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In this paper, like in [25, 27, 12], we represent uncertainty by bounded regions describingranges of errors. A correct plan is one whose execution is guaranteed to achieve the goal,whenever actual errors (at execution time) are within the uncertainty bounds. A soundplanner is one which only generates correct plans. A complete planner is one which generatesa correct plan whenever one exists, and returns failure otherwise. Very few complete plannershave been proposed so far. Most of them take exponential time in some measure of the sizeof the input problem (e.g., [5, 9]), which makes them virtually inapplicable. In fact, it hasbeen shown that these planners attack problems which are inherently intractable [4].In this paper we achieve polynomiality by both making assumptions in the problemformulation that eliminate the source of intractability, and using algorithmic techniquesthat take advantage of these assumptions. The key underlying notion is that of a landmarkarea, an \island of perfection" in the robot con�guration space where we consider positionsensing and motion control to be fully accurate. Outside any such area, we assume thatcontrol is imperfect and position sensing null. This notion of a landmark area approximatelycorresponds to the \�eld of in
uence" of a physical feature: if the robot is in this �eld, it cansense and identify the feature, and use this information to determine its position with highaccuracy (actually, we assume full accuracy). A feature may be pre-existing (e.g., the cornermade by two walls) or speci�cally provided to help robot navigation (e.g., a radio beacon ora magnetic device buried in the ground).Given a set of landmark areas scattered across con�guration space, a set of obstacles withwhich the robot should not collide, an initial region where the robot is known to be priorto execution, and a goal region where we would like the robot to go, the planning problemis to generate a set of motion commands whose execution guarantees that the robot willmove into the goal and stop there. Our planning algorithm solves this problem by iterativelyconstructing a growing set of landmark areas from which the robot can reliably attain thegoal. This set initially contains the landmark areas intersecting the goal region. Then newlandmark areas are added, from which the robot can reliably attain landmark areas alreadyin the set by executing a single move. The algorithm terminates successfully as soon as it ispossible for the robot to attain some landmark area (any one) in this set by a single movefrom the initial region. It terminates with failure when no new landmark areas can be addedto the set and the condition for success is still unsatis�ed.The algorithm constructs the set of landmark areas from which the robot can reliablyattain the goal by computing omnidirectional backprojections. The directional backprojec-tion of a set of landmark areas, for a given direction of motion d, is the largest region incon�guration space from which the robot is guaranteed to attain one of these areas by mov-ing along d, despite control uncertainty. The omnidirectional backprojection is the disjointunion of directional backprojections over all possible directions of motion, indexed by thedirection of motion. For a robot represented as a point in the plane, we show that theomnidirectional backprojection is su�ciently represented, as far as planning is concerned,by a �nite number of directional backprojections. The planner derived from this result iscomplete. Its time complexity is polynomial in the number and complexity of the landmarkareas and the obstacles. The plans it generates minimize the number of motions that have2



to be executed in the worst case.Landmarks require the workspace to include appropriate features and the robot to beequipped with sensors able to detect them. Our planning algorithm thus illustrates theinterplay between engineering and algorithmic complexity in robotics. As software becomesmore critical in modern robots, the importance of this interplay will increase. The tractabilityof robot programming will more and more be a major consideration in robot design andworkspace engineering. The question is not \How can we avoid engineering?", but \How canwe reduce its cost?" Interestingly, once a motion plan has been generated by our planner, theassumption that control and sensing are perfect in landmark areas can be relaxed to someextent, while keeping the plan correct. Furthermore, we will show that simple variations ofour planner can handle other sorts of landmark areas that do not require perfect sensing andcontrol, without losing completeness and polynomiality.In Section 2 (Related Work) we relate our work to previous research. In Section 3(Planning Problem) we precisely state the class of problems solved by our planner andwe illustrate this statement with an example. In Section 4 (Directional Backchaining)we present a �rst-cut planning method based on the concept of directional backprojection.However, this method does not provide an e�cient way to select directions of motion. InSection 5 (Omnidirectional Backchaining) we address this issue and we present theactual planning algorithm. In Section 6 (Experimental Results) we show a series of ex-amples run with the implemented planner. For simpli�cation, Sections 4 through 6 assumethat there are no obstacles in the robot's workspace. In Section 7 (Dealing with Ob-stacles) we extend the planning method to deal with obstacles, and we present additionalexperimental results. In Section 8 (Discussion and Extensions) we discuss our assump-tions and we describe non-implemented extensions of the planner aimed at eliminating themost restrictive ones.2. Related WorkMotion planning with uncertainty has been a research topic in robotics for almost twodecades. Various approaches have been proposed, including skeleton re�nement [24, 32],inductive learning from experiments [11], iterative removal of contacts [20, 16], and preim-age backchaining [25, 27, 12]. The �rst three of these approaches operate in two phases: amotion plan is �rst generated assuming no uncertainty and then transformed to deal withuncertainty. Instead, preimage backchaining takes uncertainty into account throughout thewhole planning process. It can thus tackle problems where uncertainty shapes the structureof a plan to the extent that it cannot be generated by transforming an initial one producedunder the no-uncertainty assumption. Our work is a direct continuation of a series of workon preimage backchaining. We focus most of the following discussion on this series.Preimage backchaining considers the following class of motion planning problems [25]: Aplan is a sequence (more generally, an algorithm) of motion commands, each de�ned by acommanded direction of motion d and a termination condition TC. When the robot executessuch a command in free space, it moves along a direction contained at each instant in a cone3



