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Abstract— This extended abstract describes a joint effort to
model and predict harmful cyanobacterial blooms in lakes of an
interdisciplinary team with expertise in big data, environmental
science, ecology, human demography, instrumentation, and
robotics from four states: Maine, New Hampshire, Rhode
Island, and South Carolina. This project uniquely integrates
current methodology for data collection, including remote
sensing and manual limnological sampling, together with het-
erogeneous robotic and sensor systems to extend the spatial
and temporal sampling. Such big amount of data will be
analyzed and processed using ensemble prediction models for
determining the development and severity of blooms both in
time and space (when and where) and for testing limnological
hypotheses. While this project just started and does not have
new result yet, this paper provides insights on open research
questions and the methodology used, as well as best practices
for interdisciplinary collaboration across different departments,
institutions, and citizen scientists.

I. INTRODUCTION
This project will address harmful cyanobacterial blooms

(HCBs) with data collected by Unmanned Aerial Vehicles
(UAVs), Autonomous Surface Vehicles (ASVs), deepwater
buoys, manual sampling from boats and docks, and weather
stations. The resulting ‘big data’ will be processed on-board
and in a data center, with the goal of having the UAVs, ASVs,
and buoys cooperate with one another to facilitate adaptive
sampling strategies (Fig. 1).

Freshwater lakes are a crucial and primary source of
water for human use, including drinking, irrigation, cooling,
recreation, food production, and dilution of wastes and
pollutants [1]. However, the provisioning of these essential
services is threatened by the increased incidence of harmful
cyanobacterial blooms (HCBs) in lakes worldwide [2], [3].
HCBs decrease water quality, clarity, and aesthetics (e.g.,
[4], [5]); negatively impact property values [6], [7], [8]; and
can threaten human and animal health through the produc-
tion of potent toxins that damage organ systems [9], [10].
Understanding the development of these blooms is therefore
a crucial research need as well as a practical question for
water quality managers and municipal water suppliers.

Limnologists have a relatively poor understanding of
where blooms originate, how they develop over time, how
they spread across the lake (especially relative to ‘sensitive’
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Fig. 1: Illustration of the envisioned system for monitoring
and predicting harmful blooms.

areas like public beaches and drinking water intake pipes),
and the local factors that modulate these processes across
different types of lakes (for example as a function of climate,
trophic state, morphometry, and depth).

Progress in answering these questions has likely been
stifled by (1) limited spatial and temporal resolution of data
collection, and (2) lack of analytical and modeling tools to
integrate and utilize, in real-time or near-real time, the data
for adaptive sampling of and forecasting blooms. Currently,
researchers rely on three primary types of data about lakes:
(1) manual sampling of physical, chemical, and biological
metrics by researchers or trained volunteers at selected sites
within each lake at weekly to monthly intervals during
the potential bloom season [11], [12]; (2) high-frequency
monitoring buoys located at a single, central site with sensors
that measure selected physical and chemical parameters at
sub-hourly to hourly intervals during the ice-free season [13];
and (3) remotely sensed data at spatial and temporal scales
determined by satellite sensors, flyover timing, and weather
conditions (e.g., [14], [15], [16], [17]). Unraveling the drivers
of where, when, and how cyanobacterial blooms develop and
spread is limited by the lack of integration of these data and
limited capability for adaptive sampling.

To fill these gaps and achieve the overarching goal, the
team will use machine learning techniques and robotic tech-
nologies to (1) generate high-resolution spatial and temporal
data collected with UAVs and ASVs that embed intelligent
adaptive sampling, (2) integrate these data streams in near-
real-time, and (3) use machine learning approaches to im-
prove sampling and prediction capabilities of models for



bloom development. The proposed new systems, methods,
and models will be extensively evaluated through compar-
isons with existing data and ongoing field sampling across
a broad gradient of ‘testbed’ lakes that leverage partnerships
between participating institutions and local lake associations,
municipal water providers, and state agencies.

II. APPROACH AND METHODOLOGY

The project falls into three phases over the course of four
years: (1) Design and Data Acquisition, (2) Synthesis and
Modeling, and (3) Translation. Within each of these phases,
activities develop physical hardware, software, and data sets
that will advance the science of information technology,
robotics, and limnology and consider how the results might
be utilized by lake managers.

