tod-separateA from B in S
if and only if C blocks every path from a node inA to a node inB.

We will use thed-separation condition to distinguish one causal model from another. In
essence, it provides a link between the causal process that we do not perceive directly and
the measurements that we do perceive. In order for this link to be tight, however, we need
several more assumptions.

Assumption 4 (Causal faithfulness condition). For all disjoint setsA, B, andC in V, if
in S we have thatA is notd-separated fromB by C, then inP we have thatA andB are
conditionally dependent givenC.
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Assumption 4 says that the only way variables will be probabilistically independent is
if their independence is due to the Markov condition, or equivalently, to thed-separation
condition.

The following result regarding the faithfulness condition has been proved for discrete
(Meek, 1995) and for multivariate Gaussian (Spirtes et al., 1993) Bayesian networks. Con-
sider anysmoothdistributionQ over the possible parameters in a Bayesian network. The
parameters are just the probabilities represented in the network, which we denoted above as
P. Now consider drawing a particular set of parameters from distributionQ. The results in
(Meek, 1995; Spirtes et al., 1993) show that the probability of drawing a distribution that is
not faithful is measure zero. These results do not mean that drawing such a distribution is
impossible, but rather, under the assumption of a smooth distribution, such an outcome
is exceedingly unlikely.

Assumption 5 (No selection bias). If V′ denotes an arbitrary instantiation of all the
variables inV, thenV′ is sampled for inclusion inD with probability Pr(V′ | G), whereG
is the causal Bayesian network to be discovered.

If selection bias exists, then it could be thatV′ is sampled with a probability other than
Pr(V′ | G). In Section 4 we return briefly to the issue of selection bias and show how the
violation of Assumption 5 can be detected in principle.

Let T be a test used to determine conditional independence among sets of variables in
V, as for example, the chi-squared test.

Assumption 6 (Valid statistical testing). Consider the sets of variablesA, B, andC in
V. If in P we have thatA and B are conditionally dependent givenC, then A and B are
conditionally dependent givenC according to testT applied to the data inD. Similarly,
if in P we have thatA and B are conditionally independent givenC, then A and B are
conditionally independent givenC according to testT applied to the data inD.

Assumption 6 states that we can use testT to uncover the probabilistic dependence and
independence relationships among the measured variables, as given byP. Note thatT
implicitly includes the value of any statistical significance threshold (e.g., an alpha level)
that is required in applying the test.

3. A causal discovery algorithm

In this section, we present a simple causal discovery algorithm, which we call LCD (Local
Causal Discovery). As stated in the introduction, the purpose of this presentation is to
illustrate the basic ideas that underlie constraint-based causal discovery from observational
data, as well as present an efficient algorithm that may be useful in practice for data mining.
We first present the conceptual basis of the algorithm. Next, we present the algorithm itself
as pseudocode, and we characterize its computational complexity.

3.1. The basis of LCD

Suppose we know (or, more likely, we are willing to assume) that the feature (of some entity)
represented by variableW in V is not caused by any of the features (of entities) represented
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by the other variables inV. We might, for instance, assume this causal constraint based on
scientific or commonsense principles that we are willing to believe, direct observation, or
the results of a randomized controlled experiment. For example, in a clinical database,W
might represent patient gender. As another example, the occurrence ofW might temporally
precede all the other measured variables inV.

Assumption 7 (A known uncaused entity). There is a designated variableW in V that
is not caused by any other variable inV.

Consider three measured variablesW, X, andY in V. Table 1 shows the 4 ways that we
will model howW andX can be causally related. The variableHW X is a hidden variable
that is causally linking justW and X. A hidden (i.e., latent) variable is a variable about
which we have no measurements. Since a set of hidden variables can always be modeled
using one composite hidden variable, there is no loss of generality in considering only one
hidden variable here.

In a fashion parallel to Table 1, Table 2 lists the 4 ways that we will model howW and
Y can be related.

Finally, Table 3 lists the 6 ways we will model howX andY can be related; there are 6
ways, rather than 4, because we include the possibility thatY can causeX.

Table 1. The 4 modeled causal relationships betweenW andX.

Label Causal relationship

W X1 W X

W X2 W→ X

W X3 HW X↙↘
W X

W X4 HW X↙↘
W→ X

Table 2. The 4 modeled causal relationships betweenW andY.

Label Causal relationship

WY1 W Y

WY2 W→ Y

WY3 HWY↙↘
W Y

WY4 HWY↙↘
W→ Y
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Table 3. The 6 modeled causal relationships betweenX andY.