of half-angle � about d and stops as soon as TC becomes true. (In contact with an obstacle,the robot may stop or slide, depending on the particular control law that is used. In thispaper we will simply forbid contacts with obstacles, though our algorithm can be easilyadapted to handle compliant motions as well.) The angle � is the largest expected controlerror and models the directional uncertainty of the robot. The termination condition TC is aboolean function of sensory data s. At any one time, these data measure physical parameters(e.g., the robot position) with some error. The actual parameter vector lies anywhere in aregion U(s) modeling the robot's sensory uncertainty. A planning problem is speci�ed bya workspace model, an initial region, a goal region, the directional uncertainty �, and thesensing uncertainty U .The above problem formulation admits many variants. For example, one may introducetime and consider uncertainty in the robot velocity, allowing the construction of more so-phisticated termination conditions [27, 12]. The workspace model (e.g., the location and theshape of the obstacles) may also be subject to errors, yielding a third type of uncertainty [8].For the sake of simplicity we will not discuss these variants here (see [18]).The preimage of a goal region for a given motion commandM = (d,TC) is the set of allpoints in the robot's con�guration space such that if the robot starts executing the commandfrom any one of these points, it is guaranteed to reach the goal and stop in it. Preimagebackchaining consists of constructing a sequence of motion commandsMi, i = 1; : : : ; n, suchthat, if Pn is the preimage of the goal for Mn, Pn�1 the preimage of Pn for Mn�1, and so on,then P1 contains the initial region.One source of di�culty in computing preimages is the possible interaction between goalreachability and goal recognizability. The robot must both reach the goal (despite directionaluncertainty) and stop in the goal (despite sensing uncertainty). Goal recognition, hence thetermination condition of a command, may depend on the region from where the commandis executed. This region, which is precisely the preimage of the goal for that command,also depends on the termination condition. This recursive dependence was noted in [25].Nevertheless, Canny [5] described a complete planner with very few restrictive assumptionsin it. This planner generates an r-step plan by reducing the input problem to decidingthe satis�ability of a semi-algebraic formula with 2r alternating existential and universalquanti�ers. Such a decision takes double exponential time in r. Moreover, the smallest rfor which a plan may exist grows with the complexity of the environment. Actually, variousforms of the above motion planning problem have been proven intrinsically hard [4, 28].At the expense of completeness, Erdmann [12] suggested that goal reachability and rec-ognizability be treated separately by identifying a subset of the goal, called a kernel, suchthat when this subset is attained, goal achievement can be recognized (by TC) indepen-dently of the way it has been achieved. He de�ned the backprojection of a region R fora direction of motion d as the set of all points such that, if the robot moves along d withdirectional uncertainty �, starting at any one of these points, it is guaranteed to reach R. Heproposed an O(n log n) algorithm to compute backprojections in the plane when the obsta-cles are polygons bounded by n edges. Hence, a preimage of a goal can be computed as thebackprojection of its kernel. An implemented planner based on this technique is described4



in [19].Once the kernel of a goal has been identi�ed, a remaining issue is the selection of thecommanded direction of motion to attain this kernel, since the backprojection of the kernelvaries when the direction changes. The planner described in [19] only considers a �nitenumber of regularly spaced directions; hence, it is incomplete, and usually not very e�cient.Donald [9] considered the disjoint union of backprojections of a region R over all possibledirections of motion. For a point robot moving in the plane, he showed that this set is su�-ciently described by a polynomial number of backprojections. He used this result to proposean O(n4 log n) algorithm to generate one-step (single motion command) plans. Briggs [2]reduced the time complexity of this algorithm to O(n2 log n). Hutchinson and Fox [17, 14]extended the algorithm to exploit visual constraints and allow visual compliant motions.One remaining di�culty to construct a multi-step planner is backchaining. The di�cultycomes from the fact that backchaining introduces a twofold variation: when the commandeddirection of motion varies, both the backprojection of the current kernel and the kernel of thisbackprojection (which will be used at the next backchaining iteration) vary. In this paper wedeal with this di�culty by introducing landmark areas. We show that backchaining is thenreduced to iteratively computing a relatively small set of backprojections for a growing set oflandmark regions. This result directly yields a polynomial planning algorithm. This planneris also complete relative to a well-de�ned class of problems. Previously, Friedman [15] hadproposed another polynomial multi-step planner for a compliant point robot in a polygonalworkspace by assuming that sensing exactly detects when the robot traverses line segmentsjoining vertices of the workspace.Our notion of a landmark corresponds to a recognizable feature of the workspace thatinduces a �eld of in
uence (the landmark area). If the robot lies in this �eld, it senses thelandmark and uses this information to determine its location. Related notions have beenpreviously introduced in the literature with the same or di�erent names, e.g., landmarks [23],atomic regions [3], signature neighborhoods [26], and perceptual equivalent classes [10, 6].Over the past decade, there has also been a substantial amount of work at reducing positionsensing errors while a robot is moving. For example, for mobile robots, many techniques havebeen proposed to combine the estimates provided by both dead-reckoning and environmentalsensing (e.g., see [1, 7, 22, 33]). These techniques address the problem of tracking a selectedmotion plan as well as possible, not the problem of generating this plan. The goal of planningin the presence of uncertainty considered in this paper is to make sure that executing theplan will reveal enough information to guarantee reliable execution.3. Planning ProblemIn this section we precisely state the class of problems solved by our planning algorithm. Weillustrate this statement with a speci�c example.5



3.1. StatementThe robot is a point1 moving in a plane, the workspace, containing stationary forbiddencircular regions, the obstacle disks. The robot can move in either one of two control modes,the perfect and the imperfect modes.The perfect control mode can only be used in some stationary circular areas of theworkspace called the landmark disks, where the robot also has perfect position sensing.Some of these disks may intersect, creating larger areas, called landmark areas, throughwhich the robot can move in the perfect control mode. A motion command in the perfectcontrol mode, called a P-command, is described by a sequence of via points such that all thevia points are in the same landmark area, any two consecutive via points are in the samelandmark disk, and any two non-consecutive via points are in di�erent landmark disks. Therobot can start executing the command only when it is in the landmark disk containing the�rst via point. It executes the command by moving through the successive via points andstops when it reaches the last one.A motion command in the imperfect control mode, called an I-command, is described bya pair (d;L), where d 2 S1 is a direction in the plane, called the commanded direction ofmotion, and L is a set of landmark disks, called the termination set of the command. Thiscommand can be executed anywhere in the plane, outside the obstacle disks. The robotthen follows a path whose tangent at any point makes an angle with the direction d that isno greater than some prespeci�ed angle � 2 (0; �=2), called the directional uncertainty. Therobot stops as soon as it enters a landmark disk in L.The robot has no sense of time, which means that the modulus of its velocity is irrelevantto the planning problem.The initial position of the robot is known to be anywhere in a speci�ed initial region Ithat consists of one or several disks. Each initial-region disk may, or may not be disjointfrom the landmark areas. The robot must move into a given goal region G0, which is anysubset, connected or not, of the workspace whose intersection with the landmark disks iseasily computable. The problem is to generate a correct motion plan made up of I- and P-commands to achieve G0 from I. The robot is not allowed to collide with any of the obstacles.The number of landmark disks is �nite and equal to `. The number of obstacle disks isalso �nite and in O(`). The number of initial-region disks is small enough to be consideredconstant. The goal region is such that its intersection with landmark disks can be computedin O(`) time. Hence, ` is used to measure the size of the input problem.The above problem is a simpli�cation of a real mobile-robot navigation problem, but itis not oversimpli�ed and captures most of its fundamental aspects. In Section 8 we will seethat the most restricting assumptions can be eliminated or alleviated, so that the methodsdescribed in this paper provide a solid foundation for real mobile-robot navigation.3.2. Example1Hence, the robot workspace and con�guration space coincide.6