A. Phase 1: Design and Data Acquisition

The data collection effort will cover a suite of lakes that
differ in many key characteristics, including latitude, size,
trophic state, maximum depth, water residence time, and
watershed area and land use (Fig. 2) but that have histories
of blooms. Two main data collection approaches will be
used. First, traditional methods for limnological sampling,
i.e., manual sampling and buoys, as well as remote sensing
and demographic information.

Second, we propose to combine ASVs with UAVs for
real-time multi-modal sensing of cyanobacterial blooms.
Coordination between the ASVs and UAVs will coordinate
based on the current identification of cyanobacterial blooms
and estimation of their spatial distribution. UAVs will be
equipped with hyperspectral and multispectral cameras. The
ASVs will be custom-made and equipped with a water qual-
ity sonde with probes measuring temperature, conductivity,
DO, pH, phycocyanin/chlorophyll, and nitrate.

In literature, the problem of sampling with robots is called
informative path planning. One solution is to focus on a
single robot [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28] or coordinate multiple robots [29], [30] in a
centralized way. Others have proposed coordination methods
that are implicit as embedded within the objective function
that evaluates candidate locations [31], [32], [33] or explicit
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Fig. 2: Map of the study area (A), with boxes for each region
(B-E) showing the lakes at the same scale and information
about trophic state, maximum depth, and watershed area (F).

TABLE I: Selected a priori hypotheses (H), with rationale
(R), regarding bloom initiation, proliferation, and spread, as
drawn from the limnological literature.

H1. Blooms start in shallow, downwind coves with high human population 
densities and/or stream inflows in morphometrically complex lakes. 

R1.1. Shallow coves have warmer temperatures, facilitating germination and 
recruitment (Carey et al. 2014). 
R1.2. Benthic resting stages accumulate in downwind areas (Carey et al. 
2014). 
R1.3. Areas with more people have more nutrients, especially in rural areas 
with aging septic systems. 
R1.4. Stream inflows are where watershed nutrients enter the lake (Wetzel 
2001). 

H2. Blooms occur more often and proliferate faster in warmer water 
temperatures. 

R2.1. Cyanobacteria tend to outcompete eukaryotic phytoplankton at warmer 
temperatures (e.g., Wetzel 2001, Reynolds 2006, Paerl and Huisman 2008). 

H3. Blooms occur more often and proliferate faster in more strongly stratified 
conditions. 

R3.1. Cyanobacteria outcompete eukaryotic phytoplankton in strongly 
stratified water columns (e.g., Reynolds 2006, Sommer et al. 2012). 

H4. Bloom density decreases in the hours to days following storm events. 
R4.1. Severe mixing events disrupt the buoyancy mechanisms used to 
maintain position in the water column (e.g., Walsby 1994, Sommer et al. 2012)  

H5. Blooms are more likely in the weeks following storm events. 
R5.1. Storm events transport nutrients into lakes; localized increases are likely 
especially near stream inflows (e.g., Wetzel 2001, Sommer et al. 2012) 
R5.2. In deep water lakes that are anoxic below the thermocline, storms 
entrain hypolimnetic P into the water column (e.g., Soranno 1997) 

H6. Bloom density is greater in ice-free lakes, and in lakes and years when the 
ice goes out sooner.  

R6.1. Longer stratification periods allow for greater bloom development (e.g., 
Reynolds 2003) 

H7. Blooms spread from their initial points along the dominant wind direction 
and/or away from boat ramps. 

R7.1. Bloom spread across the lake is facilitated by wind and currents, boat 
traffic. 

 

negotiation with other robots [34], [35], [36], [37]. Typically,
the robots are assumed to be the same type and able to
broadcast information without communication constraints.

Research questions will revolve around how to achieve
effective coordination between these heterogeneous cyber-
physical systems under communication constraints, together
with humans, so that the usual limnological sampling can be
improved. We plan for an experimental campaign that spans
over the US East Coast (Fig. 2).