Label Causal relationship

XY1 X Y

XY2 X→ Y

XY3 X← Y

XY4 HXY↙↘
X Y

XY5 HXY↙↘
X→ Y

XY6 HXY↙↘
X← Y

The relationships in Tables 1 through 3 do not model all the possible ways that we may
have arcs between measured variables and hidden variables, the ways we may have arcs
among the hidden variables, or the ways in which two or three variables can share a com-
mon hidden variable. At the expense of completeness, we exclude consideration of some
possibilities, in order to clearly and succinctly convey fundamental concepts. The general
theory of constraint-based causal discovery (Spirtes et al., 1993) shows that considering
these additional possibilities does not interfere with the causal distinctions we make in this
paper.

The arcs among measured variables in Tables 1 through 3 are direct causal relationships
relative only to the set of variables{W, X,Y}, rather than relative to the setV of all variables.
Consider, for example, the relationshipW → X given asW X2 in Table 1. It could be
that there is some variableU in V such thatU represents an intermediate causal step in the
causal chain fromW to X, namelyW → U → X. Thus, relative to consideration of just
the variables in{W, X,Y}, U is in a sense hidden.

Table 4 uses the labels from Tables 1 through 3 to list in column one all 96 possible
causal models that follow from the 4 modeled relationships betweenW andX, the 4 modeled
relationships betweenW andY, and the 6 modeled relationships betweenX andY. Column
two contains threed-separation conditions for each causal graph. The notationD(W, X) is
used to represent thatW andX are notd-separated (i.e., they are dependent) inG. Similarly,
D(Y, Z) means thatY andZ are dependent. The notationI (W,Y | X) represents thatW
andY ared-separated (i.e., they are independent) givenX. A “+” in Table 4 indicates the
presence of the designated relationship; a blank indicates its absence. If testT is a reliable
indicator of independence, as we assume, then these three conditions can be determined
from the data inD.

The patterns of dependence and independence displayed in Table 4 form equivalence
classes among the 96 causal graphs that are induced by the threed-separation conditions.
The members of a particularly important equivalence class are networks 18, 19, and 20 in
Table 4, which are highlighted by underlining them. These causal graphs, which all have
the pattern+++, are shown in Table 5. Call this pattern thepositive pattern. Note that in



        
P1: ICA/ASH P2: MVG

Data Mining and Knowledge Discovery KL475-02-Cooper August 5, 1997 16:30

210 COOPER

Table 4. A listing of threed-separation conditions for 96 causal graphs (see text).

Causal graph D(W, X) D(X,Y) I (W,Y | X)

1. W X1 WY1 XY1 +
2. W X2 WY1 XY1 + +
3. W X3 WY1 XY1 + +
4. W X4 WY1 XY1 + +
5. W X1 WY2 XY1

6. W X2 WY2 XY1 + +
7. W X3 WY2 XY1 + +
8. W X4 WY2 XY1 + +
9. W X1 WY3 XY1

10. W X2 WY3 XY1 + +
11. W X3 WY3 XY1 +
12. W X4 WY3 XY1 + +
13. W X1 WY4 XY1

14. W X2 WY4 XY1 + +
15. W X3 WY4 XY1 + +
16. W X4 WY4 XY1 + +
17. W X1 WY1 XY2 + +
18. W X2 WY1 XY2 + + +
19. W X3 WY1 XY2 + + +
20. W X4 WY1 XY2 + + +
21. W X1 WY2 XY2 +
22. W X2 WY2 XY2 + +
23. W X3 WY2 XY2 + +
24. W X4 WY2 XY2 + +
25. W X1 WY3 XY2 +
26. W X2 WY3 XY2 + +
27. W X3 WY3 XY2 + +
28. W X4 WY3 XY2 + +
29. W X1 WY4 XY2 +
30. W X2 WY4 XY2 + +
31. W X3 WY4 XY2 + +
32. W X4 WY4 XY2 + +
33. W X1 WY1 XY3 + +
34. W X2 WY1 XY3 + +
35. W X3 WY1 XY3 + +
36. W X4 WY1 XY3 + +
37. W X1 WY2 XY3 + +
38. W X2 WY2 XY3 + +

(Continued on next page.)
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Table 4. (Continued.)