Figure 1: Example of a planning problemFig. 1 illustrates the previous description with an example run using the implemented plan-ner. The workspace contains 23 landmark disks (shown white or grey) forming 19 landmarkareas, and 25 obstacle disks (shown black). The directional uncertainty � is set to 0.09radian. The initial and goal regions are two small disks designated by I and G0, respectively.The white landmark disks are those with which the planner has associated motion com-mands. The arrow attached to a white disk is the commanded direction of motion of anI-command planned to attain another set of disks. There is at least one arrow per whitelandmark area not intersecting the goal.Plan execution begins with performing the I-command attached to the initial region.When the robot reaches a disk in the termination set of this command, it is guaranteed thata P-command is attached to this disk (hence, it is a white disk in the �gure). Executing thisP-command allows the robot to attain a point in the current landmark area that is eitherin the goal (if the goal region intersects this landmark area) or such that an I-command isassociated with it (the arrows shown in the �gure are drawn from such points). In the �rstcase, plan execution terminates; in the second case, the I-command is executed, and so on.The �gure also shows the path produced by a sample execution of the plan. This path�rst takes the robot from the initial region to the landmark area designated by B. Fromthere, it successively attains and traverses the landmark areas marked C, D, E, F , G, H,J , K, M , and N . The P-command associated with N takes the robot to G0 where it stops.7



Figure 2: A directional backprojectionThe path shown in the �gure was produced by the execution of 11 I-commands and11 P-commands. However, the generated plan could have required up to 12 I-commands.Indeed, the I-command fromK is only guaranteed to attain the union of the landmark areasL, M , and N , which form the termination set of the command. Another execution (withdi�erent control errors) could have caused the robot to reach L rather than M . The motioncommand attached to L would then have allowed the robot to reach M .4. Directional BackchainingIn this section and the next three we assume for simpli�cation that the workspace containsno obstacle disks. Obstacles will be introduced in Section 7.4.1. Directional Backprojection of a GoalConsider a goal region G. We de�ne the extension of G as the largest set of landmark diskssuch that, if the robot is in any one of them, it can attain the goal by executing a singleP-command. Thus, the extension of G, denoted by E(G), is the set of all the landmark areashaving a non-zero intersection with G. The disks in E(G) are called the extension disks. Theother landmark disks are called the intermediate-goal disks.The directional backprojection of E(G), for any given d 2 S1, is the region B(G; d) de-�ned as the largest subset of the workspace such that, if the robot executes the I-command(d;E(G)) from any position in B(G; d), then it is guaranteed to reach E(G) and thus to stopin E(G). From the entry point in the extension, the robot can attain G by executing a P-command. Note that E(G) � B(G; d). Hence, if the robot is already in E(G) the I-command(d;E(G)) immediately terminates.There is no larger region than B(G; d) from where the robot is guaranteed to attain Grecognizably by executing one I-command along d followed by one P-command. Indeed, ifthe robot executes the I-command (d;E(G)) from any position outside this region, it is notguaranteed to reach E(G). From some positions, it may be guaranteed to reach G, but sinceit may not enter any landmark disk intersecting G, it may not recognize goal achievementand it may thus traverse the goal without stopping.8
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dFigure 3: Right and left rays of a landmark disk4.2. Description of a Directional BackprojectionThe directional backprojection of a goal extension for any direction d 2 S1 consists of one orseveral connected subsets. Fig. 2 shows a directional backprojection of an 11-disk extensionwhich contains 4 connected subsets.Each connected subset in B(G; d) has no hole, even when the union of the extensiondisks has some. Its boundary consists of circular segments called arcs and straight segmentscalled edges. Each arc is a subset of the boundary of an extension disk. Let the right ray(resp., left ray) of an extension disk L be the half-line tangent to L erected from the tangencypoint in the direction pointed by � + d + � (resp., � + d � �), with L on its left-hand side(resp., right-hand side), as shown in Fig. 3. Each edge is contained in the right or left rayof some extension disk, and is called a right or left edge, accordingly. One extremity ofthe edge, called its origin, is the tangency point of the ray. The other extremity, calledthe edge's endpoint, is the �rst intersection point of the ray with another extension disk oranother erected ray. The right (or left) ray of any extension disk thus supports at mostone edge of the total backprojection's boundary. If two edges share the same endpoint, thisendpoint is called a spike. Each connected subset has a single spike.We assign a distinct integer in [1; `] to every landmark disk. Using these numbers wegive a distinct name to every disk, ray and intersection of two rays.Except for isolated commanded directions of motion where an edge is tangent to twoextension disks or a spike is in contact with an extension disk, every connected subset of adirectional backprojection is bounded by a simple curve. We then label every edge in thedirectional backprojection's boundary by the name of the ray supporting it, every arc by thename of the disk it belongs to, and every spike by the name of the corresponding intersection.(Two distinct arcs may receive the same label.) We describe every connected subset of thedirectional backprojection by the circular list of the labels met along its boundary as it istraced counterclockwisely. The set of all such lists is called the description of the directionalbackprojection. At singular directions, we divide the connected subsets with non-simpleboundaries into smaller subsets with simple boundaries that touch each other at isolatedpoints, and we describe each such subset as above.The extension E(G) contains O(`) disks. The size of the boundary of a union of disks is9



linear in the number of disks. Hence, the boundary of E(G) contains O(`) arcs. Furthermore,the boundary of B(G; d) contains O(`) edges. Indeed, each ray of an extension disk supportsat most one edge. So, the size of the description of B(G; d) is O(`). The number of spikes isO(s), where s 2 O(`) is the number of landmark areas. Thus:Lemma 1 The description of a directional backprojection has size O(`).4.3. Computation of a Directional BackprojectionWe assume that the set of all landmark areas has been precomputed. (Computing a landmarkarea includes identifying its landmark disks, constructing its boundary, and identifying whichinitial-region disks are fully contained in the area.) The total size of the landmark areas'boundaries is O(`). A simple divide-and-conquer does the precomputation in timeO(` log2 `)and space O(`) [29].To computeB(G; d) we erect the O(`) rays tangent to the precomputed boundary of E(G)and pointing along the directions � + d� �. We construct the boundary of every connectedsubset of B(G; d) by sweeping a line perpendicular to d, in the direction of d+�. Each ray isinterrupted where it �rst intersects an extension disk or another ray. This sweep algorithmrequires that � < �=2, in order to guarantee that the robot motion always projects positivelyon the direction d.Lemma 2 The description of a directional backprojection is computed in time O(` log `) andspace O(`).4.4. BackchainingAssume that we select d0 such that the directional backprojection of the problem's goal G0contains the initial region I. We then have a motion plan to achieve the goal: From itsinitial position in I, the robot can attain the extension E(G0) by executing the I-command(d0; E(G0)); then, by switching to the perfect control mode, it can reach the goal withoutleaving E(G0).However, in general, such a \one-step" motion plan does not exist. If E(G0) is empty, sois B(G0; d) for any d 2 S1; in this case, if I 6� G0, the planner can safely return failure. If theextension E(G0) is not empty and the backprojection B(G0; d0), for the selected direction d0,does not contain I, we can treat B(G0; d0) as an intermediate goal G1 and try to produce amotion plan to achieve it from I. This means that we compute the extension E(G1) and, if itis a proper superset of E(G0), the backprojection B(G1; d1) for some direction d1 2 S1. If weselect d1 such that B(G1; d1) contains I, we then have a two-step motion plan to achieve G0;otherwise, we can consider B(G1; d1) as a new intermediate goal G2, and so on. The wholeprocess is called directional backchaining.The backchaining process requires that every newly computed backprojection be checkedfor containment of the initial region I. If it does not contain I, the new backprojection mustalso be checked for intersection with landmark disks not in the current goal's extension.10



