
CSCE 513 Computer Architecture
Exam

December 21, 2009

1. Performance - Suppose that the percentage of time that is devoted to floating point adds is 10% of the total
execution time and the percentage of time devoted to floating point multiplies is 1% of the total.

(a) If there are two possible enhancements one to the adder achieves a speedup of 3 and the enhancement to
the multiplier achieves a speedup of 20. What is the overall speedup of just the adder?

Answer:

Speedupoverall =
1

1 − fractionenhanced + Fractionenhanced
Speedupenhancement

(1)

=
1

1 − .1 + .1
3

(2)

=
1

.93
(3)

(b) What is the speedup of both enhancments?
Answer:

Speedupoverall =
1

1 − fractionenhanced + Fractionenhanced
Speedupenhancement

(4)

=
1

1 − .1 + .1
3

(5)

=
1

.93
(6)

1

Exam December 9, 2009 2

2. Cache Performance - Suppose in a particular cache that uses write-back, that of the data blocks to be swapped
out on average 10% are dirty. Suppose the hit time of the cache is 1 cycle and the miss penalty is 20cycles for
the data blocks that are not dirty and 40cycles for those blocks that are dirty. Finally assume the miss rate is
10%.

(a) What is the speedup up of the memory system if adding a “write-buffer” eliminates 50% of the stall
cycles to write back the dirty blocks?

Answer:

Speedupoverall =
AMAToriginal

AMATwriteBuffers

AMATorig = 1 + MissRate ∗ MissPenalty

AMATorig = 1 + MR ∗ (%NotD ∗ MPNot + %D ∗ MPD)
AMATorig = 1 + .10 ∗ (.9 ∗ 20 + .1 ∗ 40)
AMATorig = 3.2

AMATwriteB = 1 + MR ∗ (%NotD ∗ MPNotD + %D ∗ 50% ∗ MPD)
AMATwriteBuffers = 1 + .10 ∗ (.9 ∗ 20 + .1 ∗ .5 ∗ 40)
AMATwriteBuffers = 1 + .10 ∗ (20) = 3

Speedupoverall =
AMAToriginal

AMATwriteBuffers

Speedupoverall =
3.2
3

= 1.067

(b) What is the maximum possible speedup of the overall memory hierarchy of any write-buffer enhance-
ment for this particluar cache?

Exam December 9, 2009 3

3. In the system we are analyzing the memory has:

• Separate L1 instruction and data caches, HitTime = Processor Cycle Time

• 32KB L1 instruction cache with 2% miss rate, 64B blocks

• 256KB L1 data cache with 5% miss rate, 16B blocks

• 256K L2 unified cache with 64B blocks, local miss rate 20%, Hit Time = 4 cycles,

• Main Memory Access time is 50 cycles for the first 64 bits and subsequent 64 bit chunks are available
every 10 cycles.

• Both L1 caches are four-way associative, L2 direct mapped.

• Assume there are no misses to main memory.

(a) What is the Miss Penalty for accesses to L2?
Answer: 64bits=8B transferred at a time, so there is
a total of 64B/8B = 8 chunks transferred

HitT imemain−memory = initial chunk + 7 remaining chunks

HitT imemain−memory = 50 + 7 ∗ 10 cycles

HitT imemain−memory = 120 cycles

(b) What is the average memory access time for instruction references?
Answer:

AMAT = HitT imeL1 + MRL1 ∗ MPL1

AMAT = HitT ime + MRL1 ∗ (HitT imeL2 + MRL2 ∗ MPL2)
AMATInstruction = 1 + MRL1−Instruction ∗ (HitT imeL2 + MRL2 ∗ MPL2)
AMATInstruction = 1 + .02 ∗ (4 + .20 ∗ 120)
AMATInstruction = 1 + .02 ∗ (4 + 24)
AMATInstruction = 1.56

(c) What is the average memory access time for data references?
Answer:

AMATData = 1 + MRL1−Data ∗ (HitT imeL2 + MRL2 ∗ MPL2)
AMATData = 1 + .05 ∗ (4 + .20 ∗ 120)
AMATData = 1 + .05 ∗ (28)
AMATData = 2.4

(d) Assume the only memory reference instructions are loads(25%) and stores(5%). What percentage of
total memory references are data references?