Causal graph D(W, X) D(X,Y) I (W,Y | X)

39. W X3 WY2 XY3 + +
40. W X4 WY2 XY3 + +
41. W X1 WY3 XY3 + +
42. W X2 WY3 XY3 + +
43. W X3 WY3 XY3 + +
44. W X4 WY3 XY3 + +
45. W X1 WY4 XY3 + +
46. W X2 WY4 XY3 + +
47. W X3 WY4 XY3 + +
48. W X4 WY4 XY3 + +
49. W X1 WY1 XY4 + +
50. W X2 WY1 XY4 + +
51. W X3 WY1 XY4 + +
52. W X4 WY1 XY4 + +
53. W X1 WY2 XY4 +
54. W X2 WY2 XY4 + +
55. W X3 WY2 XY4 + +
56. W X4 WY2 XY4 + +
57. W X1 WY3 XY4 +
58. W X2 WY3 XY4 + +
59. W X3 WY3 XY4 + +
60. W X4 WY3 XY4 + +
61. W X1 WY4 XY4 +
62. W X2 WY4 XY4 + +
63. W X3 WY4 XY4 + +
64. W X4 WY4 XY4 + +
65. W X1 WY1 XY5 + +
66. W X2 WY1 XY5 + +
67. W X3 WY1 XY5 + +
68. W X4 WY1 XY5 + +
69. W X1 WY2 XY5 +
70. W X2 WY2 XY5 + +
71. W X3 WY2 XY5 + +
72. W X4 WY2 XY5 + +
73. W X1 WY3 XY5 +
74. W X2 WY3 XY5 + +

(Continued on next page.)
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Table 4. (Continued.)

Causal graph D(W, X) D(X,Y) I (W,Y | X)

75. W X3 WY3 XY5 + +
76. W X4 WY3 XY5 + +
77. W X1 WY4 XY5 +
78. W X2 WY4 XY5 + +
79. W X3 WY4 XY5 + +
80. W X4 WY4 XY5 + +
81. W X1 WY1 XY6 + +
82. W X2 WY1 XY6 + +
83. W X3 WY1 XY6 + +
84. W X4 WY1 XY6 + +
85. W X1 WY2 XY6 + +
86. W X2 WY2 XY6 + +
87. W X3 WY2 XY6 + +
88. W X4 WY2 XY6 + +
89. W X1 WY3 XY6 + +
90. W X2 WY3 XY6 + +
91. W X3 WY3 XY6 + +
92. W X4 WY3 XY6 + +
93. W X1 WY4 XY6 + +
94. W X2 WY4 XY6 + +
95. W X3 WY4 XY6 + +
96. W X4 WY4 XY6 + +

Table 5. The three causal graphs in Table 4 that have the positive pattern+ + +.

Causal graphs expressed as labels Causal graphs expressed as networks

W X2 WY1 XY2 W→ X→ Y

W X3 WY1 XY2 H↙↘
W X→ Y

W X4 WY1 XY2 H↙↘
W→ X→ Y

each of these graphsX causesY. Thus, given Assumptions 1 through 7, a positive pattern
of dependence and independence among three measured variables is sufficient to identify a
causal relationship from among the 96 causal graphs modeled.

We note that since none of the relationships betweenX andY in Table 5 are confounded
by W, or by any hidden process, an estimate of Pr(Y | X) provides a direct estimate of the
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distribution ofY given that we manipulateX to have some particular value (Spirtes et al.,
1993).

The algorithm we describe in the next section is based on searching for positive patterns
that exist among triplets of variables inV. We emphasize, however, that it is possible for
X to causeY, and yet, a positive pattern will not hold; the causal graphW X2 WY2 XY2
is one such example, wherebyW causesX, W causesY, andX causesY. Moreover, the
algorithm we present in the next section does not guarantee returning all the possible causal
constraints that could be identified from an observational database.

3.2. The LCD algorithm

This section specifies the LCD causal discovery algorithm and analyzes its computational
time and space complexity.

In LCD, we assume the availability of a function called Independent(A, B,C) that uses
complete databaseD (which we leave implicit) to determine whetherA is independent of
B, givenC. If it is, then Independent returnstrue, otherwise, it returnsfalse. If C isÁ©,
then Independent uses databaseD to determine ifA is marginally independent ofB. The
function Independent might, for example, be based on classical statistical tests such as a
chi-squared or aG2 test of independence (Bishop et al., 1975). For such classical tests, we
would need to specify the statistical threshold(s) needed to apply a given implementation
of Independent. The appendix contains a Bayesian implementation of Independent, rather
than an implementation that is based on a classical statistical test. The Bayesian implemen-
tation in the appendix is asymptotically correct in determining independence in the large
sample limit. We also use a function Dependent(A, B,C), which is defined analogously to
Independent. Its definition is given in the appendix as well.

The following pseudocode expresses the LCD algorithm. Curly brackets are used to
enclose comments. We use “\” to denote the set difference operator.

procedureLCD(W,V, D);
{Input: A variableW, which is assumed not to be caused by any other variable in the set

V of discrete, measured variables in complete databaseD.}
{Output: A printout of causal relationships that are discovered.}
for X ∈ V \ {W} do

if Dependent(W, X,Á©) then
for Y ∈ V \ {W, X} do

if Dependent(X,Y,Á©) then
if Independent(W,Y, X) then

write (‘the data support ’,X, ‘ as a cause of ’,Y);
{an estimate of the distribution Pr(Y | X)

could be printed here as well}
end {for};

end {for};
end {LCD}.
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Every time LCD outputs that the data supportX as a cause ofY, the algorithm also could
output the distribution Pr(Y | X). Let y denote some value ofY and letx denote a value of
X. In this context, the term Pr(Y = y | X = x) represents the probability thatY will take
on the valueY given that we manipulateX to have the valuex.