These computations can be incorporated in the sweep-line algorithm that constructs thedirectional backprojection. During the sweep we can remove any intermediate-goal diskfrom further consideration, as soon as we detect that it is intersected by an edge of thedirectional backprojection being computed. With this simpli�cation, the time complexity ofthe sweep-line algorithm remains O(` log `).Let LA be a landmark area in E(G0) and G be an arbitrary point selected in LA \ G0,called a goal point. We construct a tree, called the P-command tree of LA, whose nodesare all the disks in LA. The root of the tree is the disk containing G and any two disksrelated by a link of the tree overlap. (Any tree verifying these properties is adequate.) Weselect a via point in the intersection of every disk other than the root with its immediateparent in the tree. The P-command tree of LA will be used at execution time to select theP-command to be executed when the robot enters a disk in LA. The P-command will simplybe the sequence of via points collected by tracing the path in the tree between the entereddisk and the root, with the goal point G added at the end of the sequence. A P-commandtree is constructed for every landmark area in E(G0).Consider now the extension E(Gi) of an intermediate goal Gi (i > 0). In every landmarkarea LA � E(Gi)nE(Gi�1), we pick a disk that has a non-zero intersection with Gi and apoint in this intersection. This point is called the exit point of LA. In the same way asabove, we construct the P-command tree of LA, with the disk containing the exit point asthe root. At execution time, if the robot attains this exit point, the generated plan prescribesto immediately switch to executing the I-command (di�1; E(Gi�1)).A straightforward computation of all the P-command trees takes O(`2) time in total.5. Omnidirectional BackchainingIn order to transform directional backchaining into an e�ective planning algorithm, we needa method for choosing a direction of motion at every iteration of the backchaining process.This issue leads to the notion of an omnidirectional backprojection.5.1. Omnidirectional Backprojection of a GoalWe call the omnidirectional backprojection of a goal G the disjoint union of all directionalbackprojections over d 2 S1, i.e., the three-dimensional set Sd2S1(B(G; d)� d) � R2 � S1.We denote this set by OB(G).(Remark on terminology: Erdmann [12] de�nes the nondirectional backprojection of a goalas the union of all directional backprojections of this goal over d 2 S1. The nondirectionalbackprojection is thus the two-dimensional set Sd2S1 B(G; d). It is the region from wherethe robot can reach G by a single move in some direction. Donald [9] employs the samename for the disjoint union of all directional backprojections over d, but the terminology iscounter-intuitive. Instead, we use the name \omnidirectional backprojection.")At every iteration of the planning process, we wish to compute the omnidirectional back-projection of the current goal in order to answer the following two questions:11
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(a) E-Left-Touch (b) E-Right-ExitFigure 4: E-events� Does there exists d such that the initial region I is contained in the directional backpro-jection B(G; d)?�What are all the intermediate-goal disks that are intersected by a directional backprojectionin OB(G)?If the answer to the �rst question is yes, the planning problem is solved. If it is no,the second question tells us which landmark disks, if any, have to be inserted in the newextension for the next backchaining iteration. If there are no such disks, the planner returnsfailure.We show below that answering the above questions only requires computing a �nitenumber of directional backprojections in OB(G). Indeed, although there are in�nitely manypossible values of d, the answers to the above questions change only at a �nite number ofdirections, called critical directions.Let (dc1 ; : : : ; dcp) be the cyclic list of all critical directions in counterclockwise order andI1; : : : ; Ip be the intervals between them, with Ii = (dci ; dci+1(mod p)). For any interval Ii,let dnci be any direction in Ii. One can answer the above two questions by computing thedirectional backprojections B(G; d) for all d 2 fdnc1 ; dc1; dnc2 ; : : : ; dcpg. In the following, wewill call the set of these backprojections the discrete omnidirectional backprojection. We willdenote it by DOB(G).5.2. Critical DirectionsAssume that d varies over S1 counterclockwisely. Every critical direction corresponds to anevent caused by the motion of an edge or a spike of the current directional backprojectionrelative to the stationary landmark disks or initial-region disks. We assume that all disksare in general position, so that no two events occur simultaneously. Three kinds of eventshave to be considered:- E-events, where the directional backprojection changes discontinuously, hence possiblycausing the answer to both questions to change. These events involve extension disks only.- I-events, where the answer to the �rst question may change. They involve extension and12
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(a) I-Left-Exit (b) I-Right-Touch (d) I-Right-Vertex(c) I-Left-VertexFigure 5: I-eventsinitial-region disks.- L-events, where the answer to the second question may change. They involve extensionand intermediate-goal landmark disks.There are two types of E-events (see Fig. 4, where all disks are extension disks):- An E-Left-Touch event occurs when a left edge reaches an extension disk by becomingtangent to it.- An E-Right-Exit event occurs when a right edge leaves the extension disk containing itsendpoint by becoming tangent to it.There are four types of I-events (see Fig. 5, where the grey disk is an initial-region disk):- An I-Left-Exit event occurs when a left edge leaves an initial-region disk by becomingtangent to it.- An I-Right-Touch event occurs when a right edge reaches an initial-region disk by becomingtangent to it.- An I-Left-Vertex event occurs when the endpoint of a left edge coincides with the entryintersection point2 of an initial-position disk by an extension disk.- An I-Right-Vertex event occurs when the endpoint of a right edge coincides with the exitintersection point of an initial-position disk by an extension disk.There are three types of L-events (see Fig. 6, where the dark grey disk is an intermediate-goal disk):- An L-Left-Touch event occurs when a left edge reaches an intermediate-goal disk by be-coming tangent to it.- An L-Right-Exit event occurs when a right edge leaves an intermediate-goal disk by be-coming tangent to it.- An L-Spike-In event occurs when a spike lies on the boundary of an intermediate-goal disk.Lemma 3 There are O(`2) E-Left-Touch and E-Right-Exit events, O(`) I-Left-Exit andI-Right-Touch events, O(`2) I-Left-Vertex, I-Right-Vertex, L-Left-Touch, and L-Right-Exitevents, and O(`3) L-Spike-In events.2When a disk �1 intersects another one, �2, we de�ne the entry intersection point of �2 by �1, as the pointwhere we enter �2 when we move counterclockwisely along the boundary of �1. The point where we exit �2is the exit intersection point. 13



