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Abstract. The ordering of genes in a genome can be changed through
rearrangement events such as reversals, transpositions and transloca-
tions. Since these rearrangements are “rare events”, they can be used to
infer deep evolutionary histories. One important problem in rearrange-
ment analysis is to find the median genome of three given genomes that
minimizes the sum of the pairwise genomic distance between it and the
three others. To date, MGR is the most commonly used tool for multi-
chromosomal genomes. However, experimental evidence indicates that it
leads to worse trees than an optimal median-solver, at least on unichro-
mosomal genomes. In this paper, we present a new branch-and-bound
method that provides an exact solution to the multichromosomal re-
versal median problem. We develop tight lower bounds and improve the
enumeration procedure such that the search can be performed efficiently.
Our extensive experiments on simulated datasets show that this median
solver is efficient, has speed comparable to MGR, and is more accurate
when genomes become distant.

1 Introduction

Annotation of genomes with computational pipelines can yield the ordering and
strandedness of genes for genomes; each chromosome can then be represented by
an ordering of signed genes, where the sign indicates the strand. Rearrangement
of genes under reversal (also known as inversion), transposition, and other oper-
ations such as translocations, fissions and fusions, is an important evolutionary
mechanism [7]. Since genome rearrangement events are “rare”, these changes of
gene orders enable biologists to reconstruct evolutionary histories far back in
time.

One important problem in genome rearrangement analysis is to find the median
of three genomes, that is, finding a fourth genome that minimizes the sum of the
pairwise genomic distances between it and the three given genomes. This problem
is important since it provides a maximum parsimony solution to the smallest bi-
nary tree and thus can be used as the basis for more complex methods. However,
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the median problem is NP-hard for genome rearrangement data [5,9] even un-
der the simplest distance definition. To date, MGR (Multiple Genome Rearrange-
ments) [4] is the only widely used tool that is able to handle multichromosomal
genomes. However, experimental evidence indicates that MGR leads to worse trees
than an optimal median solver [10], at least on small unichromosomal genomes.
With more and more whole genome information available, it becomes very impor-
tant to develop accurate median solvers for these multichromosomal genomes.

In this paper, we present an efficient branch-and-bound method to find the
exact median for three multichromosomal genomes. We use an easy-to-compute
and tight lower bound to prune bad branches and introduce a method that enu-
merates each genome at most once. Such median solver can be easily integrated
with the existing methods such that datasets with more than three genomes can
be analyzed.

2 Background and Notions

2.1 Genome Rearrangements

We assume a reference set of n genes {1, 2, · · · , n}, and a genome is represented
by an ordering of these genes. A gene g is assigned with an orientation that
is either positive, written g, or negative, written −g. Specifically, we regard a
multichromosomal genome as a set A = A(1), . . . , A(Nc) of Nc chromosomes
partitioning genes 1, . . . , n; where A(i) = 〈A(i)1, . . . , A(i)ni〉 is the sequence of
signed genes in the ith chromosome. In this paper, we also assume that each
gene occurs exactly once in the genome.

In this study, we only consider undirected chromosomes [12], i.e. the flip of
chromosomes is regarded as equivalent. We consider the following four opera-
tions on a genome: reversal, translocation, fission and fusion. Let a = 〈a1, . . . , ak〉
and b = 〈b1, . . . , bm〉 be two chromosomes. A reversal on the indices i and
j (i ≤ j) of chromosome a produces the chromosome with linear ordering
a1, a2, · · · , ai−1, −aj, −aj−1, · · · , −ai, aj+1, · · · , ak. A translocation transforms
a = 〈E, F 〉 and b = 〈X, Y 〉 into 〈E, Y 〉 and 〈X, F 〉, where E, F, X, Y are gene seg-
ments. The fusion of a and b results in a chromosome c = 〈a1, . . . , ak, b1, . . . , bm〉.
A fission of a results in two new chromosomes π = 〈a1, . . . , ai−1〉 and σ =
〈ai, . . . , ak〉.

An important concept in genome rearrangement analysis is the number of break-
points between two genomes. Given genomes A and B, a breakpoint is defined as
an ordered pair of genes (i, j) such that i and j are adjacent in A but not in B.