The analysis that follows assumes that the number of values of any variable inV is
bounded from above by some constant. Since the analysis of Independent and Dependent are
identical, we only discuss Independent. If there aren variables inV andm cases inD, then
the time complexity of LCD isO(n2 f (m, n)), where f (m, n) is the time complexity of the
function Independent. Typically, the time complexity of implementations of Independent
would beO(m), as is the case for the implementation in the appendix. If the complexity of
Independent isO(m), then the complexity of LCD isO(n2m).

If there are at mostq variables that test as dependent toW, whereq ≥ 1, then the time
complexity of LCD isO(nq f(m, n)). If for some constantk, LCD only considers thek of
n variables that have the strongest statistical dependency toW, then the time complexity
of LCD is O(n f (m, n)). If the time complexity of Independent isO(m), then the time
complexity of LCD isO(nm). By thus constraining LCD, we can make its time complexity
proportional to the size of the database.

The space complexity of LCD isO(mn), if we assume that LCD must store the database,
which containsmn entries, and if we assume that the space complexity of Independent is
O(mn). More generally, the space complexity isO(mn+ g(m, n)), whereg(m, n) is the
space complexity of Independent.

Suppose there are a set of variablesU, each member of which we are willing to assume is
not caused by any of the other variables inV. We could call LCD for eachW in U. We note,
but do not elaborate here, that when|U| > 1, the use of additional data structures in LCD
can lead to less redundant calls to Independent and Dependent, and thus to an improved
efficiency of LCD.

3.3. Some limitations of LCD

This section discusses some types of causal relationships that LCD will miss, even when
Assumptions 1 through 7 hold. We also illustrate that LCD returns pairwise causal rela-
tionships without unifying the causal relationships among those pairs.

There are 32 networks in Table 4 in whichX is causingY. The LCD algorithm is able
(given that Assumptions 1 through 7 hold) to detect thatX is causingY in only 3 of these
networks. The algorithm is unable to determine thatX is causingY in the other 29 networks,
because the tested independence patterns associated with those networks are not unique for
X causingY. In particular, the 29 networks are numbered as 17, 21 through 32, and 65
through 80 in Table 4. Three representative examples are networks 22, 26, and 66, which
are shown in figure 1.

Figure 1. Networks 22 (left), 26 (middle), and 66 (right) from Table 4.
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Figure 2. A hypothetical causal network.

We now consider one result of LCD returning separate pairwise causal relationships,
rather than, for example, a single causal network that unifies all the causal pathways among
the set of measured variables. Consider a causal process that is represented by the causal
network in figure 2.

Given that Assumptions 1 through 7 hold, the LCD algorithm will not output the network
in figure 2, but rather, it will output the following six pairwise causal relationships:X→ Y,
X → Z, X → A,Y → Z,Y → A, Z → A. Thus, true to its name, LCD focuses
myopically on the discovery of local causal relationships, and therefore, it may produce a
disjoint picture of the causal relationships. The local focus allows LCD to be simple and
fast. Although not discussed here, post-processing of the LCD output could be used to
produce a more unified summary of the causal relationships that are discovered.

Finally, we note that LCD need only condition on at most one variable when testing for
independence; higher order tests of independence can be relatively less reliable.

4. The assumptions revisited

In this section, we revisit each of the seven assumptions on which LCD is based; we consider
their plausibility and the implications of their failure. We also briefly suggest some possible
extensions to LCD.

Assumption 1 (Database completeness).Often there is missing data in a database, that
is, each variable is not measured for each case. One solution when considering variables
W, X, andY is to remove all cases fromD in which any of these variables has a missing
value. The problem with this approach is two-fold. First, we may end up with a very small
database, and thus, have difficulty justifying Assumption 6 regarding valid statistical testing.
Second, the data may not be missing randomly, in which case the distribution among the
complete cases may not accurately reflect the distribution in the unselected population of
interest; this effect can lead to a violation of Assumption 5 regarding no selection bias.

Another solution to the problem of missing data is to assign the valuemissingto a variable
in a case for which that variable was not measured. This approach may, however, lead to
an induced statistical dependency. In particular, conditioned onX having the explicit value
missing, the value ofW may provide some information about the value ofY, and thus,W
andY may test as being dependent; if this test result occurs, then LCD will miss uncovering
that X causesY.