θ

(c) L-Spike-In(b) L-Right-Exit(a) L-Left-Touch Figure 6: L-eventsThe curve traced by the intersection of a right and a left ray is a circle if the two rays aretangent to the same disk. Otherwise it is a fourth degree curve. The algebraic expression ofthe intersection of this curve with a circle is established in [21].5.3. Planning MethodIf I � G0, the robot is already in the goal and the planner has nothing to do. In general,however, the planner computes the extension E(G0). If this extension is empty, the plannerreturns failure. Otherwise, it associates a P-command to reach a goal point with everylandmark disk in this extension. If I � E(G0) the planner returns success.Let us assume that I 6�E(G0). The planner then computes the discrete omnidirectionalbackprojection DOB(G0). If DOB(G0) contains a directional backprojection B(G0; d) thatincludes I, then the planner attaches the I-command (d;E(G0)) to I and returns success.Otherwise, for every landmark area LA 6� E(G0) that has a non-zero intersection with adirectional backprojection B(G0; d) in DOB(G0), an exit point is arbitrarily selected in LA \B(G0; d) and the I-command (d;E(G0)) is attached to this point. (If the same area LAintersects several directional backprojections, only one intersection is used to produce theI-command.) The union of the directional backprojections in OB(G0) is now considered asan intermediate goal G1.The extension E(G1) is a by-product of the above computation. By construction, E(G1) �E(G0). If E(G1) = E(G0), no directional backprojection of E(G1) can possibly intersect alandmark disk that is not already in E(G1); hence, the planner terminates with failure.Otherwise, every landmark area in E(G1)nE(G0) contains one disk L with an exit point andan I-command attached to it. With every other disk in the landmark area, the plannerassociates a P-command to reach the exit point in L. If I � E(G1) the planner returnssuccess, else it computes the discrete omnidirectional backprojection of E(G1), and so on.During this backchaining process, the set of landmark areas in the extensions of the suc-cessive goals increases monotonically. At every iteration, either there is a new landmark areain the extension, and the planner proceeds further, or there is no new area, and the plannerterminates with failure. The planner terminates with success whenever it has constructed14



an extension E(Gn) containing I or a discrete omnidirectional backprojection DOB(Gn) thatincludes a directional backprojection containing I. The number of iterations is boundedby the number s of landmark areas. Thus, n � s. Every iteration of the backchainingprocess requires computing O(`3) directional backprojections. The computation of a direc-tional backprojection takes time O(` log `) (see Subsection 4.3). Hence, the above planningalgorithm has time complexity O(s`4 log `).5.4. Plan ExecutionAssume that the planner returns success after computing an omnidirectional backprojectionOB(Gn) that contains I. The generated plan can be regarded as a non-ordered collection ofreaction rules [30]. Each rule is a motion command whose execution is conditional to theentry of the robot into a region of the workspace, either the initial region, or a landmarkdisk, or an exit point:- The rule associated with I is the I-command (dn; E(Gn)), where dn is such that I �B(Gn; dn).- The rule associated with a landmark disk is a P-command to attain the exit point or thegoal point of the landmark area to which the disk belongs.- The rule attached to the exit point of each landmark area LA contained in E(Gi+1)nE(Gi),for any i 2 [0; n� 1], is an I-command (di; E(Gi)), where di is such that LA \B(Gi; di) is anon-empty region containing the exit point.The plan is executed as follows: The robot �rst executes the I-command associated withthe initial region. This command guarantees that the robot will stop in a landmark diskwith a P-command attached to it. Then the robot executes this P-command, and attains agoal point or an exit point. If it attains a goal point, the execution of the plan is terminated.If it attains an exit point, the I-command attached to this point is executed. This commandleads the robot to a new landmark disk, and so on.An exit point was selected by the planner in a landmark area when this area intersected adirectional backprojection for the �rst time. Later, the planner never changed the commandattached to this point. Therefore, when the robot executes the I-command (di; E(Gi)) fromthe exit point of some landmark area LA, no landmark disk in LA can possibly be in thetermination set E(Gi) of this command. Thus, sinceE(G0) � E(G1) � : : : � E(Gn), the robotcannot terminate its motion in the same landmark area twice by executing the plan. Hence,it is guaranteed to reach G0 after executing an alternate sequence of I- and P-commandswhose length is smaller than or equal to 2(n + 1).If the planner returns success when E(Gn) contains I, the generated plan is essentiallythe same as above, except that it does not include a rule associated with I, since the robotwill already be in a landmark area having a P-command attached to it.If the planner returns failure, it still delivers a plan as a set of reaction rules associatedwith all landmark areas from where the goal can be achieved reliably. But the plan isincomplete, since no command is attached to the initial region. The plan can neverthelessbe useful. For example, the robot controller may then decide to execute a random motion15



until the robot enters a landmark area with a command attached to it (see [21]).5.5. Completeness and OptimalityBy construction, every I-command in a plan is guaranteed to reach a landmark disk in itstermination set. Since the robot cannot terminate in the same landmark area twice (seeprevious subsection), the execution of a plan leads the robot to eventually stop in the goal.Hence, the plans generated by the planner are correct. The planner is sound.Let us say that a plan has k steps if it contains exactly k I-commands. The extensionE(Gi) of any goal Gi is the maximal subset of the workspace from which the robot can reliablyachieve Gi in zero steps. The set SB2DOB(Gi)E(B), i.e., the union of the extensions of thedirectional backprojections in DOB(Gi), is the maximal subset of landmark disks from whichthe robot can reliably achieve Gi in at most one step. Hence, E(Gi), for any i � 0, is themaximal set of landmark disks from which the robot can reliably achieve G0 in at most isteps. The largest set of landmark disks from where the planner can reliably achieve G0 iscomputed in at most s backchaining iterations. By de�nition of the I-events, if a directionalbackprojection of this set contains the initial region, the planner will �nd one (perhaps beforethe last iteration). Thus, if G0 can reliably be achieved from I, the planner is guaranteedto terminate with success. If G0 cannot reliably be achieved, backchaining terminates withfailure after at most s iterations. Thus, the planner is complete.Let a motion plan be optimal if the maximal number of steps required by its executionis minimal over all correct motion plans. The maximal number of steps for a plan producedby our algorithm is equal to the number of backchaining iterations before an extension or abackprojection contains the initial region. By de�nition of the omnidirectional backprojec-tions, the number of iterations is equal to the minimal number of steps that is required toachieve the goal in the worst case. Hence, our algorithm generates optimal plans. Further-more, after the execution of any sequence of steps, the subset of the motion plan that maystill be used to attain the problem's goal is also optimal.Theorem 1 The planning algorithm is complete and generates optimal plans.5.6. Computation ImprovementsAt every iteration of the backchaining process, the above algorithm identi�es critical direc-tions of motion and computes the directional backprojection of the current goal for everysuch direction. By noticing that the description of a directional backprojection undergoeslimited changes between two consecutive directions, we can avoid the full recomputationof each backprojection. To turn this idea into an algorithm, it is necessary to track thevariations of the directional backprojection description as the direction d varies along S1.It turns out that this description changes only at a �nite number of directions caused bythe two E-events presented above and other E-events discussed below. At each E-event,except the E-Left-Touch and E-Right-Exit events seen above, the directional backprojection16
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E-Left Touch