Answer: Let #instructions = I then
#datareferences = .3*I
So the %total memory references that are data
references is

.3∗I
I+.3∗I = .3

1.3 = .23

Exam December 9, 2009 4

(e) What is the Average memory access time?
Answer:

AMAToverall = %InstrRef ∗ AMATInstr + %DataRef ∗ AMATData

AMAToverall = (1 − .23) ∗ AMATInstr + .23 ∗ AMATData

Exam December 9, 2009 5

4. Virtual Memory/TLB - Given

• 48 bit virtual addresses

• the page size is 4KB,

• 36 bit physical addresses

• 256KB cache, only one level unified, 16 way associativity, 16B lines

• 64 entry TLB, 8 way associative

• If the virtual address is 0xBCDEF9876548 and if the physical page number is 0x46844 with leading
zeroes not shown

(a) What is the page offset field?
Answer:
page size = 4K = 22 ∗ 210 = 212

pageOffsetFieldSize = log2212 = 12 bits = 3 hex digits
PageOffset = 0x548

(b) What is the VPN?
Answer: the rest of the Virt. Addr. = 0xBCDEF9876

(c) How big is a PPN?
Answer: 36 bits - 12 bits = 24 bits

(d) What is the physical address?
Answer: 0x46844548

(e) What is the the cache “block offset” field?
Answer: cache block size = 16B,
so cacheOffsetFieldSize = 4 bits, and cacheOffset = 0x8

(f) What is “set-index” field?
Answer: #lines = cachesize / blockSize = 256K/16 =
218−4 = 214

#sets = #lines/associativity = 214/24 = 210

sizeOfSetIndex = log2210 = 10 bits
setIndex = 10 low bits of PPN = · · · 0100 0101 0100 =
0001010100 = 0x054

(g) What is the cache “tag” field?
hex 0x 4 6 8 4 4 5 4 8

binary 0100 0110 1000 0100 0100 0101 0100 1000
fields 0100 0110 1000 0100 01 00 0101 0100 1000
fields 01 00 01 10 10 00 01 00 01 00 0101 0100 1000

Field Names Cache Tag = 0x11A11 Set Index=0x054 CacheOffset=0x8

(h) What happens on a TLB miss?
Answer: The virtual address is looked up in the page
table. and the block transferred to the TLB. If not in
page table then a page fault occurs.

Exam December 9, 2009 6

5. Assume a classic 5-stage pipeline that has been extended to allow mutiple cycle operations, with the execution
stage of FP multiplies taking 4 cycles, loads and stores taking 1 cycle, FP adds take 2 cycles and integer oper-
ations take 1 cycle. Show how the code below moves through the pipeline assuming that the only forwarding
is through the register file. Stop with cycle 17.

Assume all hazards are detected and handled by inserting stalls to preserve the semantics. The code below
was generated for the SimpleScalar and then substantially edited. So there are 32 integer registers: $0, $1,
· · ·, $31 and 16 double registers $f0, $f2, · · ·, $f30.

Show how the code proceeds through the pipeline.
Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

addu $2,$2,$3
l.d $f0,0($2)
mul.d $f2,$f2,$f0
l.d $f8,1000($2)
mul.d $f4,$f4,$f8
add.d $f6,$f2,$f4
s.d $f6,0($4)
subui $4,$4,#4
beq $2,$4,$L46

Label the first hazard that leads to a stall, classify it, and then describe how it could be best eliminated.

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
addu $2,$2,$3 F D E M W
l.d $f0,0($2) F . . D E M W
mul.d $f2,$f2,$f0 F . . D E . . . M W
l.d $f8,1000($2) F D . . . E M W
mul.d $f4,$f4,$f8 F . . . D E . . .
add.d $f6,$f2,$f4 F D . . .
s.d $f6,0($4) F . . .
subui $4,$4,#4
beq $2,$4,$L46

The first hazard is a RAW hazard in that $2 is calculated by the addu and used in the following l.d. It can
eliminated by forwarding from the output of the ALU to the input of the ALU in the next cycle.