A third solution to the problem is tofill in each missing value of each variable with some
admissible value for the variable. There are numerous methods for assigning missing values
(Little and Rubin, 1987). Hopefully, of course, the substituted values correspond closely to
the actual, underlying values, but in general there is no guarantee that this will be the case.
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Assumption 2 (Discrete variables). If variables are not discrete, then they can be dis-
cretized. If the granularity of the discretization is not fine enough (i.e., a variable is not
given sufficient values), then induced statistical dependency may occur, for the same reasons
discussed under Assumption 1 about modeling missing values. This situation may lead to
missing the discovery of a causal relationship, but it should not itself cause the incorrect
assertion of a causal relationship.

In principle, the LCD algorithm applies if there are continuous measured variables (or
even a mixture of continuous and discrete variables), as long as there are functions Inde-
pendent and Dependent that apply. For multivariate Gaussian Bayesian networks, such
functions have been defined (Spirtes et al., 1993). Extending the Independent (Dependent)
function to apply for a wide variety of distributions on continuous variables (or mixed
continuous and discrete variables) is an open problem.

Assumption 3 (Bayesian network causal model). This assumption and the implied
Markov condition are fundamental to our development and discussion of LCD thus far.

Although a detailed treatment is beyond the scope of this paper, let us consider briefly
the possibility of a feedback loop betweenX andY. Such a loop could be represented
by a directed cycle, but such a representation would not be a Bayesian network. Consider
extending the graphical representation presented thus far to include directed cycles, as is
done by Richardson (1996) and by Pearl and Dechter (1996). Although not proved, we
conjecture the following results: A positive pattern amongW, X, andY will exist only if
X causesY andY does not causeX. Thus, the presence of feedback loops alone will not
lead LCD to output incorrect causal assertions. Furthermore, in modeling the possibility
of feedback loops, LCD will not miss making any causal assertions that it currently makes
for causal processes that do not contain feedback loops.

Assumption 4 (Causal faithfulness condition). The most serious possible violation of
the faithfulness condition in LCD would be the violation of the test Independent(W,Y, X).
In Table 4, 71 of the 96 graphs (74%) have the pattern “+ + 〈blank〉”. Thus, if
Independent(W,Y, X) erroneously returns true for any of these 71 graphs (while
Dependent(W, X,Á©) and Dependent(X,Y,Á©) correctly return true), then LCD will er-
roneously conclude thatX causesY3. This is probably the place where LCD is the most
vulnerable to error. One way to partially counter this vulnerability is to add the condition
“Dependent(W,Y,Á©)” to LCD, which is a relationship that may fortuitously fail when
Independent(W,Y, X) erroneously tests true. The total set of conditions tested in LCD
would then be as follows:

Dependent(W, X,Á©) and Dependent(X,Y,Á©) and Dependent(W,Y,Á©) and

Independent(W,Y, X)

An additional way to address the vulnerability is to use a more stringent statistical thresh-
old for testing Independent(W,Y, X). Such an approach would decrease the likelihood of
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LCD falsely reporting the existence of a causal relationship; it would, however, increase
the likelihood of LCD missing the discovery of a valid causal relationship.

Assumption 5 (No selection bias). Suppose that an individual with only a fever(X) is
likely to stay home and take aspirin. Similarly, a person with only abdominal pain(Y) is
likely to stay home and take an over-the-counter medication for relief. Suppose, however,
that an individual with both fever and abdominal pain is likely to be concerned about the
possibility of a serious illness, and therefore, is prone to go to his or her local emergency
room, where we have been collecting our data. In this situation, it is possible forX and
Y to be dependent, due to selection bias, even though none of the relationships in Table 3
holds (Cooper, 1995). Such bias can persist, regardless of how large the sample size, and
it may lead to LCD erroneously concluding thatX causesY.

Although a detailed treatment is beyond the scope of this paper, researchers have devel-
oped methods for detecting (at least in theory) the presence of selection bias (Spirtes et al.,
1995). In short, given that Assumptions 1, 2, 3, 4, and 6 hold, then a modified version of
LCD could avoid selection bias by only concluding thatX causesY if the following set of
conditions holds:

Dependent(W1, X,Á© ) and Dependent(W2, X,Á© ) and Independent(W1,W2,Á© )

and Dependent(X,Y,Á© ) and Independent(W1,Y, X). (1)

In essence, if the dependency betweenX andY is due at least in part to selection bias,
thenW1 andW2 would be expected to be dependent (although in reality they may not be
dependent, due to a violation of one or more of the other assumptions).