2.2 Genomic Distance for Multichromosomal Genomes

We define the edit distance as the minimum number of operations required to
transform one genome into the other. Hannenhalli and Pevzner (HP) [8] pro-
vided a polynomial-time algorithm to compute the distance (HP distance) for
reversals, translocations, fissions and fusions, as well as the corresponding se-
quence of events. Tesler [12] corrected the HP algorithm, which was later im-
proved by Bergeron et al. [3].
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Yancopoulos et al. [13] proposed a “universal” double-cut-and-join (DCJ)
operation, resulting in a new genomic distance that can be computed in linear
time. Although there is no direct biological evidence for DCJ operations, these
operations are very attractive because they provide a unifying model for genome
rearrangement [2]. Given two genomes A and B, computing the DCJ distance
between these two genomes (denote dDCJ(A, B)) is much easier to implement
than computing the HP distance (denote dHP (A, B)).

2.3 Reversal Median Problem

The median problem on three genomes is to find a single genome that minimizes
the sum of the pairwise distances between itself and each of the three given
genomes1. It has been proven that this problem is NP-hard [5] for unichromo-
somal genomes using reversal distance. Specifically the reversal median problem
(RMP) is to find a median genome that minimizes the summation of the multi-
chromosomal HP distances on the three edges.

Several solvers have been proposed for the unichromosomal reversal median
problem (including MGR), among them, the one developed by Caprara [6] is
the most accurate. Caprara’s median solver is exact and treats the problem in
a graph model, where each permutation corresponds to a matching of a point
set. As a branch-and-bound algorithm, it enumerates all possible solutions and
tests them edge by edge. At first, a lower bound is computed from the graph of
the given genome’s matchings. In each step of testing, the graph is reduced to
a smaller one according to each edge of the solution being tested. A new bound
is then computed from the new graph for bound testing. If the test failed, all
solutions containing the edges tested so far in the current solution are excluded.

On the other hand, when used for three genomes, MGR attempts to find a
longest sequence of reversals from one of the three given genomes that, at each
step in the sequence, moves closer to the other two genomes. Since it is limited
to a small subset of possible paths, MGR is less accurate than Caprara’s median
solver. Our method presented in this paper is inspired by Caprara’s solver, and
to our knowledge, is the first exact solver for the multichromosomal reversal
median problem.

3 Graph Model for Undirected Genome

In this section, we introduce the graph model and a lower bound on the HP
distance, which will be used in our new median solver.

3.1 Capless Breakpoint Graph

We modify the breakpoint graph to deal with genomes consisting of undirected
chromosomes. In [8,12], caps are introduced to transform the multichromosomal
genomes problem to unichromosomal problem. Caps play an important role in
1 The median problem can be generalized for q (q ≥ 3) genomes.
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deriving the rearrangement scenario; however, since they are not necessary to
compute the HP distance, capping nodes are not used here. We also do not dis-
tinguish between undirected unichromosomal and multichromosomal genomes,
and treat both in a uniform way. This model is equivalent to the graph model
of Bergeron et al. [1].

Given a node set V , we call an edge set M ⊂ {(i, j) : i, j ∈ V, i �= j} a
matching of V if each node in V is incident to at most one edge in M . If
each node in V is incident to exactly one edge in M , the matching is called
perfect, otherwise partial. A genome A on genes 1, . . . , n can be transformed to
an unsigned genome A on 1, . . . , 2n, by replacing each positive entry g with
2g − 1, 2g and each negative entry g with 2|g|, 2|g| − 1.

Consider the node set V := 1, . . . , 2n, and the associated perfect matching
H := {(2i− 1, 2i) : i = 1, . . . , n} (the base matching of V). There is a correspon-
dence between genomes composed of linear chromosomes and matchings M of
V such that there are no cycles in M ∪ H. These matchings are called genome
matchings. In particular, the genome matching M(A) associated with a genome
A is defined by

M(A) :=
{
(A(i)k, A(i)k+1) : k ∈ {2, 4, . . . , 2ni − 2}, i ∈ {1, . . . , Nc}

}
.

The nodes in {A(i)1 : 1 ≤ i ≤ nc}∪{A(i)2ni : 1 ≤ i ≤ nc} are called end nodes of
A, denoted by A-ends. The genome matching has no capping node appended and
all end nodes are not incident to any edge, thus the defined genome matchings are
partial matchings. The absence of caps is a crucial step to reduce the complexity
of the median problem for multichromosomal genomes.