B. Phase 2: Synthesis and Modeling

The collected data will be integrated to combine different
heterogeneous sensor measurements in a consistent way so
that model-based and data-driven machine learning methods
can be applied. While past work has had some success in
predicting the severity of HCBs, we will develop ensemble
prediction models to achieve high accuracy in split-sample
cross validation (as opposed to the in-sample validation that
seems to have been the focus of the bulk of past work (e.g.,
[38], [39], [40], [41], [42])). In particular, our ensemble
models will merge ML methods with the Bayesian and
structural equation modeling (SEM) approaches previously
proposed by researchers studying HCBs. Part of our effort
will investigate the temporal and geospatial scales at which
accurate predictions can be made. First, we will test a host of
ML techniques on a specific lake, then on regional lakes, and
then on all lakes. Such new models will be used to validate
a set of limnological hypotheses (Table I) that will help to
shed light on the drivers of HCBs. This will adapt some of



the strategies developed for the robot sampling.

C. Phase 3: Translation

While the proposed work will yield advances in robotics,
limnology, and data science, we also aim to translate this
research work into something that can be applied beyond
our study systems. In particular, there are thousands of
lakes in the U.S. that have issues with HCBs, and the
available resources - human, equipment, and monetary - are
insufficient for the needed monitoring and management. In
this activity, we will use what we have learned in Phases
1 and 2 to develop recommendations for how the robots,
high-frequency data, and modeling platforms might be used
among citizen groups, not-for-profits, municipalities, and
state and federal agencies. This will entail both the design
of a low-cost flexible autonomous multirobot system tailored
for more general use and the development of systems that
will make the modeling more accessible to a wider audience.

III. DISCUSSION

The developed robotic systems with their potential of
extending the current spatial and temporal scales of the
collected data are essential for unraveling the drivers of
where, when, and how cyanobacterial blooms develop and
spread. To achieve this final goal, the research needs to
be performed with a mindset oriented towards the problem
rather than the method itself. This project raised several
insights that can be driving principles in robotics research
for environmental monitoring.

The problem itself is highly interdisciplinary, which re-
quires the roboticists to have a deeper understanding of
the current practice of limnologists, the parameters they
are interested in, as well as some priors that can guide
the robots to locations where to sample–for example con-
sidering linkages from watershed processes to the in-lake
processes. One important part that sometimes is neglected
in robotics research for environmental monitoring is sensor
calibration and response time. The water quality sonde with,
for example, a dissolved oxygen probe must be calibrated
so that measurements can be related across systems and
sampling events and can be interpreted by limnologists to test
hypotheses. Such requirements might affect the development
of sampling strategies as measurements might be affected by
specific motions of the robot. Our team has already started
field experiments this summer, where roboticists and limnol-
ogists designed joint studies and observed methodologies and
approaches from each other to improve the overall process.

The designed robotic system needs to be robust, even
in non-ideal conditions. For example, in New England,
the experimental campaign will mainly happen during the
summer, when there will be high boat traffic. The robots must
continue to operate, so that the goal of collecting copious
data is achieved. Robots need also to be easily deployed so
that logistics associated with deployment is reduced, given
the complexity of coordination across the many sampling
methodologies. This has been the design principle for the
custom-made boat at Dartmouth which can be carried and

Fig. 3: Preliminary experiments with a boat and drone at Lake
Sunapee, NH, in collaboration with the Lake Sunapee Protec-
tive Association, and a transect where traditional sampling
(manual and buoy) is combined with a robot.

deployed by a single person (Fig. 3 (top)). An alternative
ASV design [43] enabling longer operational times can be
seen in Fig. 4 during multi-robot coverage operations [44].

The research community should not be the only one
involved in such an effort. Citizen scientists who live around
the lakes can be a powerful resource as well for several
reasons, and they should be included in the first phases of
the project. First, they can provide invaluable insights given
their daily observations. Second, they can provide logistical
support and increase the number of deployments and, as a
result, the amount of data that we can collect and the models
we can train. Toward this end, our team is working closely
with water quality preservation and management associations
in all states. This summer we completed initial deployments
of a custom-made robotic boat together with a drone with
the Lake Sunapee Protective Association (see Figure 3).

Eventually, we plan to scale this project up so that the
developed technologies can be used by lake managers and
citizens to monitor and protect the freshwater lakes beyond
our boundaries.



Fig. 4: Deployment of three custom made ASVs for covering
a large area.
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