Assumption 6 (Valid statistical testing). The smaller the number of cases inD, the more
skeptical we should be of whether Assumption 6 holds. Even for a large database, however,
it is not clear which value to use as a statistical threshold for a classical test of independence,
such as the chi-squared test. The Bayesian version of Independent (Dependent), which is
described in the appendix, returns the correct answer in the large sample limit. Thus, the
issue of which particular probability threshold to use is of relatively less concern, but
nonetheless, it remains a relevant issue.

Assumption 7 (An uncaused entity). If W is caused byX, then it is possible to conclude
thatX causesY, when in factY causesX. Thus, it is important that we chooseW carefully.

In expression 1 above, we do not need to assume thatW1 andW2 are two variables
that are not caused by any other variables inV (Spirtes et al., 1993). That is, expression
1 is sufficient to determine thatX causesY (given that Assumptions 1, 2, 3, 4, and 6
hold), even in the absence of assuming thatW1 andW2 have no measured causes. Thus,
it is possible to discover causal relationships in the absence of any known or assumed
causal relationships among a set of measured variables. At times, just the observational
measurements themselves can reveal causation.
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We now discuss the testability of Assumptions 1 through 7. The validity of Assumptions 1
(database completeness) and 2 (discrete variables) are readily apparent. Assumptions 3
(Bayesian network causal model), 4 (causal faithfulness condition), and 6 (valid statistical
testing) are not readily testable. The conditions in expression 1 provide a test of whether
Assumption 5 (no selection bias) is valid, subject to Assumptions 1, 2, 3, 4, and 6 being
valid. In any given application, however, those conditions may not be met. Assumption 7
(an uncaused event) is potentially testable, but requires knowledge outside of databaseD
and outside of Assumptions 1 through 6. For example, we may have knowledge about time
precedence that allows us to conclude the presence of an uncaused event.

5. Other algorithms for causal discovery

In this section, we discuss some selected, representative, prior research on constraint-based
causal discovery and Bayesian causal discovery, and we briefly relate this work to LCD.

5.1. The PC and FCI algorithms

LCD can be viewed as a specialization of the PC and FCI constraint-based causal discovery
algorithms that uses background knowledge about an uncaused variable (W). The PC and
FCI algorithms are described in detail in (Spirtes et al., 1993) and are available commercially
(Scheines et al., 1995). While these two algorithms certainly are more difficult to implement
than LCD, in an absolute sense they are not especially difficult to implement.

PC assumes no hidden variables, while FCI allows hidden variables. Both algorithms
search for causal constraints among all the variables inV, rather than restrict search to
triplets of variables, as does LCD. Consequently, they are able to find causal relationships
that LCD misses. Both PC and FCI have a richer language than LCD for constraining the
causal relationships that exist among a set of variables. The FCI algorithm, for example,
has a constraint language that includes the following predicates: (1)X causesY, (2) X is
not caused byY, (3) X andY have a common hidden variable causally influencing each of
them, and (4)X is either a cause ofY or a cause ofZ. On the other hand, LCD only makes
assertions of type 1. Moreover, PC and FCI can output valid assertions of type 1 that LCD
misses.

PC and FCI also provide a relatively unified model of causality. So, for example, unified
causal networks similar to that in figure 2 could be output by PC and FCI, in contrast
to the set of pairwise causal relationships that would be output by LCD, as described in
Section 3.3.

The price PC and FCI pay for their generality is that in the worst case their search time
can be exponential in the number of variables inV, unlike LCD, which is polynomial time.
Also, both PC and FCI may test for independence relationships based on a large number of
conditioning variables; such tests tend to be less reliable than the low order independence
tests used in LCD.

PC and FCI use Assumption 3 (Bayesian network causal model), Assumption 4 (faithful-
ness condition), and Assumption 6 (valid statistical testing). A practical application of the
algorithms typically involves deleting cases in which any variable has a missing value, but
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as discussed in Section 4, this approach can lead to selection bias. In theory, however, the
PC and FCI methods can detect such induced selection bias (Spirtes et al., 1995), and thus,
avoid reporting incorrect causal constraints. A more serious problem with case deletion is
that the sample size of many real-world databases may become very small, thus jeopardizing
the validity of Assumption 6.

5.2. Bayesian causal discovery

Bayesian methods have been developed for discovering causal relationships from obser-
vational data (Cooper and Herskovits, 1992; Heckerman, 1996; Heckerman et al., 1995).
These methods differ in several ways from constraint-based methods. First, the methods
take a user-specified prior probability over Bayesian network structures and parameters. If
the user has little prior information, or it is not feasible to specify this information, then
non-informative priors can be used. The methods then can return a posterior probability
over one or more causal graphs and/or over one or more causal arcs. No statistical testing
thresholds need to be specified; this property is welcome, since the thresholds applied in
constraint-based methods are chosen somewhat arbitrarily.