Given two genomes A and B, the capless breakpoint graph G(A, B) = (V ,
M(A) ∪ M(B)) defines a set of cycles and paths whose edges are alternate in
M(A) and in M(B). An example of G can be found in Fig. 1. c(A, B) denotes
the number of cycles. Paths start from an end node and terminate at another
end node. According to the type of ends, all paths in the graph can be classified
into three groups: AA-paths, BB-paths, and AB-paths(called odd paths in [2]).
A node which is an end of both A and B forms an AB-path of length 0. Denote
the number of AB-paths by |AB|, and the number of AA-paths by |AA|.

3.2 Lower Bound of the HP Distance

We derive the following lower bound on the HP distance for undirected genomes,
using only the parameters of the number of cycles and paths.

dHP ≥ n −
(
c(A, B) + |AB|/2

)
(1)

This bound is indeed the same as the double-cut-and-join distance formula [2]. It
can be directly derived from the HP distance formula for two multichromosomal
genomes [8,12] or simply from the result that dDCJ ≤ dHP [3], where dDCJ =
n −

(
c(A, B) + |AB|/2

)
[2].

For convenience, call c(A, B) + |AB|/2 the pseudo-cycle of G(A, B), denoted
by c̃(A, B). By the aid of DCJ distance, many useful results are easy to prove.
Since the DCJ distance satisfies the triangle inequality, we have
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Genomes                                A={‹ -5, 1, 6, 3 ›, ‹ 2, 4 ›}                 B={‹ 1, 6 ›, ‹ -5, -4, -3, -2 ›}

Doubled Genomes                 A={‹ 10, 9, 1, 2, 11, 12, 5, 6 ›,         B ={‹ 1, 2, 11, 12 ›,  
‹ 3, 4, 7, 8 ›}                                       ‹ 10, 9, 8, 7, 6, 5, 4, 3 ›}

Canonical Chromosome         
Ordering                                 2 4 -3 -6 -1 5                                      1 6 2 3 4 5

10 9 1 2 11 12 5 4 7

{5} {-5,-1} {1,-6} {6,-3} {3} {-2} {2,-4} {4}

{-1} {1,-6} {6} {5} {-5,4} {-4,3} {-3,2} {-2}

G(A,B)

AG(A,B)

836

Fig. 1. The G(A,B) is the capless breakpoint graph of genome A and B. In G(A, B)
diamonds represent B-ends, squares represent A-ends. Squares with a diamond inside
indicate nodes are both A-ends and B-ends. In this figure, n = 6, c(A, B) = 1, |AB| = 4,
and pseudo-cycle is 3. The graph AG(A, B) is defined in [2] and the concept of canonical
chromosome ordering is introduced in 4.3.

Lemma 1. Given three genomes A,B,C, n−c̃(A, C)+n−c̃(C, B) ≥ n−c̃(A, B).

3.3 Contraction Operation

We define the Multi-Breakpoint (MB) graph associated with q genomes G1, G2,
. . . , Gq as the graph G(G1, G2, . . . , Gq) with node set V and edge multiset M(G1)
∪M(G2), . . . , ∪M(Gq). Note that for two matchings M(Gj) and M(Gk), j �= k,
some edges may be common in both matchings, but they are considered distinct
parallel edges in the MB graph G(G1, G2, . . . , Gq). In this paper, q always equals
three.

Let Q := {1, . . . , q} and let τ be a genome, γ(τ) =
∑

k∈Q c̃(τ, Gk). By Equa-
tion 1, for any genome σ, δ(σ) =

∑
k∈Q dHP (σ, Gk) ≥ qn − γ(σ), where n is

the number of genes. We introduce the Pseudo-Cycle Median Problem (PMP):
given undirected genomes G1, G2, . . . , Gq, find a genome τ such that qn − γ(τ)
is minimized. We have the following theorem:

Theorem 1. Given an RMP instance and the associate PMP instance on q
undirected genomes. Let δ∗ and qn − γ∗ denote the optimal solution values of
RMP and PMP, then δ∗ ≥ qn − γ∗.