E-Right ExitFigure 7: Catastrophic E-Left-Touch and E-Right-Exit eventsdescription undergoes constant change that can be computed in constant or logarithmic time(see below). Meanwhile, E-Left-Touch and E-Right-Exit events, which we call catastrophicevents, yield O(`) changes, as illustrated in Fig. 7.Hence, the planner can use a sweep algorithm to compute the discrete omnidirectionalbackprojection. This algorithm scans all potential critical directions in counterclockwise or-der starting at some non-critical directions where it computes the directional backprojectionfrom scratch. During the sweep, it stops at every critical direction. At non-catastrophicE-events, it simply updates the description of the directional backprojection in constant orlogarithmic time. At E-Left-Touch or E-Right-Exit, it recomputes the directional backpro-jection from scratch. At every I-event, it uses the current backprojection description todetermine if the backprojection contains I. This can be done in a straightforward way intime O(` log `). At every L-event, the intersected intermediate-goal disk, if any, is identi�edin constant time.The additional E-events where the description of the directional backprojection changesare the following (see Fig. 8):- An E-Left-Exit event occurs when a left edge leaves the extension disk containing itsendpoint by becoming tangent to it.- An E-Right-Touch event occurs when a right edge reaches an extension disk by becomingtangent to it.- An E-Left-Birth event occurs when a new left edge emerges at the intersection of twoextension disks.- An E-Right-Death event occurs when a right edge disappears at the intersection of twoextension disks.- An E-Left-Vertex event occurs when the endpoint of a left edge crosses the intersectionbetween two extension disks. 17
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(a) E-Left-Exit (b) E-Right-Touch (c) E-Left-Birth (d) E-Right-Death

(e) E-Left-Vertex (h) E-Spike-Out(g) E-Spike-In(f) E-Right-VertexFigure 8: Additional E-events- An E-Right-Vertex event occurs when a right edge crosses the intersection between twoextension disks.- An E-Spike-In event occurs when a spike reaches an extension disk.- An E-Spike-Out event occurs when a spike leaves an extension disk.Lemma 4 There are O(`) E-Left-Birth and E-Right-Death events, O(`2) E-Right-Touch,E-Right-Exit, E-Left-Vertex, E-Right-Vertex events, and O(`3) E-Spike-In and E-Spike-Outevents.One can easily verify that the directional backprojection undergoes constant change ateach of the above E-events. Consider for example an E-Right-Touch event (see Fig. 9).The right ray r of an extension disk is collinear with the right ray r0 of another extensiondisk L0. The description of the directional backprojection is then modi�ed by insertingthe names of L0 and r0 in sequence immediately after the name of r (S1 is being scannedcounterclockwisely). This change takes constant time to compute, as for all non-catastrophicE-events, except E-Spike-In ones. An E-Spike-In event requires the label of the arc touchedby the spike to be identi�ed. Its processing takes O(log `) time.The time complexity of the sweep algorithm is the sum of the time required to schedule theevents (i.e., to identify and sort all potential critical directions) and the time to process them.There are O(`3) events in total. Scheduling them takes timeO(`3 log `). Processing the O(`3)non-catastrophic E-events takes time O(`3 log `), with the E-Spike-In events dominatingthis cost. The processing of both the O(`2) catastrophic E-events (these events involverecomputing the directional backprojection description) and the O(`2) I-events also takes18
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r' '(l1 d1 d2 l3 d3 r3) �! (l1 d1 d2 l3 d3 r3 d2 r2)Figure 9: Updating the directional backprojection at an E-Right-Touch eventtime O(`3 log `). Processing the O(`3) L-events takes time O(`3). Each iteration of thebackchaining process thus takes time O(`3 log `). Hence:Theorem 2 The planning algorithm takes time O(s`3 log `) and space O(`3).Several simple improvements are possible, which do not change this asymptotic bound.For example, as shown in [21], by considering O(`2) additional I-events, one can processeach I-event in constant time, hence reducing the time for processing all I-events to O(`2),instead of O(`3 log `). We also show in [21] that a simple modi�cation of the description ofa directional backprojection allows the E-Spike-In and E-Spike-Out events to be eliminated,thus reducing the cost of sorting and processing the non-catastrophic E-events to O(`2 log `).Concerning the L-Spike-In events, we can compute all the O(`3) directions where they mayoccur in advance, so that we sort them only once and reuse this result at every backchainingiteration. We thus reduce the total time for sorting and processing the L-Spike-In eventsto O(s`3). The O(s`3 log `) time complexity of the planner is then only dominated by theprocessing of the O(`2) catastrophic E-events.6. Experimental ResultsWe have implemented the above planning algorithm, along with navigation techniques anda robot simulator, in C on a DECstation 5000. The implemented planner incorporates twosigni�cant improvements:(1) During the computation of an omnidirectional backprojection, it does not discard anintermediate-goal disk L as soon as this disk intersects a directional backprojection. Instead,it determines the intervals of all directions at which the directional backprojection intersectsL, computes the intersection of L with the directional backprojection at the midpoint ofeach such interval, and keeps the intersection having the biggest area. This intersection iscalled the exit region of L. 19



Figure 10: Example with � = 0.1 radian(2) Several exit regions, each in a unique disk, may be generated in the same landmarkarea. With each disk in such a landmark area, the planner associates a P-command leadingto one exit region constructed in the area. When several exit regions are available, it selectsthe region that allows the generation of the P-command containing the smallest number ofvia points.The purpose of the �rst modi�cation is to allow some errors in control and sensing in thelandmark areas (see Subsection 8.2). The second modi�cation avoids planning P-commandsthrough long sequences of disks in a landmark area when this is not necessary. (However, itis only a heuristic, since it does not take the radii of the landmark disks into account.)Below we present examples of plans generated by the implemented planner, along withtheir simulated execution. In all the �gures (for instance, see Fig. 11) white disks arelandmark disks that intersect the omnidirectional backprojections computed by the planner,except the last one, i.e., the one that includes the initial region (if such a backprojectionexists). Grey disks are the other landmark disks and no command is attached to them. Inall examples, there is a single initial-region disk designated by I, and a single goal-regiondisk designated by G0.Whenever the robot enters a new landmark area L that is part of the termination set ofthe I-command currently being executed (then the disks in L are necessarily white), it shiftsto executing a P-command leading to a point (the exit point) selected in an exit region in L;20