When Assumptions 1 through 6 hold, and when there are no hidden variables, in the large
sample limit the Bayesian methods and PC will identify the same set of causal relationships
among the measured variables (Bouckaert, 1995). If there are hidden variables, however,
the Bayesian methods can make distinctions that PC and FCI cannot make. For example,
the Bayesian methods sometimes can determine the likely number of values for a hidden
variable.

One primary problem with Bayesian methods is computational tractability, because an
exact computation with current algorithms requires summing over a number of causal graphs
that is exponential in the number of graph variables. In simulation experiments, however,
the application of Bayesian methods with heuristic search techniques has been effective
in recovering causal structure on measured variables (Aliferis and Cooper, 1994; Cooper
and Herskovits, 1992; Heckerman et al., 1995). When there are hidden variables, exact
computation with current Bayesian methods often is intractable, even when the causal graphs
contain only a few variables. The use of sampling and approximation methods, however,
recently has shown promise (Chickering and Heckerman, 1996). In summary, even though
exact application of Bayesian methods often is intractable, approximate solutions may be
acceptable.

Another challenge of applying Bayesian methods for causal discovery is the assessment
of informative priors on possible causal structures and on parameters for those structures.
On the one hand, the ability to represent such prior information is a great strength of the
Bayesian approach. With it, we can potentially express prior causal knowledge that comes
from other sources, such as experiments, observational experience, common sense, and
physical constraints. While good progress has been made in facilitating the expression of
priors on Bayesian network structures and parameters (Heckerman et al., 1995), assessing
such prior probabilities (particularly when there is a large set of variables) can still be
difficult and sometimes infeasible. Thus, currently, it is common to specify some form
of a non-informative prior on the causal structures (e.g., a uniform prior over all possible
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structures) and on the parameters of those structures. Non-informative priors typically
require that the user specify only a few parameters; still, it sometimes is not obvious what
these few parameters should be. In that case, performing a sensitivity analysis over the
parameters may be a good idea.

Although significant research challenges remain in making the Bayesian approach fea-
sible from a computational and an assessment standpoint, it is the author’s opinion that the
strengths of the approach, as summarized in this section, will lead ultimately to it (or a
combination of it and constraint-based approaches) being the most commonly applied class
of causal discovery methods. This paper presents the constraint-based approach in more
detail, because it is a viable method of causal discovery that—in its most basic form—is
particularly easy to convey and program.

We conclude this section by describing a straightforward Bayesian version of LCD. For
a given triplet of variables, we specify a prior over all 96 causal graphs in Table 4, and
for each graph (i.e., Bayesian network structure), we specify a prior over the probability
distributions in that graph4. Alternatively, a much quicker approach would be to use a non-
informative prior (Cooper and Herskovits, 1992; Heckerman et al., 1995). The probability
Pr(Si , D) would be computed for each of the 96 causal graphs; call Pr(Si , D) the score
for graphSi (see the Appendix for one method to compute Pr(Si , D)). For those graphs
containing hidden variables, it likely would be necessary to apply an approximation method
to compute a score in a feasible amount of time (Chickering and Heckerman, 1996). Lett
be the sum of scores over all graphs that contain an arc fromX to Y. Let u be the sum of
scores over all 96 graphs. Then Pr(X → Y | D, ξ) = t/u, whereξ denotes all the priors
and assumptions applied.

The problem with a Bayesian version of LCD is that it does not consider the relationships
of all the variables inV at once. As with LCD, a focus on searching over triplets of
variables will gain computational efficiency, but lose the ability to identify some causal
relationships. Moreover, the Bayesian posterior probabilities for a triplet of variables will
only be strictly correct if we focus on a single triplet, which is unlikely to happen in a data
mining application. Corrections are possible, but they are beyond the scope of this paper.

6. Discussion

We have presented a simple, efficient algorithm called LCD for causal discovery from
observational data. We listed seven assumptions on which LCD is based. While we can
weigh factors for and against each of these assumptions, it is difficult to imagine that
a theoretical argument will determine their effect in combination. Ultimately, the most
interesting question is the utility, rather than the validity, of their combined application. We
believe that an assessment of real-world utility must rest on real-world, empirical results.
If causal discovery programs that are based on these assumptions are applied to multiple
databases and are helpful in finding causal relationships, then we will have a useful set of
working assumptions. This is an important empirical issue that needs to be addressed much
more extensively. Hopefully, this paper will encourage readers to apply causal discovery
methods to their data (Almond, 1997; Heckerman, 1996; Scheines et al., 1995), and thereby
help to determine the real-world utility of the methods.
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Appendix