Exam December 9, 2009 7

6. For the same loop and same assumptions on execution module times and assuming a branch delay slot and the
best possible forwarding, schedule the code (rearrange the code making slight changes to preserve semantics)
to avoid as many stalls as possible. Tell how many cycles a loop requires.

Exam December 9, 2009 8

7. For the same loop and same assumptions on execution module times show how Tomasulo’s Algorithm would
schedule the operations. For the “Issue,” “Execute” and “Write CDB” columns enter the cycle number in
which the event is done as opposed to a check mark which was done in the text.

In particular show the tables when the Add.d receives its operands and begins execution.

Instruction Iteration Issue Execute Write CDB
L.D $f0, 0($2) 1
MUL.D $f8, $f2, $f0 1
L.D $f8, 1000($2) 1
MUL.D $f4, $f4, $f8 1
ADD.D $f6, $f2, $f4 1
S.D $f6, 0($4) 1

Reservation Stations

Name Busy Op Vj Vk Qj Qk A
Load 1
Load 2
Add 1
Add 2
Mult 1
Mult 2
Store 1
Store 2

Register Status

Field F0 F2 F4 F6 F8 F10 F12 F· · · F30
Qi

Exam December 9, 2009 9

Answer:

8. ANSWER For the same loop and same
assumptions on execution module times show how
Tomasulo’s Algorithm would schedule the operations.
In particular show the tables when the Add.d receives
its operands and begins execution.

Instruction Iteration Issue Execute Write CDB
L.D $f0, 0($2) 1 1 2 3
MUL.D $f8, $f2, $f0 1 2 7 8
L.D $f8, 1000($2) 1 3 4 5
MUL.D $f4, $f4, $f8 1 4 9 10
ADD.D $f6, $f2, $f4 1 5
S.D $f6, 0($4) 1 6

Reservation Stations

Name Busy Op Vj Vk Qj Qk A
Load 1
Load 2
Add 1 Yes ADD.D val(Mult1) val(Mult2)
Add 2
Mult 1
Mult 2
Store 1 Yes Store Add 1(F6) 0($4)
Store 2

Register Status

Field F0 F2 F4 F6 F8 F10 F12 F· · · F30
Qi

Exam December 9, 2009 10

9. Loop Unrolling - Given the code

$L46:
addu $2, $2, $3
l.d $f0, 0($2)
mul.d $f2, $f0, $f0
add.d $f4, $f2, $f0
s.d $f4, 0($4)
subui $4, $4, #8
beq $2, $4, $L46

(a) Loop Unrolling SimpleScalar - Show how to unroll the loop just once.

$L46:
addu $2, $2, $3
l.d $f0, 0($2)
l.d $f6, 8($2)
mul.d $f2, $f0, $f0
mul.d $f8, $f6, $f6
add.d $f4, $f2, $f0
add.d $f10, $f8, $f6
s.d $f4, 0($4)
s.d $f10, 0($4)
subui $4, $4, #16
beq $2, $4, $L46

(b) If your loop would normally execute an odd number of times and your unroll it once, what problems
arise and how do you address them.

Answer: Handle the work done normally in the last
iteration outside the loop.

(c) What in the architecture limits the number of times a loop could be unrolled?
Answer: The number of registers.

(d) Show how to unroll this loop for a SuperScalar (VLIW) that can issue one integer, one floating add, one
floating multiply, and one load/store operation each cycle.

Answer:

Cycle Integer FPadd FPmult Load/Store
1
2
3
4
5

Exam December 9, 2009 11

10. Describe in detail the steps in the process of translation from a virtual address to a physical address.
Answer:

(a) Take the virtual address(VA) and partition it into
the virtual page number (VPN) and the page offset
(PO).

(b) Take the VPN and partition into index and tag
depending on the associativity of the Translation
Lookaside Buffer (TLB).