Figure 11: Example with � = 0.2 radianas soon as it enters the exit region containing the exit point, it abandons the P-command andshifts to executing the corresponding I-command attached to the exit point. The exit regionconstructed in every white disk, if there is one such region, is shown in the �gures (exceptwhen it covers the whole disk), together with the direction of the I-command attached tothe selected exit point. The termination sets of the I-commands are not shown in the �gure,but can be inferred from the drawings.Fig. 10, 11, and 12 display three examples with the same workspace containing 51 land-mark disks of various size and the same initial and goal regions, but with increasing di-rectional uncertainty �. These examples show that, when uncertainty grows, the plannerreturns more and more sophisticated plans, as it attempts to reduce uncertainty by leadingthe robot through additional landmark disks.In Fig. 10 we set � to 0.1 radian. The planner returned success after 2 iterations and lessthan 3 seconds of computation time. Because the directional uncertainty is small, the plan isalmost directly aimed toward the goal. The simulated execution produces a path traversinga single landmark disk designated by D before entering the goal extension. Although thedisk marked E is along the path between D and F , it is not in the termination set of theI-command executed from the exit point of D. The robot traverses E without shifting toanother motion command.In Fig. 11 we set � to 0.2 radian. It took 4 iterations of the planner, and 19 seconds of21



Figure 12: Example with � = 0.3 radiancomputation, before the initial region was included in a backprojection. In the process, theplanner attached motion commands to many landmark disks. The simulated execution ofthe plan produced a path that uses three successive landmark areas designated by B, D,and E, before entering the goal's extension (F ). The area C is also traversed by the path,but it is not part of the termination set of the I-command executed from B.In Fig. 12 we set � to 0.3 radian. A plan was generated after 6 iterations, and 52 secondsof computation. A quick comparison of the commanded directions of motion attached to thewhite landmark disks shows that this plan is quite di�erent from the plan of Fig. 11. Theexecuted path traverses 5 landmark areas designated by A, B, C, D, and E. Notice thatboth B and C are now used by the navigation system, because it is no longer reliable todirectly achieve D from B; C has to be used along the way to reduce uncertainty.7. Dealing with ObstaclesLet us now introduce O(`) forbidden circular regions, the obstacle disks, in the workspace.We assume for simplicity that these disks have null intersection with the landmark andinitial-region disks, and do not even touch them. (Retracting this assumption presents noparticular di�culty, but increases the number of event types to be considered.)22
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left rayFigure 13: Right and left rays of an obstacle disk
Figure 14: Directional backprojection in the presence of obstacle disks7.1. Directional Backprojection DescriptionLet us consider an obstacle disk B and a commanded direction of motion d. We de�nethe right ray (resp., left ray) of B as the half-line tangent to B drawn from the tangencypoint in the direction � + d + � (resp., � + d � �), with the obstacle on its right-hand side(resp., left-hand side), as shown in Fig. 13.The directional backprojection of a goal in the presence of obstacle disks is a regionbounded by arcs and edges. Each arc is a subset of the boundary of an extension or obstacledisk. Each edge is a line segment supported by the right or left ray of an extension orobstacle disk. When an edge intersects an extension disk L, the edge is terminated and Lis included in the backprojection. When an edge intersects an obstacle disk B, the ray isalso interrupted, but B is excluded from the backprojection. Fig. 14 shows an example ofsuch a directional backprojection. Extension disks are shown white, while obstacle disks areshown black. Notice that the backprojection may now contain holes, which themselves maycontain components of the backprojection. Moreover, its connected subsets may have zero,one, or several spikes. The total number of edges and arcs in the backprojection's boundaryis still in O(`). 23
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(e) O-Spike-In

(f) O-Spike-OutFigure 15: Events caused by obstacle disksWe construct the description of a directional backprojection very much in the same wayas when there are no obstacles. We simply give a name to every obstacle disk so that wecan label the various edges and arcs of the backprojection's boundary that arise from thepresence of the obstacles. Although there are more types of labels to handle, the computationof this description still takes time O(` log `).Lemma 5 The description of a directional backprojection in the presence of O(`) obstaclesis computed in time O(` log `) and space O(`).7.2. Critical Directions Due to ObstaclesWhen the commanded direction of motion varies counterclockwisely over S1, the obstacledisks cause the description of the directional backprojection of a set of landmark disksto change at critical directions corresponding to the following events (see Fig. 15, whereextension disks are shown white and obstacle disks are shown black):- An O-Left-Touch event occurs when a left edge reaches an obstacle disk by becomingtangent to it.- AnO-Right-Exit event occurs when a right edge leaves an obstacle disk by becoming tangentto it.- An O-Spike-Birth event occurs when a spike emerges as a left edge terminating on an24



obstacle disk reaches the point where a right edge arises from this disk.- An O-Spike-Death event occurs when a spike vanishes as its left edge, pushed by its rightedge, shortens to zero length against an obstacle disk.- An O-Spike-In event occurs when a spike enters an obstacle disk.- An O-Spike-Out event occurs when a spike exits an obstacle disk.- An O-Left-Vertex event occurs when the endpoint of a left edge reaches the intersection oftwo obstacle disks.- An O-Right-Vertex event occurs when the endpoint of a right edge reaches the intersectionof two obstacle disks.- An O-Right-Birth event occurs when a right edge emerges at the intersection of two obstacledisks.- An O-Left-Death event occurs when a left edge disappears at the intersection of two obstacledisks.Lemma 6 There are O(`) events of types O-Right-Birth and O-Left-Death, O(`2) events oftypes O-Left-Touch, O-Right-Touch, O-Spike-Birth, O-Spike-Death, O-Right-Vertex, O-Left-Vertex, and O(`3) events of types O-Spike-In and O-Spike-Out.7.3. ComputationThe directional backprojection undergoes a small change at each of the above events. Thischange is computed in constant time for all events. Therefore, the discrete omnidirectionalbackprojection in the presence of obstacle disks still requires O(`3 log `) to compute, and thetime complexity of the planning algorithm remains O(s`3 log `). The space complexity alsoremains O(`3). Hence:Theorem 3 The planning algorithm in the presence of O(`) obstacle disks takes timeO(s`3 log `) and space O(`3).7.4. Experimental ResultsFig. 1 displays both an example of a plan generated by the planner and a sample run of thisplan. Obstacle disks are black. Landmark disks are white or grey depending on whether areaction rule has been attached to them, or not. The initial region is the disk I. The goalregion is the disk G0. In this example, � was set to 0.09 radian. The generation of the plantook 12 iterations of the planner, and about 3.5 minutes of computation.Fig. 16 shows another example with the same landmark and obstacle disks (except for 3obstacles disks that have been removed) and � set to 0.1 radian. This example was solvedafter 6 iterations (the displayed path has only 5 steps) requiring 40 seconds of computation.Fig. 17 shows a third example with a di�erent workspace containing 34 landmark disksforming 28 landmark areas, and 37 obstacle disks. It was solved in 7 iterations (the displayedpath also has 7 steps) and less than 6 minutes of computation.25