This appendix describes one possible implementation of the Independent and Dependent
functions used in LCD. Both functions use a previously developed Bayesian scoring metric.
In the pseudocode that follows, square brackets are used to delineate a Bayesian network
structure. The function Pr(S, D) is described after the listing of the pseudocode.

function Independent(X1, X2, X3): boolean;
{Input: A databaseD, which is global. VariablesX1, X2, andX3, which represent nodes.}
{Output: Return the value true ifX1 is (to some tolerance) independent ofX2 given X3,

otherwise return the value false. VariableX3 may be nil or it may represent a
single node.}

t := 0.9; {This is a user-specified probability threshold. Arbitrarily it is set
to 0.9 here.}
if X3= Á© then

S:= [X1<no arc> X2]; {The structure with no arc fromX1 to X2.}
a :=Pr(S, D);
S:= [X1→ X2]; {The structure with an arc fromX1 to X2.}
b :=Pr(S, D);
if a/(a+ b) > t then Independent := trueelseIndependent := false;

else
S:= [X1<no arc> X3, X3<no arc> X2, X1<no arc> X2];
a :=Pr(S, D);
S:= [X1→ X3, X3<no arc> X2, X1<no arc> X2];
b :=Pr(S, D);
S:= [X1<no arc> X3, X3→ X2, X1<no arc> X2];
c :=Pr(S, D);
S:= [X1→ X3, X3→ X2, X1<no arc> X2];
d :=Pr(S, D);
S:= [X1<no arc> X3, X3<no arc> X2, X1→ X2];
e:=Pr(S, D);
S:= [X1→ X3, X3<no arc> X2, X1→ X2];
f :=Pr(S, D);
S:= [X1<no arc> X3, X3→ X2, X1→ X2];
g :=Pr(S, D);
S:= [X1→ X3, X3→ X2, X1→ X2];
h :=Pr(S, D);
if (a+ b+ c+ d)/(a+ b+ c+ d + e+ f + g+ h) > t
then Independent := true
elseIndependent := false;

end {Independent}.

The function Dependent is very similar to Independent, and the pseudocode that follows
focuses on their differences.
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function Dependent(X1, X2, X3): boolean;
t := 0.9; {This is a user-specified probability threshold. Arbitrarily it is set to 0.9 here.}
if X3 = Á© then

. . .

if b/(a+ b) > t then Dependent := trueelseDependent := false;
else

. . .

if (e+ f + g+ h)/(a+ b+ c+ d + e+ f + g+ h) > t then Dependent := true
elseDependent := false;

end {Dependent}.

One Bayesian metric for computing Pr(S, D), which is derived in Cooper and Herskovits
(Herskovits, 1991), is as follows. LetZ be a set ofn discrete variables, where a variable
Xi in Z hasri possible value assignments:(vi 1, . . . , vir i ). Let D be a database ofm cases,
where each case contains a value assignment for each variable inZ. Let Sdenote a Bayesian
network structure containing just the variables inZ. Each variableXi in Shas a set of parents,
which we represent with a list of variablesπi . Letwi j denote thej th unique instantiation
of πi relative toD. Suppose there areqi such unique instantiations ofπi . DefineNi jk to
be the number of cases inD in which variableXi has the valuevik andπi is instantiated
aswi j . Let Ni j =

∑ri
k=1 Ni jk . Given the assumptions made in (Cooper and Herskovits,

1992), it follows that

Pr(S, D) = Pr(S)
n∏

i=1

qi∏
j=1

(ri − 1)!

(Ni j + ri − 1)!

ri∏
k=1

Ni jk !.

For the purpose to which Pr(S, D) is applied in Independent and Dependent, the term
Pr(S) in the above equation may be simply set to 1. Herskovits (1991) contains an anal-
ysis of the convergence properties of the above scoring metric. By using the results of
this analysis, it can be shown that in the large sample limit the above implementation of
Independent(X1, X2, X3) returnstrue if and only if X1 is independent ofX2 given X3. A
similar analysis holds for Dependent.
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Notes

1. Note that although the representation we use is called aBayesiannetwork, the method that we use to learn such
networks will be constraint-based, rather than Bayesian. In Section 5.2 we briefly discuss Bayesian methods
for learning Bayesian networks.
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2. For an interactive tutorial ond-separation, see http://www.andrew.cmu.edu/user/wimberly/dsep/dSep.html.
3. Such a violation typically would occur when a distribution is “close” to being unfaithful and/or the data sample

is small. Thus, in practice, we are really discussing here an interplay of Assumptions 4 and 6.
4. As mentioned in Section 3.1, there actually are more than 96 possible graphs, when considering three measured

variables plus hidden variables. In general, then, we would need to consider all such graphs for which we have
a prior probability that is greater than zero.
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