(c) Use the index to access the appropriate set in the
TLB.

(d) Compare the tag in VA with the tag(s) in the set.

(e) i. If equal then contruct the Physical address
(PA) by concatenating the Page Offset onto the
Physical Page Number (PPN), which is the data in
the TLB.

ii. if the tag is not equal then we have a TLB miss
and in this case you go to the page table.

iii. If the VPN entry is in the page table then we
construct the Physical Address by concatenating
PPN and Page Offset.

iv. If page table entry corresponding to this VPN is
not valid, then there is a page fault.

Exam December 9, 2009 12

Given the code below and a direct mapped cache with only 8 lines.

11. double a[64][64];
double b[64];
double c[64];
double sum = 0.0;
for(i=0; i < 64; ++i)

for(j=0; j < 64; ++j)
c[i] = a[i][j] * b[j] + c[i];

(a) Assuming that &a[0][0] maps to block 0, &b[0] maps to block 2 and &c[0] maps to block 4, what is the
Hit ratio if we assume the blocks are 32B?

(b) What is the hit ration if the loop order is changed so that the “j-loop” is the outer loop?

(c) What is the hit ratio if we change the above scenario by mapping &c[0] to block 2 as well as &b[0].

Exam December 9, 2009 13

Answer:

ANSWER
Sets A B C
0 a[i][0] · · · a[i] [3] b[24] · · · b[27] c[16] · · · c[19]
1 a[i][4] · · · a[i][7] b[28] · · · b[31] c[20] · · · c[23]
2 a[i][8] · · · a[i][11] b[0] · · · b[3] c[24] · · · c[27]
3 a[i][12]· · · a[i][15] b[4] · · · b[7] c[28] · · · c[31]
4 a[i][16]· · · a[i][19] b[8] · · · b[11] c[0] · · · c[3]
5 a[i][20]· · · a[i][23] b[12] · · · b[15] c[4] · · · c[7]
6 a[i][24]· · · a[i][27] b[16] · · · b[19] c[8] · · · c[11]
7 a[i][28]· · · a[i][31] b[20] · · · b[23] c[12] · · · c[15]

Exam December 9, 2009 14

12. Branch Prediction

(a) Draw the diagram for a 3-bit saturating counter branch predictor.
Answer:

q0 q1 q2 q3 q4 q5 q6 q7

Taken Taken Taken Taken Taken Taken Taken

Taken

NotTakenNotTakenNotTakenNotTakenNotTakenNotTakenNotTaken

NotTaken

Not-Taken Taken

(b) What is the miss prediction rate of the “Branch-Taken” predictor with the following code. Ignore all
branches except the one based on the evaluation of “i % 5”

0 for(i=0; i <1000; ++i){ loop:
...

1 if (i % 5 == 0) { jeq $then-code
2 code segment A .
3 }else{ .
4 code segment B .
5 }
6 }

Answer: Branch-Taken always predicts that we take
the branch.
Consider the sequence of values of i and whether the
branch is taken(T) or not(N)
TNNNNTNNNNTNNNN...
So the percentage mis-predicted is 4/5 = 80%

(c) What is the miss prediction rate of a 2 bit saturating counter predictor with the same code. Again ignore
all branches except the one based on the evaluation of “i % 5”

Answer: Now consider any sequence of 5 consecutive
values of i, there will be 4 branches not-taken and
one taken. So regardless of what the initial state is
quickly the state machine will move to state q0 and it
will stay there or close and it will always after that
predict ‘‘Not-Taken.’’
So miss-prediction rate = 20% (or real close)

and

(d) Describe how a (m,n) correlating branch predictor works.
Answer: The predictor using the last m branches to
select one of 2m n-bit saturating counters to predict
the branch.

Exam December 9, 2009 15

13. Given a four core system (4CPUs on a chip) with each CPU having a separate L1 cache.

(a) Give an example sequence of operations that shows the need for Snoopy cache

(b) Explain the difference in fine and coarse grained threading.