Proof. If σ is an optimal solution of RMP and τ an optimal solution of PMP,
δ∗ = δ(σ) ≥ qn − γ(σ) ≥ qn − γ(τ) = qn − γ∗. �
Theorem 1 implies that the solution of PMP yields a lower bound on the optimal
solution of RMP.
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In Caprara’s solver [6], the contraction on breakpoint graphs for perfect
matchings is introduced. We modify it to fit the MB graphs for partial match-
ings which are dealt with here. Given a partial matching M on node set V
and an edge e = (i, j) ∈ E = {(i, j) : i, j ∈ V , i �= j}, we define M/e,
the contraction of e on M (or on the genome corresponding to M) as fol-
lows. If e ∈ M, let M/e := M \ {e}. If one of i and j is an end, say i, and
(b, j) is the edge incident to j, then M/e := M \ {(b, j)}. If both i and j
are ends, M/e := M. Otherwise, let (a, i), (j, b) be the two edges in M in-
cident to i and j, M/e := M \ {(a, i), (j, b)} ∪ {(a, b)}. Given an MB graph
G(G1, G2, . . . , Gq), the contraction of an edge e is the operation that modifies
the MB graph G(G1, G2, . . . , Gq) as follows. Edge (i, j) is removed along with
nodes i and j. For k = 1, . . . , q, M(Gk) is replaced by M(Gk)/e, and the base
matching H is replaced by H/e.

4 Branch-and-Bound Algorithm

In this section, we describe a branch-and-bound algorithm for the multichromo-
somal reversal median problem.

4.1 A Basic Branch-and-Bound Algorithm for PMP

The following lower bound on reversal median is based on Lemma 1.

Lemma 2. Given a PMP instance associated with genomes G1, . . . , Gq,

γ∗ ≤ qn

2
+

q−1∑

k=1

q∑

l=k+1

c̃(Gk, Gl)
q − 1

. (2)

The lower bound on the optimal PMP solution given by qn minus the right-hand
side of (2), called LD, can be computed in O(nq2) time. For any PMP solution
T , the cycles and paths in T ∪ M(Gk) has one-to-one correspond to that in
(T/e) ∪ (M(Gk)/e) except for cycle of two copies of e. Therefore, for partial
matchings and the new contraction defined on it, the same lemma in [6] holds.

Lemma 3. Given a PMP instance and an edge e ∈ E, the best PMP solution
containing e is given by T̃ ∪ {e}, where T̃ is the optimal solution of the PMP
instance obtained by contracting edge e.

According to Lemma 3, if we fix an edge e in the matching of PMP solution, an
upper bound on the pseudo-cycle is given by |{k : e ∈ M(Gk)}| plus the upper
bound (2) computed after the contraction of e. A branch-and-bound algorithm
can be designed by these Lemmas. It enumerates all genomes gene by gene. In
each step, it either selects a gene as an end or an inner gene in a chromosome of
the solution (median) genome. In term of matching, the former operation fixes
an end node in the matching of the solution and the latter one fixes an edge e
in the matching. The former is called end fixing and the later edge fixing.
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In edge fixing, the algorithm applies a contraction of edge e on the input
genomes and computes a lower bound from these altered genomes. The number
of newly generated cycles of length 0 is added to a counter. Based on these two
values, the lower bound of all PMP solutions containing all edges added so far up
to e can be derived. If it is greater than the current lower bound of the median
problem, then e is not an edge in the matching of the best solution containing
current fixed edges, thus the algorithm enumerates another gene or mark the
last gene in the current solution as an end. Otherwise, the edge is fixed in the
current solution.

In end fixing, no contraction operation is applied on the intermediate genomes
and the lower bound is not changed. The number of newly generated paths of
length 0 is added to a counter. When a complete solution is available, the lower
bound that takes all the ends into account is computed by the aid of the counters
and compared with the current lower bound. If they are equal the algorithm stops
and the current solution is optimal.

4.2 Genome Enumeration

In the beginning, the algorithm enumerates all partial matchings by fixing, in
turn, either 1, or 2, . . . , or 2n as an end in the solution matching, which corre-
sponds to one end of a chromosome, but the other end of this chromosome is not
chosen yet. We call this chromosome an opening chromosome and this end an
open end. Recursively, if the last operation is an edge fixing of (x, j), we proceed
the enumeration by fixing in the solution, in turn, edge (k, l) where k is the other
end of the edge (j, k) in H incident to j, for all l with no incident edge fixed so
far or fix k as an end. Two cases exist if the last operation is an end fixing of x:

1. x is the other end of the current opening chromosome. We call x a closed
end and the chromosome is closed. If there exist nodes that are not fixed
in the solution, we enumerate by fixing in the solution, in turn, all available
nodes as an open end in the solution.