Figure 16: Example with obstacles (� = 0.1 radian)8. Discussion and ExtensionsIn this section we discuss non-implemented extensions of the planner.8.1. Landmark and Obstacle GeometryIn the algorithm described above, the landmark and obstacle areas are unions of circulardisks. We initially chose to model the �elds of in
uence of the landmarks by disks becausewe had in mind some sorts of beacons (e.g., radio or infra-red beacons) to guide the robot.For uniformity, we made the same choice for the obstacles. However, most natural landmarksdo not entail circular �elds of in
uence. We can approximate any landmark or obstacle areaby a collection of overlapping disks, but the number of these disks grows quickly with theprecision of the approximation, yielding longer computation.Our algorithm can be easily adapted to deal with landmark and obstacle areas describedas generalized polygonal regions bounded by straight and circular edges. In this extension, forany commanded direction of motion, we can still de�ne the right and left rays of a landmarkor an obstacle area. If the area is not convex, it may have several right and/or left rays. Whilethe origin of the right or left ray of a circular contour varies continuously as the commandeddirection of motion rotates, the origin of the right or left ray of a polygonal contour remains26



Figure 17: Another example with obstacles (� = 0.1 radian)anchored at a �xed vertex, except at critical directions where it jumps from one vertex ofthe contour to another. These directions (which are parallel to the straight edges of thegeneralized polygonal contours of the landmark and obstacle areas) are additional criticaldirections to be treated by the planner. Also, if an extension landmark area and an obstaclearea touch each other, we may have to erect a ray whose origin is an intersection point ofthe two contours. The origin of such a ray remains stationary for a subrange of orientationsd. The curves traced by the spikes are not more complicated than in the pure circular caseand their degrees remain no greater than 4.Although several small adaptations have to be carefully made, our planning method thusextends to the case where landmark and obstacle areas are bounded by straight edges andcircular arcs and may touch each other. If the workspace contains s landmark areas boundedby O(`) edges and arcs and the obstacle areas are bounded by O(`) edges and arcs, the timecomplexity of the planner remains O(s`3 log `).Representing landmark and obstacle areas as generalized polygons is a very realisticmodel for most applications. In particular, if the robot is an omnidirectional circular robotmoving among polygonal obstacles, shrinking the robot to its centerpoint and growing theobstacles isotropically by the robot's radius yields such generalized polygonal regions.In a similar way, the algorithm can be extended to allow compliant motions on obstacle27



edges. Additional critical directions must be considered by the planner, but complexitybounds remain unchanged. Allowing compliance signi�cantly enlarges the set of problemsthat admit correct plans.8.2. Uncertainty in Landmark AreasPerhaps the less realistic assumption in the problem de�nition of Section 3 is that controland position sensing are perfect in landmark areas, while sensing is null outside any sucharea. Below, we �rst argue that this assumption is reasonable. We then show that it can berelaxed to some extent.A typical mobile robot uses two techniques to continuously estimate its position, dead-reckoning and environmental sensing. Environmental sensing provides pertinent informationonly when some characteristic features of the workspace (\landmarks") are visible by thesensors. Then the robot knows its position with a good accuracy. When no or few featuresare visible, the robot relies on dead-reckoning, which yields cumulative errors that we modelby the directional uncertainty. Our assumption that sensing outside landmark areas is nullis perhaps conservative, but it does not prevent the robot's navigation system from usingall available sensing information at execution time to better determine the robot's currentposition. In the worst case, this may lead the planner to return failure, while reliable pathsexist in practice.On the contrary, the assumption that control is perfect in the landmark areas is anti-conservative; but if we choose safe features to create landmark disks, it is a reasonable one.To some extent, most workspaces can be engineered to include such features. Landmarkareas with sharp boundaries can be obtained by introducing arti�cial landmarks and/orthresholding an estimate of the sensing uncertainty. For example, the notion of a \sensoryuncertainty �eld" (suf) is introduced in [31]. At every possible point q in the con�gurationspace, the suf estimates the range of possible errors in the sensed con�guration that thenavigation system would compute by matching the sensory data against a prior model ofthe workspace, if the robot was at q. The suf is computed at planning time from a modelof the robot's sensing system.More interestingly, however, one can notice that perfect control and sensing in landmarkareas are not strictly needed. Indeed, once the robot enters a landmark area it is su�cientthat it reaches an exit region of non-zero measure prior to executing the next I-command. (Ifthe landmark area intersects the goal, the \exit region" is the intersection with the goal.) Forexample, the maximal sensing error allowed in a landmark area could be half the radius ofthe largest disk fully contained in an exit region. Thus, although the planner assumed perfectsensing in landmark areas, we can now create these areas by engineering the workspace insuch a way that the sensors just provide the information that is needed by the plan (see [13]for a similar idea). However, maximal errors in landmark areas seem to depend on the planitself, so that they can only be computed once a plan has been generated assuming no sucherrors. 28



8.3. Other Types of LandmarksOne can de�ne other, perhaps more realistic types of landmarks, which only require simpleadaptations of our planning algorithm.An example of another type of landmark area is a region L containing a subregion C,such that if the robot ever enters L, it knows that it is in L and it can reliably navigate intoC; when it enters C, it recognizes the achievement of C. This de�nition does not requireperfect control in L, nor perfect position sensing. For example, consider a wall w and thecorner it makes with another wall. The wall w induces an area L, such that if the robot isin L, its proximity sensor can sense the wall (we assume that w cannot be confused withanother object). If the robot moves along w, parallel to it (e.g., using proximity sensing),toward the corner, it will eventually reach a small region C from where it can sense thecorner.A landmark area (L;C) as above can be treated by our algorithm as follows: In orderfor a directional backprojection to \intersect" this landmark area, it has to fully contain C(yielding events similar to the I-events used for containment of the initial region). Whenthis is the case the whole region L can be inserted in the goal extension used at the nextbackchaining iteration.A particular case of the above landmark is when C = L. For example, a characteristicfeature de�nes an area L from where it can be sensed. If the feature is not su�cient toallow the robot to determine its location or navigate into a subregion of L, we can simplyset C = L. Then the only information used by the planner is: if the robot ever enters L, itwill know it.9. ConclusionThis paper described a complete polynomial planning algorithm for mobile-robot navigationin the presence of uncertainty. The algorithm addresses a class of problems where landmarkscreate regions in the con�guration space where both control and position sensing are perfect.Outside these regions sensing is null; control, which relies on dead-reckoning, is imperfect,but directional errors are bounded. Although this class of problems is a simpli�cation of realmobile-robot planning problems, by no means it is oversimpli�ed.A computer program embedding the planning algorithm was implemented, along withnavigation techniques and a robot simulator. This program was run with many di�erentexamples, some of which were presented in this paper. The planner is reasonably fast. In itspresent form, it assumes that all landmark and obstacle areas are described as unions of disks.However, extending the planner to accept a more general geometry (generalized polygonalareas) is rather straightforward. Other interesting extensions (uncertainty in landmark areas,new types of landmark areas) are possible. The relative time e�ciency of the planner suggeststhat our complexity bounds are not tight.So far, most algorithms to plan motion strategies under uncertainty were either expo-nential in the size of the input problem, unsound, and/or incomplete. Such algorithms may29
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