2. x is an open end. We enumerate the cases as follows: each edge (y, l) is fixed
in the solution one at a time, over all edges such that y is the node incident
to x in H and l has no incident edge fixed so far; or we take y as a closed
end.

4.3 Improved Branch-and-Bound Algorithm for PMP

The above scheme checks all concatenates of a genome thus will enumerate a
genome more than once, which costs considerable computing time. We define
the canonical chromosome ordering to overcome this problem. Let chromosome
X = 〈X1, . . . , XM 〉. The canonical flipping of X is: 〈X1, . . . , Xj , . . . , XM 〉, if
|X1| < |XM |; otherwise the flipping is 〈−XM , . . . , −Xj, . . . , −X1〉. For single-
gene chromosomes, say 〈g〉, the canonical flipping is 〈|g|〉.

For a signed gene g, if g > 0, l(g) = 2g − 1, r(g) = 2g; if g < 0, l(g) =
2|g|, r(g) = 2|g| − 1. Let 〈X1, . . . , XM 〉 be the canonical flipping of chromo-
some X , the smaller end of X is l

(
X1

)
. The larger end of X is r

(
XM

)
. After
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the canonical flipping of each chromosome, we order the chromosomes by their
smaller ends in increasing order to obtain the canonical chromosome ordering of
a genome. Obviously, one genome has only one form of canonical ordering, and
it can be uniquely represented by the canonical ordering along with the markers
of start and end points. Fig. 1 shows an example.

We improve the basic branch-and-bound algorithm to enumerate each genome
only once by using the canonical ordering. There are two states in the algorithm:
(1) open chromosome and (2) build chromosome. The algorithm is in state “open
chromosome” when it starts. It enumerates all the possible smaller ends of the
first chromosome by fixing, in turn, either node 1, or 2,. . ., or 2n − 2 as an
end in the solution. When a smaller end is selected, the state is changed to
“build chromosome”. Recursively, in state “build chromosome”, let the last edge
fixed in the current partial solution be (i, j) and the edge in H incident to j be
(j, k). There exist two branches if k can be a larger end of the current opening
chromosome:

1. “closed chromosome”: it fixes k as a larger end and closes the current opening
chromosome. The state is changed to “open chromosome”.

2. “build chromosome”: it proceeds the enumeration by fixing in the solution,
in turn, edge (k, l), for all l not be fixed in solution so far.

If k cannot be the larger end then only the “build chromosome” branch is per-
mitted. If the state is “open chromosome”, it will enumerate all the available
smaller ends of the next chromosome by fixing, in turn, all available smaller
ends.

We proceed in a depth-first order again. With this scheme we can perform
the lower bound test after each edge fixing. When a node is fixed as an end,
no operation is applied on the input genomes, thus the lower bound equals
that of the previous step. At each end fixing, we record the number of newly
generated SGk-path, k ∈ Q, of length 0, where S denotes the partial solution.
Thus when a complete solution is available, we will also know the total SGk-
paths in M(S) ∪ M1, . . . , M(S) ∪ Mq.

In the implementation, the initial lower bound LD is computed form the input
genomes. The branch-and-bound starts searching for a PMP solution of target
value T = LD and tries another gene as soon as the lower bound for the current
partial solution is greater than T . If a solution of value T is found, it is optimal
and we stop, otherwise there is no solution of value LD. The algorithm then
restarts with an increased target value T = LD +1, and so on. The search stops
as soon as we find a solution with the target value. All the partial solutions
tested under target value T will be reconsidered under T + 1. The computation
with T +1 is typically much longer than the previous one, therefore the running
time is dominated by the running time of the last target value.

4.4 Branch-and-Bound Algorithm for RMP

The above PMP algorithm can easily be modified to find the optimal RMP so-
lutions. There are two modifications. First, the initial target value of the median
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score is computed as
�q−1

k=1
�q

l=k+1 dHP (Gk,Gl)
q−1 . Second, when a complete solution

whose lower bound is not greater than T is available, we compute the sum of HP
distances between this solution and the input genomes. If the sum equals T , the
algorithm stops, and the current solution is optimal. If there is no such solution,
no genome exists whose sum of HP distances between it and the input genomes
is better than T + 1. We increase the target value by 1 and start the algorithm
again. Though some non-optimal solutions can pass the lower bound test, they
can not pass the HP distance test. But any optimal genome that passes the
lower bound test will also pass the HP distance test according to Theorem 1.
The first optimal genome (there may be several) encountered will be outputted
as the optimal RMP solution.

5 Experimental Results

We have implemented the algorithm and conduct simulations to assess its perfor-
mance. Our implementation is based on Caprara’s unichromosomal median solver
and uses MGR’s code for multichromosomal reversal distance computation.

In our simulation study, each genome has 100 and 200 genes, with 2 and
4 chromosomes respectively. We create each dataset by first generating a tree
topology with three leaves, assigning it with different edge lengths. We assign
a genome G0 to the root, then evolve the signed permutation down the tree,
applying along each edge a number of operations equal to the assigned edge
length. We test a large range of evolutionary rates: letting r denote the expected
number of evolutionary events along an edge of the model tree, we used values
of r in the range of 4 to 32 for datasets with 100 genes, and 4 to 40 for datasets
with 200 genes. The actual number of events along each edge is sampled from
a uniform distribution on the set {1, 2, . . . , 2r}. We compare our new method
with MGR and use two criteria to assess the accuracy: the median score which
can be computed by summing the three edge lengths, and the multichromosomal
reversal distance from the inferred median to the true ancestor which is known
in our simulation.

Table 1 shows the median score for these two methods. When the genomes are
closed (smaller r values), both methods return the same score. When r increases,

Table 1. Comparisons of the average median scores for 100 genes/2 chromosomes (top)
and 200 genes/4 chromosomes (bottom)

r=4 r=8 r=12 r=16 r=20 r=24 r=28 r=32
Our Method 11.1 22.6 39.0 55.2 63.4 72.6 76.1 84.2

MGR 11.1 22.6 39.0 55.2 63.5 73.3 77.4 86.5

r=4 r=8 r=16 r=24 r=32 r=40
Our Method 11.8 22.0 45.2 78.0 98.8 111.6

MGR 11.8 22.0 45.2 78.0 98.8 112.2
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Table 2. The average reversal distances from the inferred median to the true ancestor,
for 100 genes/2 chromosomes (top) and 200 genes/4 chromosomes (bottom)

r=4 r=8 r=12 r=16 r=20 r=24 r=28 r=32
Our Method 0 0.1 0 0.6 1.0 3.1 1.8 4.4

MGR 0 0.1 0 0.6 1.7 3.4 3.7 5.4

r=4 r=8 r=16 r=24 r=32 r=40
Our Method 0 0.1 0 0 0 0.8

MGR 0 0.2 0 0 0 1.8

Table 3. The average time (in seconds) used for 100 genes/2 chromosomes (top) and
200 genes/4 chromosomes (bottom)

r=4 r=8 r=12 r=16 r=20 r=24 r=28 r=32
Our Method <1 <1 <1 12 6 149 203 411

MGR <1 2 6 17 27 32 46 95

r=4 r=8 r=16 r=24 r=32 r=40
Our Method <1 <1 11.0 115.2 361.5 866.2

MGR < 1 1.2 11.1 57.6 134.3 184.4

our method performs better by returning solutions with smaller scores. Although
the difference of median scores seems small, in genome rearrangement analysis
based on parsimony, such difference will have a big impact on the accuracy of
phylogenies [11].

Table 2 shows the reversal distance of the inferred median to the true ancestor.
Both MGR and our new method return solutions that are very close to the true
ancestors, especially for datasets with 200 genes. Our new method is superior to
MGR when the genomes become distant (for example, r ≥ 16 for 100 genes).

Table 3 shows the average run time. Surprisingly, our method is faster when
the genomes are not distant. However, it is much slower when the edge lengths
increase and it cannot finish many datasets with r larger than the values in this
experiment. For datasets with very large evolutionary rates, the edit distance will
severely under-estimate the true distance, hence all median-based approaches
will become unreliable.

6 Conclusions

In this paper we present a new branch-and-bound method for the multichro-
mosomal reversal median problem. Our extensive experiments show that this
method is more accurate than existing methods. However, this method is still
primitive needs further improvements. In recent years, the double-cut-and-join
(DCJ) distance has attracted much attention. We find that the lower bound
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used in this paper is indeed very similar to the DCJ distance [2], thus it may be
relatively easy to extend our work and develop a new DCJ median solver.
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